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Abstract: In this work, we investigate the estimation for algebraic polynomials in the bounded and unbounded
regions with piecewise Dini smooth curve having interior and exterior zero angles.
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I¢ ve Dis Sifir Acih Bolgelerde Polinom icin Diizgiin ve Noktasal
Degerlendirmeler

Ozet: Bu ¢alismada, igte ve dista sifir ac1 olan parcali Dini diizgiin egri ile sinirl sonlu ve sonsuz bolgelerdeki
cebirsel polinomlar igin diizgiin ve noktasal degerlendirmeler inceledik.

Anahtar Kelimeler: Cebirsel polinomlar

1. INTRODUCTION and MAIN RESULTS

Let C be a complex plane and C := C U {o}; G c C be the bounded Jordan region, with 0 G and

the boundary L := &G be a closed Jordan curve, Q := C\G = extL. A = {W v >1} (with respect to C).

Let function w=®d(z) be the univalent conformal mapping of Q onto the A normalized by

D(0) =0, lim, 22 >0 and ¥ =0

For R>1 letusset L, ={z : |®(2)|=R}, G

R

set: d(z,M) =dist(z,M):=inf{|z-¢| : {eM}.

Let {zj }m L€ L be a fixed system of distinct points. Consider a so-called generalized Jacobi weight

function h(z)being defined as follows:
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h(z) :=ﬁ|z— zj|y‘ , 2eGg, Ry >, @y
j=1

where 7, >-1 forevery j=12,...,m.

Denote by ¢, the class of all complex algebraic polynomials P, (z) of degree at most n € N.

Forany p>0 we introduce:

1Up
||Pn||p = ||Pn||3p<h,L> = {jh(z)|Pﬂ(z)|p|dz|j , 0<p<oo;
L

IRl =R,

nay o TE%X|Pn(Z)|, p =oo.

To evaluate |Pn (z)| on the whole complex plane we proceed as follows: taking C = G U Q, we divide
the problem into following two problems: find estimates

a) [P, <cu(Lhp)|R| . 2€G, p>0; 1.2)

b)|P,(z)| < caz,(L,h,d(z,L), p)||Pn||p |CD(z)|”+1, zeQ, p>0, .3
where c =c(L, p) > 0is a constant independent fromn,z,P,, and g, (L,h,p) >, 7,(L,h,d(z,L), p) >
(in general!) as n-— oo, depending on the geometrical properties of curve L , weight functionh and
parameter p.

We note that, the first results of type (1.2),in case h(z)=1 for L :{z : |z| =1} and O<p<oo
was found by Jackson [14]. The another results, similar to (1.2), for the sufficiently smooth curve, was
obtained in [28] (h(z) =1), and in [25, Part 4] (h(z) #1). The estimation of (1.2)-type for 0< p<o and
h(z)=1 when L isarectifiable Jordan curve was investigated in [25-27], [16, 17], [19. pp.122-133], [21]
obtained identical inequalities for more general curves and for another weighed function. There are more
references regarding the inequality of (1.2)-type, we can find in Milovanovic et al. [18, Sect.5.3].

Further, analogous estimates of (1.2) for some regions and the weight function h(z) were obtained:
in[2] (p>1)andin[20] (p>0, h=h,) for regions bounded by rectifiable quasiconformal curve having
some general properties; in [3] ( p >1) for piecewise Dini-smooth curve with interior and exterior cusps; in

[4] p > 1 for regions bounded by piecewise smooth curve with exterior cusps but without interior cusps; in
[5] » > 0 for regions bounded by piecewise rectifiable quasiconformal curve with cusps; in [6] p > Ofor
regions bounded by piecewise quasismooth (by Lavrentiev) curve with cusps.

The results of the (1.3) type starts from the work of Bernstein [29]. Analogous results of (1.3)-type
for some norms and for different unbounded regions were obtained by Lebedev, Tamrazov, Dzjadyk (see,
for example, [12, pp.418-428.]), Stylianopoulos [24] and others. Corresponding results (1.3) for some
regions and the weight function h(z) defined as in (1.1) with y, >—1were also obtained: in [3] for p > 1

and for regions bounded by piecewise Dini-smooth boundary with interior and exterior zero angles; in [6]
for p>0 and for regions bounded by piecewise quasiconformal boundary with interior and exterior zero
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angles; in [4] for p>1and for regions bounded by piecewise smooth boundary with exterior zero angles
(without interior zero angles); in [6] for p > 0 and for regions bounded by piecewise quasismooth boundary
with interior and exterior zero angles and in others.

In this work, we investigate similar problem [3] for 0 < p < 1inbounded G and unbounded region
Q with piecewise Dini-smooth curve having interior and exterior angles (also cusps) for weight function
h defined in (1.1) . Finally, combining obtained estimates for |Pn(z)| on G and Q, we get the evaluation

for |Pn(z)| in whole complex plane, depending on the geometrical properties of the region G, weight

function h(z)and P.

2. MAIN RESULTS

Let us give some definitions and notations that will be used later in the text. In what follows, we
always assume that p>0and the constants c,c,,c,,c,,... are positive and constants ¢,,¢,,¢,,... are

sufficiently small positive (generally, are different in different relations), which depends on G in general
and, on parameters inessential for the argument, otherwise, the dependence will be explicitly stated. Also

note that, for any k>0 and m>Kk, notation jzﬁn denotes j=Kk,k+1,...,m.Let us give some
definitions and notations that will be used later in the text.

Let S be a rectifiable Jordan curve or arc and z=1z(s), s|[0, |S[], S| :=mes S, denote the natural
representation of S .

Definition 2.1.[22, p.48](see also [11, p.32]) We say that a Jordan curve or arc S called Dini-
smooth, if it has a parametrization z =2z(s), 0 <s < S|, such that z'(s) #0, 0 <s <|S| and
z (s,)— z (s)|<9(s,—s,), s, <s,, whereg isan increasing function for which

9(x)

——dx <.
X

O ey

Now, we will define a new class of regions with piecewise Dini-smooth boundary, which have at
the boundary points corners, interior and exterior cusps simultaneously. Let Cf[O,l] denote the class of all
functions f : [0,&,] » R which are twice differentiable such that f(0)=0and f®(x)>0 for all
O0<x<g,,k=012.

Definition 2.2. We say that a Jordan regionG e PDS(4,,..., 4, ; f f),0<A4<2i=1m,

L reees
f e C’[0,1], j=m, +1,m,if L=4G consists a union of finite number of Dini-smooth arcs{L,}[, , joining

at the points {z,}}_, e L such that L is locally Dini-smooth at z, and the following properties hold:

1) for alli :1,_rn1 the arcs L, ;and L, meet at the point z, with the exterior (respect to G) angle Az,
0<A4 <2
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2) forall j=m +1,mthearcsL,  andL, meetatthe pointz; with f;-type exterior zero angle, that is there

exists an ¢; -neighborhood of z; such that in a local coordinate system, with the origin at z;, we have
{z=x+iy 1 |zke;, ¢ f,()<y<c, f,(x), xe[0,g]}cQ
and
{z=x+iy : |zke;, |y ex xe[0e]}cG

for some constants —o<c, ; <c,; <wand &¢;.

Throughout this work, we will assume that the points {zj }m L€ L defined in (1.1) and Definition 2.2.
J=
are the same. Without loss of generality, we assume that these points on the curve L =6G are located in the

positive direction such that, G has Az, 0< A, <2, j =1,_ml, exterior angles (when A =2- interior zero
angles (interior cusps)) at the points {zj}il, m, <m, and has exterior zero angles (exterior cusps) on the
R m
points {Zi},—:m1+1and w; =d(z;)
For the simplicity of exposition and in order to avoid cumbersome calculations, without loss of

generality, we consider, a Jacobi weight function h defined by (1.1) and the region G € PDS(4,; f,) with

m,=1,m=2,0< 4 <2and the function f,(x)=x"“, @, >0, as the function f, in the Definition 2.2. We
will use the notation G e PDS(4;; f,) for this construction. Therefore, G € PDS(4;; f,) denote that the
region G may have exterior A4z, 0< 4 <2, (also interior zero) angle at the point z, and exterior zero angle

at the pointz,of f,(x)= x""“2 —touching. Correspondingly, we will use the notation G e PDS(4,4,), if
m =m=2 ,i.e,theregion G may have only exterior Az, 0<A <2, (also interior zero) angles at the
point z,, i=1,2, without exterior zero angles, and notation G e PDS(f,f,),if m =0,m=2, i.e., the

a

region G may have only exterior zero angles of f;(x)= X touching at the point z;, j=1,2, without

exterior (also interior zero) angles at the point z;. When m, =m =0, this definition yields a Jordan region
whose boundary is a Dini-smooth curve.

Now, we can state our new results. We introduce some notation, which we use in what follows:

)l*{ max{1;, 1} if 0<4; <2,
2 lf /11: = 2;

yi =max{y; 0}, Ay, = max{y; —a;}, i = 1,2;
A =max{A], A3}, v" = max{y;, 3}, vq = max{y; 4, V20, } (2.1)

a’ = maX{al, aZ} y Ay = min{al) aZ}
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Theorem 2.1. Let G ePDS(4; f,) for some0< 4, <2and f,(X) =cx""*, a, >0; h(z) be defined as in
(1.1). Then, for any B, € g, ,n € Nand y; >-1, j=12, we have:

[Pl <cA R, 22)

wherec, =¢,(G,y;,4,,, p) >0 is the constant, independent from z and n;

( v‘i+11*
npe " v > —1, —1<y, < —ay,
Yo +1+2a;
+14+2a
An 1= {n pl+az) , —1< Y1 < % -1, Y2 = —Qy, (23)
1
Y1 +1,4
A +1+2a
n e 1; Y >V2—z_1’ VZZ_OIZ!

L= 2, (+ay)
and y,, A are defined as in (2.1).

Now, let's take that the curve L in the both points z,,z, € L have exterior non zero angles. In this
case we obtain:

Theorem 2.2. LetG e PDS(4,,4,)for some0<A,4, <2; h(z) be defined as in (1.1). Then, for any
P eg,, neN, y.>-1i=12 we have:

Y+,

r+1)
IPalleo < ez m ® 7 IRl (2.4)

wherec, =¢,(G,y,, 4, p) >0 is the constant, independent fromz andn, and y*, A*are defined as in (2.1).

Analogously, when the curve L in the both points z,,z, € L have only exterior zero angles, we have:

Theorem 2.3. Let G € PDS(f,, f,) for some fj(x)=cx1+“", a; >0, j=12;h(z) be defined as in (1.1).
Then, forany B, € g, ,n €N, 7 >-1, j=1,2,we have:

y*atl 2a*
IPullos < 5 nPF1ve P |||,

where ¢, = c3(G,;/j,aj, p) >0 is the constant, independent from z andn, and y,, a”*, a, are defined as in
(2.2).

Now, we will estimate of |P, (z)|at the critical points z, L, j=1,2.

Theorem 2.4. Let G e PDS(4; f,) for some 0< 4 <2and f,(x)=cx""", a, >0; h(z) be defined as in
(1.1). Then, forany P, eg,, neN, 7 >4 j=1,2, we have:
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R <cB R, (26)

where ¢, =c,(G, Vi A &y, p) >0 is the constant, independent from zand n;

Y1 +1/,l,i
nrer -, for j=1,
Y§,a2+1+2a2
n pQ@+az) f or j: 2.

B, =

Remark 2.1. The similar results from [2] (for p>1); [5] (for p>0); [6] (for p>0) were obtained for

regions of a more general geometric configuration, but without exterior non-zero angles in the usual sense.
Therefore, the estimates were obtained in Theorems 2.1-2.4 can be compared with correspondingly results
from [4]. The results obtained in Theorems 2.1-2.4 extend the results obtained in [4] incase 0 < p < 1:

In Theorems 2.1-2.4 we also shown that by slightly increasing the smoothness of the boundary, one can
achieve improvement in growth by n® for arbitrary small £>0:

Remark 2.2. Let us give a geometric interpretation of Theorem 2.4. Obviously, PDS(4;; f,) « PDS(4,; f,)
for 0 < 4, <A, < 2, and for the same fixed f, = cx""*2; a, > 0. Therefore, if A4, <4,, then the region
G(4,) cPDS(4; f,) also have a G(4,) cPDS(4,; f,). If 4 <A4,, then the region G(A,) has a more
obtuse angle at the point z, than the region G(4,) . Hence, the sharper from the inside angle at the point z,

, the worse the degree of n and the obtuse from the inside the angle at the point z, the better the degree of
n.
The same can be said for another point z,. In this case, we see that PDS(4;; f,) c PDS(4,; 9,)

for f,= cx"* ; g,=cx"*, 0 <a, < f3,, and for the same fixed 4, 0 < 4 < 2. Hence, the sharper the
exterior angle at the point z,, the worse the degree of n and the obtuse the exterior angle at the point z,,
the better the degree of n for some y, <1.

Now, we will give pointwise estimations for |Pn(z)| in regions G e PDS(4;; f,), atthe ze Q.

Theorem 2.5. Let G e PDS(4,; f,) for some 0< 4, <2 and f,(X)=cx""", a, >0; h(z) be defined as in
(1.1). Then, forany P, ep,, neN, and 7, >-1 j=12, we have:

IP,(z)|<c IR lo@)|™, ze0, (2.7)

_ b
*dP?(z,L)
where ¢, = CS(G,j/j A, a,, p)>0 isthe constant, independent from zand n;

*
(nH2r1 r2-1

n-?er + np(lwz)’ 71,}/2 >1,

D, = (Inn)’, n<r.=1 (2.8)
11 _1<]/1,}/2 <1
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Combining Theorems 2.5 and 2.1, we can obtain the following estimate for |Pn(z)| in the whole complex
plane.

Corollary 2.1. Under the assumptions of the Theorem 2.5, we have:

A, Ze 6,
P@I<c [Pl r

dP(z,L)

D, 2e€Q,

n

where ¢, =¢,(G,y;,4,a,, p) >0 is the constant, independent from z and n; and A and D, are

defines as in (2.3) and (2.8) correspondingly -

2.1. Sharpness of estimates
The sharpness of the estimations (2.2)-(2.7) for some special cases can be discussed by comparing them
with the following results:
Remark 2.1. For any n € N and i=1,2,3 there exist polynomials P, € ¢, regions G* ¢ C and constants

¢, =¢,(G") >0, ¢, =¢,(G") >0, and ¢, =¢,(G*) > Osuch that:

[Pl 2 60 [Pl sy (2.9)
and
P @26 @@) [P, ey T2EF, (2.10)

where F is a closed subset in 5\?.

3. SOME AUXILIARY RESULTS

For the nonnegative functionsa >0 andb > 0, we shall use the notations a<b (order inequality),
if a<cb and a~bare equivalent to ca<b<c,a for some constants c,c,,c, (independent of aand b)
respectively.

We can find a well known definition of a K -quasiconformal curve in [7], [15, p.97], [22,p.286]
and [23] as follows:

Definition 3.1.[15, p.97], [23] The Jordan curve (or arc) Lis called K — quasiconformal ( K >1), if there
isa K —quasiconformal mapping f of theregion D>L suchthat f(L) isacircle (or line segment).
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Let F(L) denote the set of all sense preserving plane homeomorphisms f of the region D>L such
that f(L) isa line segment (or circle) and let

K, =inf{K(f): f eF(L)},

where K(f) is the maximal dilatation of a such mapping f. Then L is a quasiconformal curve, if
K, <o, and L isa K- quasiconformal curve, if K <K.

We well know that there exist quasiconformal curves which are not rectifiable [15, p.104].
According to the "three-point" criterion [6], every piecewise Dini-smooth curve (without any cusps) is
quasiconformal.

Lemma 3.1. [1] Let Lbe a K-—quasiconformal curve, zel, z,,2,eQn{z : |z-2|?d(z,L,)};
w; :@(zj),j=1,2,3. Then

a)The statements |z, —z,| < |z, — ;| and |w, —w,|<|w, —w,| are equivalent.
So statements |z, —z,|~|z, -z, and |w, —w,|~|w, —w,| also equivalent ;

b) If |2, — z,|< |z, — 7|, then

K2 K—Z
W, —W, <|21_Z3| W, —W,
W, — W, |zl—z2 wl—w2|
where 0<r, <1, isconstant, dependingon G.
Recall ~ that  for  0<5, <d, ::%min{|zi —z| 10, j=12,.,m, i j}, we  put

O(z;, 51)::Qm{z : |z—zj|§5j}; S =mind.

1<j<m b

Q) = CJQ(ZJ-, 0), Q =Q\Q(s). Additionally, let
A =Dz, 5)), AW = @1q>(g(z L 8)), AS) = A\AS).

The following lemma is a consequence of the results given in [22, pp.41-58], [11, pp.32-36], and
estimation for the |¥| (see, for example, [10, Th.2.8]):

d(¥(z),L)

v’ ~N—
S

Lemma 3.2. Let a Jordan region G e PDS(4;;0), 0<4, <2, j=1m,. Then,

i) forany we A, |‘P(w)_\y(wj)| =|W—wj|i" W) z|w—wj |z,-—1;
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i) for any w € A\A; “I’(W) —‘P(wj)‘ z‘w—wj‘, |‘P’(w)| ~1.
Let {zj }L be a fixed system of the points on Land the weight function h(z) defined as (1.1).

Lemma 3.3. [3] Let L be a rectifiable Jordan curve ; h(z)as defined in (1.1). Then, for arbitrary
P.(z)eg,, any R>1 andn € N we have

ok

n+r
<R °

P , p>0, (3.1)

”Pn”Sp(h,LR) 3,(h,L)

where " =max{y, : y €I, k< m}.

4. PROOF OF THEOREMS
Before giving proofs of the main theorems, let us give the geometric notations used in the proofs to
prevent the flow of presentation of the proof.

Without loss of generality, we assume that z, =-1 ,z,=1and (-11)cG. We will use the
notations given in the following:

L' ={zeL: Imz>0}and L ={zelL: Imz<O0},sothat L=L"uL ;w,=®(z;)= ei¢j,
0<¢, <27 ,j=12; w" =e”and w =-w' ,where 0, =g +22 ; z* =¥ (Ww); I! =1(z,2%)is
the subarc with endpoints z*and z;, j=12, . L' :== L' (z%, z;, z7) denote the arc connecting the points

z" and z passing through the point z, ; L* =L%(z",z,,z")denote the arc, connecting the points z~ and

+

Z" passing through the point Z2 .
Similar  notations  for L, are in the following: Ly, ={zel; : Imz>0} and
L, ={zel, : Imz<O0} sothat L, =L, Uly; w; =Re”™ and w, =-w; ; z; =¥(w;) . Let

z,p€ly such that d(z;,L3)=z,-z;5| , j=12; ¢*el® suchthat d(z,,,L7)=7,,-¢" .
z; el' L suchthat c,d(z;,L,)=z,-z|, j=12; z;gely suchthat c,d(z;,L)dz,-z;:1 .
j=12.

Finally, let us give the following notations: Let E. ={lel; : |{ -z |<cd(z,Ls)} ,and let

R

E)n be the sub-arc of Le with endpoints z: and . j=12 ;

J,R
E* ={¢el : |¢-zl]<cd(z,L,)}, and let E}* be the sub-arc of L° with endpoints z° and z*,
i=12.Let F'y =®(El}), i=12, j=12.Let z,eL beapoint far from the points Z1 and Z2.

Without loss of generality, we assume that z, =z" (or z, =z ) to ensure simplicity in calculations.
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4.1. Proof of Theorem 2.1.

Proof. Let GePDS(4;f,) forsome 0<4 <2 and f,(x)=cx""*?, @, >0 and R=1+%

n !

n € N. Let
w = ¢, (z) denote the univalent conformal mapping of G onto the unit disk B={z : |z|<1} normalized

by ¢,(0)=0,4,(0)>0 , and Iet{§j}, 1< j<m<n, the zeros of P,(z), lying onG; (if such zeros exist).

Lets define a Blaschke function with respect to the zeros {gj }L as follows:

_ u ¢R(Z)_¢R(§j)
W=l o

and for any p >0 we put:

P p/2
Q.,(2) :=[q“((zz))} , 2eG,. (4.2

The function Q,, is analytic in G, continuous on Gr and does not have zeros in G,. We take an
arbitrary continuous branch of Q, = and we maintain the same designation for this branch. Its Cauchy

integral representation for the region G, is the following:

1 dc
Qu,(2) = LIRQn,p(é")éV_z, 2eG,. (4.2)
From (4.1) and (4.2), we have:
o] s |dg]|
< R Pn ]
P2 <l @F I mR(c) b LAY e

forall zeG; , since ‘qmyR(g)‘El forall {elL, and ‘qmyR(z)‘<1 for all zeGg. Multiplying the

numerator and the denominator of the last integrand by h"?(¢) , and then applying the Cauchy-Schwarz

Inequality, we get:
1/2 1/2
; jd¢] ]
|dd| — | -
o | ooy oct [fiied

According to the Lemma 3.3, we have:

dé’ 1Up v
Pn(z)|3||'°n||p{jm} =Rl 30" (4.3)

Mh:

forall zeG; , where
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J, =l (k)= ——. 4.4

Now, we will estimate the integral J, . For this purpose, we will use the notations and definitions given

in the beginning of this section. Under this notations, we can write J, in the following form:

J zij [9¢] = iJ(E‘xi . (4.5)
' BEEC A c-of &=
Now, we estimate the integrals J(E}ER) in (4.5). First, let us fix a point z'eL , such that
IP.(2) =[P - Sothat z'el’ or z'eL’ . We will examine both cases. Let d, , =d(z, L) .
i=12.
Case 1. Let z'el' . If » >0, we have:
d g
JEDHIED= | j9¢] . <%q | d—f e (4.6)
o | —n ¢ -2 dir g, 8" Oig
if —1<y, <0, then we have:
J(El'*)+J(E1")<LCIde ds < — 4.7)
T e g, |
If z'eE, then we get:
|d§| < 1 , (4.8)

JESR) +I(E3R) < : — .
S @qummﬂé—amé—ZDf” Ay
for y; = 0, and taking into account the inequality (x +y)" < 2"(x" +x"), ,X,y,r>0 , we have:

. ) 1§ -2 ["|dg
JER+IERD)= | ———i—%—l (4.9)
ERVUErR |§ —1 |
|g-2["+]|2 -7, [" |d¢ | :
: |d¢ < — = —+(cdy )"
/ ¢ -2 @JQJJ— R

1+ 1,-
E;rVEYR

dgl 1

12 1+ °
E%‘;{UE%TR |é/ -z | d].,R1

for —1<y,<0. If z'eE}", then we get:
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4 1

J(Eyp)+I(Ejr) = —, (4.10)
o o E%:*R{E}R |é/ -4 |71 ¢- Z/|2 di:lL,R}/1
for y, >0, and we have:
-z, |"|d
JED+IER) = | le-al”de] ; §|<i, (4.12)
g, 167 di e
for —1<y, <0. From the inequalities (4.6)-(4.11), we conclude that
2 1,+ 1,- 1
Z(J(ELR)+J(ELR)<W, (4.12)
= 1R

where 7, :=max{y,,0}. By the relation (25) and Lemma 2.2 in [4], we write the inequality (4.12) in the
following form:
2 * *
(J(EiR) +I(E}g) < n®7%s, (4.13)
j=1
where
- max{4,L}, if 0<A4 <2,
h= 2, if 1, =2

Case 2. Let z'eL? andw' = d(z') .By changing the variable 7 =d(¢) in the integral (4.5), we have:

: |¥'(2)[[d7] SN
I~ = Y I(FD). (4.14)
;F;jgw(r)—\wvvi)w [¥() — ¥ ()| 2

Now, we estimate the integrals J(Fjivi) in (4.14). First, we assume that z'e E>* . Then, by the relation
(25) and Lemma 2.2 in [4], we have:
| ¥'(7) | |d r|
oy [ (2) = (W) [ [¥(2) ¥ (W)
d(¥(r),L)|dz|

el | () = W) [ [¥(2) =¥ W) (7] -D)
) 7

ey 025 W (2) = W) (7] -1)

IR +I(R%) =

~
~

We estimate only the integral over F’; , since the other estimate is similar. By using the inequality
|‘P(r) - ‘P(W’)| >min{d, ;,d(¥(z),L")}>min{d, , d;}?} >~ d;}ﬁ’z :

we have
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J» |dT| < .[ |dT|
o GRY@ YW (7]-D) g, 4R (71D
wﬂ

rl,3
el 2,0 — 77 ()= e (|-

<

So that, we get:

12

IR+ I(Fy)<nt=", (4.15)
The same conclusion in (4.15) can be drawn for the case z'< EZ>* , by similar arguments.
Now, assume that z'e E/*. If y, >0 , then

|¥'(z)||dz]

‘](Fzzi;)*'J(FzzyR_)_
| ' | W(2) =P (w,) [ [¥ () - (W)

Fz RUFZ R

<[ def [ de]
A OD" Gz, -2 5 (]

F2+
dr]

< <

Fzz,'r: ( T| 1)

and if —1<y, <0 , then we get:
7.'| |dz’|
J(RI)+I(FrR) < d <
o F!JJI(‘P( ),L)* F!g (I7]-1)°

Inthe case z'eE2*,if »,>0 ,then we get:

~ dr| |d7|
J(FZ)+ J(FA) < | +
o)t 20 I TR
|dz| |dz|
= 2 + 7242
Falz,r =25 7 (17| -0)° &l z,0 -2 77
|dz’| |dT|
< —+

7242
S (T (o)™
r2+2

+11+l rapy
<n*?4nte o,

and if —-1<y, <0 , then we have:

dr| |dr| |dr| 2
J(RA)+I(FR) < | <n+ <n+n"2 ",
2R FL (7 J _d;g Fj (|7|-1)
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Consequently, if z’' = L?, we obtain:

I(FZ) +I(FZp) <n, (4.16)

R

where y; = max{y,, 0} . If we put the obtained results (4.15) and (4.16) in (4.14), we get the following
inequality for the case z'e L’ :

VZ‘arz’1+2

Jo<nte (4.17)

Where y; o, = max{y,, —a;}.
For the general case, thatis z' = L , from (4.13) and (4.17), we have:

PP
7 2,09~
92 12

J, =< @7t g e (4.18)

Finally, if we put the estimation (4.18) in (4.3), we obtain the desired result.

4.2. Proof of Theorem 2.5
Proof. Suppose that PDS(4,; f,) forsome 0< 4, <2 and f(x)=cx"*, a, >0; h(z) be defined as in

(1.1).Throughout this work, we will take R=1+2 . Let {fj}, 1< j<m<n, be the zeros (if any) of

P.(z) lying on Q. Lets define the function Blaschke with respect to the zeros {éj } of the polynomial
P.(2):

o ()= [ 226

- L 2eQ. (4.19)
2 1-0(E)0(2)

Itis easy that the B (&;)=0,|B,(z)|=1 at zeLand |B,(z)|<lat zeQ.

Forany p>0 and zeQ letus set:

B, (2)®""(2)

() = {&} | (4.20)

The function T, () is analytic in Q, continuous on Q, T, , (c0) =0and does not have zeros in Q. We

take an arbitrary continuous branch of the T (z)and for this branch, we maintain the same designation.

Cauchy integral representation for the unbounded region € gives:

T, (Z)=—2i7Zi T, (é)%, 7eQ. (4.22)

Since| ®(¢)| =1, for ¢ L, from (4.19) we have:
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p(n+l) p(n+l)
2 2

oz |@(2) o2 |dg]_[@(2)
Rl =, !P”(§)| |§—Z|S27rd(z,L)-f

L

P,(¢)"|d<]. (4.22)

Denote by:

P.(£)"|d<]. (4.23)

A=

L

R oel- 3]

2 )
Multiplying the numerator and denominator of the integrand by h?(¢) H|§— zj|y’/2, after applying the
=L

Holder inequality, from (4.23) we obtain:

1/2

2 , 1/2 d
AHSZ[Ih(C)IPn(()I |d§|j : j2|—§| (4.24)
i=1 \ [ i H|§ -z |7.

i=1

1/2
dé’| /2 2
<[r[P"? _lael = [P [P? (32 +32)",

" ||p [£|§_Zi|yiJ " ||p ( )

since the points z, and z, are distinct and where

: d
J :=j | §|y =12 (4.25)
tle -z
Taking into consideration notations where we had given in beginning section, estimation (4.24) can be
written as following:

2

AR (33432 = IR Y[ Ls+ 1]

i=1
where

iy [ %L

_, k=12 (4.26)
g+ ¢ 7"

=

According to (4.22) and (4.23), it is sufficient to estimate the integrals I,:'fk foreach i=12 and
k=12

Given the possible values of y, (<1<, <0, 7,20, i=1,2) , we will consider the estimates for the I ",

separately.

Let ,>0 and y,>0. Inthiscase for the integral J;, , we get:

= j9¢1 (4.27)
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adi g -n
< j $-<{dll,Ry' n>1

y S 1 1<y <L
di ¥, >1
d 1R ! 1 4
11 —j _loel j B It et
, |é,_ Zl|71 6 871 1,R
1 1<y <L
Similar estimate for the integral Ja
. d G0z g d 1-y, , > 1'
12 = | | §|y < [ d—f<{ LI (4.28)
Ef'*|§_zz|2 o S” 1, 1<y, <%
. di 7>l
<<InZ-, 7, =1,
J‘ |é/_ 22|72 CZE[R 572 dy r 2
1 1<y, <l

Let <0 and y,<0. Then, analogously to the (4.27) and (4.28), we get:

Iry = I ¢ —2,[ 7 ]d¢|< dfmesE! < 1, (4.29)

15 =Ej|' |§—zl|(_”)|d§|< )] <L

£

125 < [ |6 = 2,[ 7 [dg]< df g mesEP* <1, (4.30)

125 < } |§—zz|(7“)|d§|< =

£2=
Therefore, in this case, from (4.26) - (4.30), we obtain:
dy3 +d,% Yors>1
A <[P - [ingt+ Inﬁf, =y, =1, (4.31)
1 1<y, <1

Comparing (4.22), (4.23) and (4.31), we have:

A? N n+l
Pn(z)|£cd(pT)L)|| ||| (2)| (4.32)
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where ¢c=c(G, p,») >0, istheconstant independentfrom n and z,and

dig +dy 2%, 77>l
A?,l = Int—klnﬁy 7/127/2 =11 (433)
1, “1<y,7, <1.

According to [8, Lemma 1.1] and Lemma 3.2,, for the point z, we get
dyp =N (4.34)

For the estimate d, ., letsset: z,,el, suchthat d,, =‘zz - ZZ’R‘; el such that

d(z,5, " NL)=d(z,5,L°); ; =¢ el : |{—17,|=c,d,, . Under these notations, from Lemma 3.1, we

obtain:

dr =d(z,5, L NL) z‘zz,R -2,

~d;'s. (4.35)
Hence, d, =(d§)ﬁ. On the other hand, according to Lemma 3.2 and [8, Lemma 1.1], we get: d; >1.
Therefore,

d, o > N¥e, (4.36)

Comparing (4.32)-(4.36), we get:

P (D)< |p | [0, ze 0,

d*2(z,L)
where
(i o
n °> +n°'®, v, >1
= 1 4.37
Ahl (lnn)P' }/1:}/2:1, ( )
1, =1<y,7, <1,

and we complete the proof -

The proof of Theorems 2.2, 2.3 and 2.4 it is not difficult to obtain from the scheme of the proof of
Theorem 2.1.
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