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Abstract: The point standing out in the present paper is the sequence spaces B
Gc
~

0ˆ , B
Gc
~

ˆ  and B
Gsc
~

ˆ produced by 

the domain of the infinite matrix BGR ~.~ = , which is defined in the previous study of Candan [2], where the 

spaces 0ĉ , ĉ  and sĉ , respectively, are as presented by G.G. Lorentz utilizing the issue of the Banach limits 

(Acta.  Math. 80. 1948, 167-190), and B~ is the double sequential band matrix and G is the generalized 
weighted mean. Firstly, it is shown that aforementioned spaces are linearly isomorhic to the spaces 0ĉ , ĉ  and 

sĉ , respectively. In addition to these, −γ and −β duals of the spaces B
Gc
~

ˆ  and B
Gsc
~

ˆ  are given. Beyond them, 

the classes ( )λ:ˆ
~B
Gc  and ( )B

Gc
~

ˆ:λ   of infinite matrices are characterized, where λ  is a given sequence space. 

Keywords: Almost convergence; Generalized weigheted mean; Sequence space; Matrix transformations.  

Hemen Hemen Yakınsak Dizi Uzaylar için Yeni Bir Bakış 

Özet: Banach limiti (Acta.  Math.  80. 1948, 167-190) kavramını kullanarak G.G. Lorentz hemen hemen 
yakınsak dizilerin ĉ  uzayını tanımladı. Bu çalışmada öne çıkan nokta 0ĉ , ĉ  ve sĉ  uzaylarının  Candan [2] 

tarafından tanımlanan BGR ~.~ =  matris etki alanında olan B
Gc
~

0ˆ , B
Gc
~

ˆ  ve B
Gsc
~

ˆ  uzaylarını tanımlamaktır. 

Burada B~ ikili dizisel band matrisi G de genelleştirilmiş ağırlıklı ortalamayı göstermektedir. Çalışmada 

öncelikle B
Gc
~

0ˆ , B
Gc
~

ˆ  ve B
Gsc
~

ˆ uzaylarının sırası ile 0ĉ , ĉ  ve sĉ uzaylarına lineer izomorf oldukları 

gösterildikten sonra B
Gc
~

ˆ  ve B
Gsc
~

ˆ uzaylarının sırası ile −γ ve −β dualleri elde edilmiştir. Son bölümde de 

λ verilen herhangi bir dizi uzayı olmak üzere ( )λ:ˆ
~B
Gc  ve ( )B

Gc
~

ˆ:λ  matris sınıflarının karekterizasyonu 

verilmiştir. 

Anahtar Kelimeler: Hemen hemen yakınsaklık; Genelleştirilmiş ağırlıklı ortalama; Dizi uzayı; Matris 
Dönüşümleri. 
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1. INTRODUCTION 

At the beginning of the introduction; first of all, 
the basic ideas about summability theory and 
historical background are given. Then the 

sequence spaces B
Gc
~

0ˆ , B
Gc
~

ˆ  and B
Gsc
~

ˆ  which 
constitute the main body of this study, are 
presented. Begin with the definition of the 
sequence space, which is the fundamental 
concept of this study. As known, the symbol w  
denotes the space of all real-valued sequences. 
Also, we use the symbols c , 0c , ∞l  and pl  

( )∞<≤ p1 , bs  and cs  to present the sets of 
all, convergent, null, bounded 
sequences, −p absolutely convergent series,  
bounded series and convergent series, 
respectively. The sets defined in the above 
paragraph are vector spaces and at the same time 
those sets are subspace of .w  Since any 
subspace of w  is known as a sequence space, 
each of aforementioned sets is a sequence space. 
In addition to these, it is going to be used the 
conventions that ( ),1,1=e  and ( )ne  are the 
sequences whose only non-zero term is 1 and 
found in the thn  position for each INn∈ , 
where { },2,1,0=IN . We note that here 

( )kaa =  and ( )nkxX =  instead of  ( )∞== 0kkaa  

and  ( )∞ == 0,knnkxX , respectively. 

Let λ  and µ be any subspace of w  and 

( )nkaA = , INkn ∈, , be infinite matrix of real 
or complex numbers. For any sequence 

)( kxx = , we write ( )( )nAxAx = , if 

( ) ∑=
k

knkn xaAx converges for all .INn∈  If  

λ∈x  implies that µ∈Ax , we say that 
A defines a matrix trasformation from λ  into 
µ  and we denote it by .: µλ →A  By ( )µλ,  or 

( )µλ;  we denote class of  matrices such that 
.: µλ →A  

Another essential definition we need is that the 
triangle matrix. Let us give this definition of 
that. A matrix  ( )nkdD =  is called triangle if 
primary diagonal’s components aren’t equal to 
zero and components on the top of the primary 
diagonal are equal to zero.  If we remember that 
given two matrices are triangle matrices then 
following equality is valid 

( ) ( )xBAxBA .. =  

for a given sequence x . Additionally, a triangle 
matrix A  uniquely has an inverse BA =−1  
which is also a triangle matrix. Therefore, 

( ) ( )AxBBxAx ==  holds for all .wx∈  

Now, it is time to give definition of Schauder 
basis in a normed space. Let ( ).,X  be a normed 

space. A sequence ( )ke  in X is called a 
Schauder basis for X if for every 
element Xx∈ there exist a unique sequence  
( )kϑ  composed of scalars  such that 

∑
∞

=

=
1k

kk ex ϑ , i.e., 

0lim
0

=−∑
=

∞→
X

n

k
kkn

ex ϑ . 

In that case, the series k
k

k e∑
∞

=1
ϑ  having the same 

x is then called the expansion of x with respect 
to ( )ne , and we write ∑=

k
kk ex .ϑ  

Another point in this study is the matrix domain 
which is one of the most important concept. 
Because of this importance, let us now explain 
this concept. When an infinite matrix A and a 
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sequence space χ  are given, the following 
newly defined set using both A and χ ; 

( ){ }χχ ∈∈== Axwxx kA :   (1.1) 

is called the matrix domain of χ under .A  This 
newly defined set is a vector space and is a 
subset of w  at the same time. Therefore, Aχ is 
known as a sequence space. It is worth 
mentioning here that in some cases or rather 
some special cases, even if Aχ  and χ are equal, 
but usually one covers the other. Those 
interested about in the subtleties of this subject 
can consult especially on the th51 page of 
Başar’s book [17] and references at the end of 
the study for further information. 

Building a new one using previously defined 
spaces is a common way of lately. Researchers 
interested in this subject should examine the 
relevant articles [5-13], [16], [18], [24-53] to 
gain different perspectives in the references. 

The reader will do well to read about −K space, 
−FK space, −BK space, −AK space and 
−AD space of a sequence space and related 

topics before starting a systematic study about 
the present subject. 

It is useful to state here that the terms map, 
function and transformation are all synonymous. 

2. THE MATRIX R~  and ALMOST 
CONVERGENCE 

Here, we focus on the new sequence spaces B
Gc
~

0ˆ , 
B
Gc
~

ˆ  and B
Gsc
~

ˆ obtained by the domain of the 

infinite matrix BGR ~.~ = of the spaces 0ĉ , ĉ  and 

sĉ , respectively, where R~ is defined in the 
previous study of Candan [2]. A full detail of the 
above aforementioned matrix R~ are important 

for us to work out at this time and we will just 
accept as valid without details the usual rules. 
For this approach, the article of Candan [2] is 
recommended.  

Before giving some results, let us present a very 
brief historical background and developments 
about the space of almost convergent sequences. 

We know that there are different impressions in 
the same sense about the space of almost 
convergent sequences. For example, one of these 
notations is f and the other is ĉ , of the space of 
almost convergent sequences. We have chosen to 
use the representation of ĉ  in this study because 
f is also used for other concepts. As everyone 

knows very well, the space ĉ  was presented by 
G. G. Lorentz [3], using the concept of the 
Banach limits defined immediately below. 

Now, let us define an operator known as the shift 
operator from w  to w  as follows 

( ) 1+=℘ nn xx  

for all .INn∈  In the literature, L , which is 
defined on  ∞l , is known Banach limit, which is 
also a non-negative linear functional satisfying 
the following conditions ( ) ( )xLxL =℘  and 

L ( ) .1=e  We all the sequence ( ) ∞∈= lxx k  
almost convergent to the generalized limit ε  
when all Banach limits of x  is equalsε  [3], and 
denote it by .limˆ ε=− kxc  Let j℘ be the 
composition of ℘ with itself j  times and define 

( )xkmn  for a sequence ( )kxx =  by  

( ) ( )∑
=

℘
+

=
m

j

j
nmn x

m
xk

01
1

 for all ., INnm ∈  

It has been proved by Lorentz in [3]  that 
ε=− kxc limˆ  if and only if 
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( ) ε=∞→ xkmnmlim  uniformly in n . It is known 
that every convergent sequence is almost 
convergent and both limits are equal. By  ĉ  and 

sĉ , we denote the space of all almost convergent 
sequences and series, in other words; 

( ){ }ninuniformlylxkwxc mnm
,lim:ˆ =∈=

∞→

.,
1

lim:ˆ
0 0 








=
+

∈= ∑∑
=

+

=
∞→

ninuniformlyl
m

y
wxsc

m

k

kn

j

j

m

The inclusion ∞⊂⊂ lcc ˆ  are strictly hold [3]. 
Because of these relations among them, norms 

ĉ
. and 

∞
. of the spaces ĉ  and ∞l  are equal. 

Therefore, these spaces ĉ  and 0ĉ are 
−BK spaces with the following norm 

( ).sup
,

ˆ xkx mn
nm

c
=   

We are going to denote by U  the set of all 
sequences u for which 0≠ku  for every .INk∈  

For ,Uu∈  let .11 




=

kuu  Let us suppose 

that Uvu ∈,  and describe the matrices 

( ) { }nkgvuG =,   which is one of the main 
matrices in this paper and known generalized 
weighted mean or factorable matrix is defined as 
follows: 









>
=
<

=
nk
nkvu
nkvu

g nn

kn

nk

,0
,
,

 

for all ,, INnk ∈  where Uvu ∈, , also nu  

depends only on n and kv  bounds up with only 

.k  

Now, let us start giving the definition of double 

band matrix ( )nn srBB ,~ = . Here and thereafter, 

for any given two sequences ( )nrr =~  and 

( )nss =~  the terms of which are positive real 
numbers; we are going to assume that these 
sequences are convergent. Let us describe the 
sequential band matrix ( ){ }srbsrB nk

~,~)~,~( =  by  

( )








>−<≤
−=

=
=

nkornk
nks

nkr
srb n

n

nk

10,0
1,

,
~,~  

for each INnk ∈, . It can be understood in a 
simple way, the generalized difference matrix 
( )srB ,  is obtained by making a special selection 

in the band matrix )~,~( srB , with a clearer 

expression; when  rrn =  and ssn = are taken 

for all .INn∈  

Now, suppose that ( )kuu = , ( ) Uvv k ∈= , 

( )nr  and ( )ns  are defined immediately in the 
above page, two convergent sequences of 
positive real numbers. Now, we are going to use 
the notation R~  to represent the matrix 
( )BvuR ~,,   defined below as we did in previous. 

( ) ( ) ( )srBvuGBvuRR ~,~.,~,,~ ==  

and  

























−−








−=Ω ∏∏

−

+=+

−

=

1

11

1 111 j

ki i

i

k

j

ki i

i

kj

j
k r

s
vr

s
vr

 

where; ., INkj ∈   

Now, it is time to give the definition sequence 

space B
Gc
~

ˆ  by  

( ) ( ) ( ){ }cxRyywxxc kkk
B
G ˆ.~:ˆ
~

∈==∈==  
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where the frequently used sequence ( )kyy =  by 

the ( )BvuRR ~,,~ = -transform of a given 

sequence ( ),kxx =  that is 00000 xrvuy =  and 

for all 1≥k  

( ) 







++= ∑

−

=
+ kkkj

k

j
jjjjkk rxvxvsvruy

1

0
1 . 

Similarly; we are also able to define the space 
B
Gsc
~

ˆ  as follows; 

( ) ( ) ( ){ }scxRyywxxsc kkk
B
G ˆ.~:ˆ
~

∈==∈== . 

We can redefine the spaces B
Gc
~

0ˆ , B
Gc
~

ˆ  and B
Gsc
~

ˆ by 
the notion of (1.1) 

( )R
B
G cc ~0

~

0 ˆˆ = , ( )R
B
G cc ~
~

ˆˆ =  and ( )RB
G scsc ~
~

ˆˆ =  . 

Theorem 2.1. The sets B
Gc
~

0ˆ , B
Gc
~

ˆ  and B
Gsc
~

ˆ are  
linear space. 

Proof. Since this result is something  familiar to 
the basic linear algebra, details are omitted. 

Theorem 2.2. i) The sequence spaces B
Gc
~

ˆ  is 
normed space with  









+

+
= +++

++

==
+ ∑∑ knknkn

kn

i
ii

m

k
kn

nm
c

xrvxku
m

x B
G

1

00,
ˆ 1

1sup~

  

ii)  The sequence space B
Gsc
~

ˆ  is normed space 
with 

∑ ∑ ∑
=

+

=

−

= 



























+

+
=

m

k

nk

j

j

i
jjjiij

nm
sc

xrvxku
m

x B
G

0 0

1

0,
ˆ 1

1sup~

 where .11 +++= iiiii svrvk  

Theorem 2.3. The spaces B
Gc
~

0ˆ , B
Gc
~

ˆ  and B
Gsc
~

ˆ are 

linearly isomorphic to the sets 0ĉ , ĉ  and sĉ , 
respectively. With another representation in the 

same sense 0

~

0 ĉ ~ˆ =B
Gc , ĉ ~ˆ

~
=B

Gc  and s.ĉ ~ˆ
~
=B

Gsc   

Proof. We prefer to prove just one because there 
are three similar results. The first thing to do in 
this proof is to show that a linear transformation 

exist between the spaces B
Gc
~

ˆ  and .ĉ  Namely, the 
required tool is to describe a transformation from 

B
Gc
~

ˆ to ĉ . Using the matrix R~  introduced in the 

second chapter, if the transformation T is 

described as ( ) xRxT .~=  for every B
Gcx
~

ˆ∈ , it is 

easy to see that T is linear.  If ( ) 0=xT  then 

0=x , so T is one-to-one. Finally, we need to 
show that T  is surjective. If ( )kxx = is defined  

∑
−

=

∈+Ω=
1

0
)(;11k

j
k

kkk
j

j
k

j
k INky

vru
y

u
x  

all cy ˆ∈ . With this in mind, it is easy to see that 
the following equation is satisfied 

( ) kkkkj

k

j
jjjjk yrxvxvsvru =








++∑

−

=
+

1

0
1  

for all ,INk ∈  the following is true from here 

.limˆ

lim
1

lim
00

1

0

k

m

k
nkm

m

k

kn

i
nknknkii

kn

m

yc

yxrvxk
m
u

−=

=







+

+ ∑∑ ∑
=

+∞→
=

−+

=
+++

+

∞→

This means that ( ) .ˆ
~B
Gk cxx ∈=  In other words, 

T  is surjective. Therefore, T is a linear bijection 

which means that the spaces B
Gc
~

ˆ  and ĉ  are 
linear isomorphic. 

As it is well-known that the matrix domain 

Aχ of the normed sequence space χ has a basis 
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if and only if χ has a basis whenever ( )nkaA =  
is a triangle and the almost convergent sequence 
space ĉ  has definitely not Schauder basis by 
(Remark 2.4) [14] , we have; 

Corollary 2.4. The space B
Gc
~

ˆ  has no Schauder 
basis. 

3. THE −α , −β  and −γ DUALS of 
AFOREMENTIONED SPACES 

The intuition of multiplier space plays very 
crucial role in this section. In order to state  −α , 
−β  and −γ duals of the aforementioned 

sequence spaces, we are going to give the 
terminology a multiplier space. 

The set ( )YXS ,  is known as the multiplier 
space of a given sequence spaces X  and ,Y  

( ) { }YxallforYzxwzYXS ∈∈∈= :, . 

It can be note here that for any sequence space 
ϕ  satisfying both conditions  with ϕ⊂X  and 

Y⊂ϕ  that is ϕ including X  and included by 

Y , it is valid not only ( ) ( )ϕ,, XSYXS ⊂  but 

also ( ) ( )YSYXS ,, ϕ⊂  holds, respectively. 

When evaluating the multiplier space ( )YXS , , 
the −α , −β  and −γ duals of a sequence space 

X , which are respectively denoted by ,αX  
βX  and γX are described by 

( ),,YXSX =α ( ),,YXSX =β ( ).,YXSX =γ  

By order, these duals are known by the names 
Köthe-Toeplitz dual, generalized Köthe-Toeplitz 
dual and Garling dual, respectively. 

Let us now state the following lemmas. Because 
they will be necessary when we prove that we 
will. 

Lemma 3.1. ( ) ( )∞∈= lcaA nk ,ˆ  if and only if 

∞<∑
k

nk
n

asup   [15]. 

Lemma 3.2. ( ) ( )ccaA nk ,ˆ∈=  if and only if  

∞<∑
k

nk
n

asup , and there are Ck ∈αα , in 

such a way that knkn
a α=

∞→
lim  for any 

INk∈ ∑ =
∞→ k

nkn
a αlim  [17]. 

Theorem 3.3.  The −γ  dual of the space B
Gc
~

ˆ is 
the intersection of the following two sets. 

,11sup:
1

1 1
1













∞<+Ω∈= ∑ ∑
−

= +=

n

k kkk

n

kj
j

j
k

kn vru
a

u
waf

 

.sup:2








∞<∈=
nnn

n

n vru
awaf  

Proof. The required idea in this proof is to use 
the definition of the Köthe-Toeplitz dual. 
Suppose that ( ) waa k ∈= . Under these 
assumptions, we are obviously able to get the 
following equalities; 

( )

( )

( )n

n
nnn

n
k

n

k kkk

kj
n

n

k

n

k
k

kkk

n
jkkk

Fy

y
vru

ay
vru

aA

y
vru

Aaxa

=

+







+Ω=









+Ω=

∑

∑ ∑
−

=

= =

1

0

0 0

1

where ( ) ∑
−

=

Ω=Ω
1

0

1k

j
j

j
k

j

n
j y

u
A  and 
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( ) ∑
+=

Ω=Ω
n

kj
j

k
j

k

j
n a

u
A

1

1
. Where { }nkfF =  is 

defined by  

( )

,

,0

,1

10,11

0















>

=

−≤≤







+Ω

=

∑
−

=

nk

nka
vru

nka
vru

A

f n
nnn

n

k
k

kkk

j
n

nk

for a given ., INnk ∈  Therefore, we observe 

from  ( )n

n

k
kk Fyxa =∑

=0
 that bsxa ∈.  whenever 

B
Gcx
~

ˆ∈  if and only if ∞∈lyF.  whenever cy ˆ∈ . 
Thus, we derive with the aid of Lemma 3.1 

( ) ,ˆ 21

~
ffcB

G =
γ

 which gives the desired result. 

Theorem 3.4. The generalized Köthe-Toeplitz 

dual of the space B
Gc
~

ˆ  is the intersection of the 
following there sets 

}lim:{3 existsfwaf nkn ∞→
∈=  

,lim:4








∈= ∑∞→
existsfwaf

k
nkn

 

( ) ,lim:5








∞<−∆∈= ∑∞→ k
knkn

fwaf α  

where .lim nknk f
∞→

=α  

Proof. The method for determining the 

generalized Köthe-Toeplitz dual of the space B
Gc
~

ˆ  

is based on the definition of −β dual introduced 
above. So, we will take the steps required by the 
relevant definition. Suppose that .wa∈  In that 
case, we can easily deduce, form 

( )n

n

k
kk Fyxa =∑

=0
 that csxa ∈.  whenever 

B
Gcx
~

ˆ∈  if and only if cyF ∈.  whenever 

.ĉy∈ Therefore, we obtain from Lemma 3.2. 

that ( ) ,ˆ 543

~
fffcB

G =
β

 which proves our 
assertion. 

Theorem 3.5. The −γ dual of the space B
Gsc
~

ˆ  is 
the intersection of the following sets; 

{ }.0lim:

,sup:

7

6

=∈=








∞<∆∈=

∞→

∑

nkk

k
nk

n

fwaf

fwaf
 

Namely { } .ˆ 76

~
ffsc B

G =
β

 

Proof. The proof  can be done a much similar 
way to proof of the Theorem 3.3, for this reason,  
it will not be repeated here. 

Theorem 3.6. Define the set 

.lim: 2
8









∞<∆∈= ∑∞→ k
nkn

fwaf  

Then { } .ˆ 8763

~
ffffsc B

G =
β

 

Proof. Since the proof does not have any 
difficulty and even it is very similar to proof of  
Theorem 3.4, it can be proven. 

4. SOME MATRIX TRANSFORMATIONS 

In this final section, we characterize some matrix 
transformations. 

We shall use representations following 
throughout all over the section for brevity that 
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∑
=

=
n

j
jknk aa

0
, ( ) ∑

=
++

=
m

j
kjna

m
mkna

0
,1

1,,  and 

.1, +−=∆ knnknk aaa  

We will be able to prove our main theorem after 
we have one more lemma with which to work. 

Lemma 4.1. Let λ  be an −FK space, U be any 
triangle matrix, V be its inverse matrix and µ  
be any subset of w . Then, we obtain 

( ) ( )µλ :UnkaA ∈=  if and only if 

( ) ( )( ) ( )cCC n
mk

n ,λ∈=  for all INn∈  

( ) ( ),:µλ∈= nkcC  

where  







>

≤≤
= ∑

=

,,0

,0,

mk

mkvaC

m

kj
jknjn

mk  

and ∑
∞

=

=
kj

jknjnk vac  for all INnmk ∈,,  [16]. 

Lemma 4.2. An infinite matrix ( )nkaA =  
transforms all almost convergent sequences into 
almost convergent sequences if and only if  

∞<= ∑
k

nk
n

aA sup , α=− ∑∞→ k
nkn

ac limˆ , 

knkn
ac α=−

∞→
limˆ for each INk∈ , 

( ) 0
1

1lim
0

,11, =−+−
+∑ ∑

=
+−−+∞→ k

q

i
kinkkkinq

aa
q

αα

uniformly in n  [17]. 

Let ( )nkaA =  be an infinite matrix. From now 
on, we will use the following notions;  

( ) ∑
+=

Ω+==
m

kj
nj

j
k

k
nk

kkk
nk

n
mk a

u
a

vru
mad

1

11~  

and ∑
∞

+=

Ω+==
1

11~
kj

nj
j
k

k
nk

kkk
nknk a

u
a

vru
ad for 

all .,, INmkn ∈  

Theorem 4.3. Suppose that the entries of the 
infinite matrices given by ( )nkaA =  and  

( )nkzZ =  are linked to the following connection  

nknk az ~=  

for all INnk ∈,  and µ  any given sequence 

space. Then, ( )µ,ˆ
~B
GcA∈  if and only if  

{ } { }βB
GINknk ca
~

ˆ∈∈  for all INn∈  and 

( ).:ˆ µcZ∈  

Proof. Firts of all, assume that µ  be a sequence 
space and take into account the condition 

nknk az ~= given above between the entries of the 

matrices A  and  Z and let us remember the fact 

that the newly defined sequence space B
Gc
~

ˆ  and 

almost convergent sequence space ĉ  are linearly 
isomorphic from the Theorem  2.3.       

In this part of the proof, our first job is to take 

both ( )µ,ˆ
~B
GcA∈  and a given sequence .ĉy∈  

Because of these assumptions, it is fairly easy to 

say that RZ ~.  exists and { } 
5

1=
∈ ∈

n
iINknk fa . The 

newly obtained results requires that 
{ } 1lz INknk ∈∈  for each .INn∈  Thus, yZ .  exists 

and therefore, ∑ ∑=
k k

knkknk xayz for all 

.INn∈  We obtain, with the aid of  nknk az ~= , 

which results in the fact that ( ).,ˆ µcZ∈  

For proving the sufficiency of the claim, let 

{ } { }βB
GINknk ca
~

ˆ∈∈ for each INn∈  and 
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( )µ,ĉZ∈  hold, and take a given sequence 

.ˆ
~B
Gcx∈  By our assumption, it is not difficult to 

see that xA.  exists. Furthermore, we can easily 
see that yZxA .. =  from the following 
rudimentary calculations 

∑ ∑∑
=

−

== 










+Ω=

m

k

k

j kkk

knk
jnj

j
k

j

m

k
knk vru

yaya
u

xa
0

1

00

1
 

making ∞→m in this newly obtained formula. 

This result indicates that   ( )µ,ˆ
~B
GcA∈ . 

We obtain following theorem, by changing the 

roles of spaces B
Gc
~

ˆ  and ĉ with .µ  

Theorem 4.4. Suppose that the entries of the 
infinite matrices ( )nkaA =  and ( )nkbB =  are 

linked to the connection nknk ab ˆ=  for all 

INnk ∈,  and µ  is a given sequence space. 

Then, ( )B
GcA
~

ˆ,µ∈  if and only if ( ).ˆ,cB µ∈  

Proof. For this, assume that ( ) µ∈= kxx  and 
after then let us make the following fairly simple 
computation. Actually, the process of  

computation that ( ){ } { }nn xBxAR ...~ =  is a little 
long but not difficult, so we omit the details.  It 

is clearly seen that B
GcxA
~

ˆ. ∈ if and only if 

.̂. cxB ∈  In fact, this is exactly what we want to 
prove. 

It is time to present the conditions which are 
going to be used in the proofs:  

∑ ∞<
k

nk
n

asup                                             [4.1] 

knkn
a α=

∞→
lim , for each fixed INk∈            [4.2] 

∑ =
∞→ k

nkn
a αlim                                              [4.3] 

( )∑ =−∆
∞→ k

knkn
a 0lim α                               [4.4] 

( )∑ ∞<∆
k

nk
n

asup                                       [4.5] 

0lim =
∞→ nkn

a , for each fixed INn∈              [4.6] 

∑ =∆
∞→ k

nkn
a α2lim                                         [4.7] 

knkac α=− limˆ  exists, for each fixed INk∈  
[4.8] 

( )∑ =−
∞→ k

km
mkna 0,,lim α , uniformly in n [4.9] 

∑ =−
k

nkac αlimˆ                                      [4.10] 

( )∑ =−∆
∞→ k

km
mkna 0,,lim α , unif. in n    [4.11] 

( )[ ] 0,
1

1lim
0

=−+∆
+∑ ∑

=
∞→ k

q

i
kq

kina
q

α  

uniformly in n                                             [4.12] 

( )∑ ∞<∆
kn

kna ,sup                                   [4.13] 

( ) kknac α=− ,limˆ  exists, for each fixed 

INk∈                                                         [4.14] 

( )[ ] 0,
1

1lim
0

2 =−+∆
+∑ ∑

=
∞→ k

q

i
kq

kina
q

α  

uniformly in n                                             [4.15] 

( )∑ ∞<
kn

kna ,sup                                     [4.16] 
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∑ =
n

knka α , for every fixed INk∈         [4.17] 

∑∑ =
n k

nka α                                              [4.18] 

( ) 0,lim =−∆∑∞→ k
kn

kna α                           [4.19] 

Let ( )nkaA =  is an infinite matrix. Thus, the 
subsequent expressions retain. 

Lemma 4.5. i) ( ) ( )claA nk ˆ:∞∈=  iff [4.1], 
[4.8] and [4.9] hold [17]. 

ii) ( ) ( )ccaA nk ˆ:ˆ∈=  iff [4.1], [4.8],[4.9] and 
[4.10] hold [17]. 

iii) ( ) ( )∞∈= lscaA nk :ˆ  iff [4.5], [4.6] hold [16]. 

iv) ( ) ( )cscaA nk :ˆ∈=  iff [4.2], [4.5] and [4.7] 
hold [18]. 

v) ( ) ( )ccaA nk ˆ:∈=  iff [4.1], [4.8] and [4.10] 
hold [19]. 

vi) ( ) ( )cbsaA nk ˆ:∈=  iff [4.5], [4.6], [4.8] and 
[4.12] hold [20]. 

vii) ( ) ( )cscaA nk ˆ:ˆ∈=  iff [4.6], [4.8], [4.11] and 
[4.12] hold [21]. 

viii) ( ) ( )ccsaA nk ˆ:∈=  iff [4.5] and [4.8] hold 
[22]. 

ix) ( ) ( )scbsaA nk ˆ:∈=  iff [4.6], [4.12], and 
[4.14] hold [20]. 

x) ( ) ( )scscaA nk ˆ:ˆ∈=  iff [4.12] and [4.15] hold 
[21]. 

xi) ( ) ( )sccsaA nk ˆ:∈=  iff [4.13] and [4.14] 
hold [22]. 

xii) ( ) ( )cscaA nk :ˆ∈=  iff [4.16] and [4.19] hold 
[23]. 

Corollary 4.6. The following statements hold: 

( ) ( )∞∈= lcaA B
Gnk :ˆ
~

 iff { } ( )βB
GINknk ca
~

ˆ∈∈  for 

all INn∈  and [4.1] holds with nka~  in place of 

nka . 

( ) ( )ccaA B
Gnk :ˆ
~

∈=  iff { } ( )βB
GINknk ca
~

ˆ∈∈  for all 

INn∈  and [4.1],  [4.2] and [4.4] hold with nka~  

in place of nka . 

( ) ( )bscaA B
Gnk :ˆ
~

∈=  iff { } ( )βB
GINknk ca
~

ˆ∈∈  for 

all INn∈  and [4.16] holds with nka~  in place of 

nka . 

( ) ( )cscaA B
Gnk :ˆ
~

∈=  iff { } ( )βB
GINknk ca
~

ˆ∈∈  for 

all INn∈  and [4.16] and [4.19] hold with nka~  

in place of nka . 

Corollary 4.7. The following statements are 
valid. 

( ) ( )B
Gnk claA
~

ˆ,∞∈=  iff [4.1], [4.8] and [4.9] 

hold with nkâ  in place of nka . 

( ) ( )B
Gnk ccaA
~

ˆ,ˆ∈=  iff [4.1], [4.8], [4.10] and 

[4.11] hold with nkâ  in place of nka . 

( ) ( )B
Gnk ccaA
~

ˆ,∈=  iff [4.1], [4.8] and [4.10] hold 

with nkâ  in place of nka . 

Corollary 4.8. The following expression retain: 
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( ) ( )B
Gnk cbsaA
~

ˆ,∈=  iff [4.5], [4.6], [4.8] and 

[4.9] hold with nkâ  in place of nka . 

( ) ( )B
Gnk cscaA
~

ˆ,ˆ∈=  iff [4.6], [4.8] and [4.13] 

hold with nkâ  in place of nka . 

( ) ( )B
Gnk ccsaA
~

ˆ,∈=  iff [4.5] and [4.8] hold with 

nkâ  in place of nka . 

Corollary 4.9. The following statements hold: 

( ) ( )B
Gnk scbsaA
~

ˆ,∈=  iff [4.6], [4.12] and [4.14] 

retain with nkâ  in place of nka . 

( ) ( )B
Gnk scscaA
~

ˆ,ˆ∈=  iff  [4.12] and [4.15] retain 

with nkâ  in place of nka . 

( ) ( )B
Gnk sccsaA
~

ˆ,∈=  iff [4.13] and [4.14] retain 

with nkâ  in place of nka . 
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