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Abstract: The point standing out in the present paper is the sequence spaces C; , Cg and ng produced by

the domain of the infinite matrix R = G.B, which is defined in the previous study of Candan [2], where the

spaces @0 , ¢ and Cs, respectively, are as presented by G.G. Lorentz utilizing the issue of the Banach limits

(Acta. Math. 80. 1948, 167-190), and B is the double sequential band matrix and G is the generalized

weighted mean. Firstly, it is shown that aforementioned spaces are linearly isomorhic to the spaces 50 , ¢ and
Cs , respectively. In addition to these, y —and f — duals of the spaces f‘g and Cs g are given. Beyond them,
the classes (@g : ﬂ,) and (ﬂ, : @g ) of infinite matrices are characterized, where A is a given sequence space.

Keywords: Almost convergence; Generalized weigheted mean; Sequence space; Matrix transformations.

Hemen Hemen Yakinsak Dizi Uzaylar icin Yeni Bir Bakis

Ozet: Banach limiti (Acta. Math. 80. 1948, 167-190) kavramim kullanarak G.G. Lorentz hemen hemen
yakinsak dizilerin ¢ uzayim tanimladi. Bu ¢alismada 6ne ¢ikan nokta @0 , ¢ ve CS uzaylarmm Candan [2]
tarafindan tanimlanan R = G.B matris etki alaninda olan éof; , 5£ ve ésg uzaylarimi tanimlamaktir.
Burada B ikili dizisel band matrisi G de genellestirilmis agirlikli ortalamay1 gdstermektedir. Calismada

. . ~ E "E A B . A A A . .

oncelikle C,., C; ve CS;uzaylarimin sirast ile ¢,, ¢ ve CSuzaylarina lineer izomorf olduklari
ST ~B ~ B . . G -

gosterildikten sonra C, ve CS uzaylarmm sirasi ile  —ve £ — dualleri elde edilmistir. Son béliimde de

. Coe . ~B AB . .
A verilen herhangi bir dizi uzay1 olmak iizere (cG :/1) ve (Z:CG) matris siniflarinin karekterizasyonu

verilmistir.

Anahtar Kelimeler: Hemen hemen yakinsaklik; Genellestirilmis agirlikli ortalama; Dizi uzayi; Matris
Doniigiimleri.
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1. INTRODUCTION

At the beginning of the introduction; first of all,
the basic ideas about summability theory and
historical background are given. Then the

sequence spaces éog, ¢. and és’  which
constitute the main body of this study, are
presented. Begin with the definition of the
sequence space, which is the fundamental

concept of this study. As known, the symbol w
denotes the space of all real-valued sequences.

Also, we use the symbols ¢, ¢,,/, and lp

0

(l < p<00), bs and cs to present the sets of

bounded
sequences, p —absolutely  convergent series,

all, convergent, null,

bounded series and convergent series,
respectively. The sets defined in the above
paragraph are vector spaces and at the same time
those sets are subspace of w. Since any
subspace of w is known as a sequence space,
each of aforementioned sets is a sequence space.
In addition to these, it is going to be used the

conventions that e:(l,l,---) and e are the
sequences whose only non-zero term is 1 and
found in the n” position for each nelIN,
where IN 2{0,1,2,---}. We note that here

a=(a,)and X =(x,,) instead of a=(a, ),

and X :(xnk) respectively.

00
n,k=0

Let A and pbe any subspace of w and
A= (ank), n,k € IN , be infinite matrix of real
or complex numbers. For any sequence

Ax = ((Ax)n ), if
(4x), = Zankxk converges for all neIN. If
k

x=(x,), we write

xeA implies that Axepu, we say that
A defines a matrix trasformation from A into

u and we denote it by A: A — p. By (/1, ,u) or

(ﬁ;,u) we denote class of matrices such that

A:A— .

Another essential definition we need is that the
triangle matrix. Let us give this definition of

that. A matrix D:(dnk) is called triangle if

primary diagonal’s components aren’t equal to
zero and components on the top of the primary
diagonal are equal to zero. If we remember that
given two matrices are triangle matrices then
following equality is valid

A(B.x)=(4.B)x

for a given sequence x. Additionally, a triangle

matrix A uniquely has an inverse 4~ =B
which is also a triangle matrix. Therefore,

x = A(Bx)= B(Ax) holds for all x € w.

Now, it is time to give definition of Schauder

basis in a normed space. Let (X , ) be a normed

space. A sequence (ek) in Xis called a
Schauder basis for X if for every
element x € X there exist a unique sequence

(Sk) composed of scalars such that

o0
X= ngek ,ie.,
k=1

lim

n—>0

n
X — ngek
k=0

=0.
X

In that case, the series zgkek having the same
k=1

X is then called the expansion of x with respect

to (e, ), and we write x = ZSkek.
k

Another point in this study is the matrix domain
which is one of the most important concept.
Because of this importance, let us now explain
this concept. When an infinite matrix A and a



sequence space y are given, the following

newly defined set using both 4 and y ;

2,=x=(x)ew:dx ey} 1.1)

is called the matrix domain of y under A4. This
newly defined set is a vector space and is a
subset of w at the same time. Therefore, y ,is
known as a sequence space. It is worth
mentioning here that in some cases or rather
some special cases, even if y , and y are equal,
but wusually one covers the other. Those
interested about in the subtleties of this subject
can consult especially on the 51”page of
Basar’s book [17] and references at the end of
the study for further information.

Building a new one using previously defined
spaces is a common way of lately. Researchers
interested in this subject should examine the
relevant articles [5-13], [16], [18], [24-53] to
gain different perspectives in the references.

The reader will do well to read about K — space,
FK —space, BK —space, AK —space and
AD —space of a sequence space and related
topics before starting a systematic study about
the present subject.

It is useful to state here that the terms map,
function and transformation are all synonymous.

2. THE MATRIX R and ALMOST
CONVERGENCE

Here, we focus on the new sequence spaces 5’02 ,
¢. and Csl obtained by the domain of the
infinite matrix R = G.B of the spaces ¢,, ¢ and

Cs, respectively, where Ris defined in the
previous study of Candan [2]. A full detail of the

above aforementioned matrix R are important
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for us to work out at this time and we will just
accept as valid without details the usual rules.
For this approach, the article of Candan [2] is
recommended.

Before giving some results, let us present a very
brief historical background and developments
about the space of almost convergent sequences.

We know that there are different impressions in
the same sense about the space of almost
convergent sequences. For example, one of these
notations is f and the other is ¢, of the space of
almost convergent sequences. We have chosen to
use the representation of ¢ in this study because
fis also used for other concepts. As everyone

knows very well, the space ¢ was presented by
G. G. Lorentz [3], using the concept of the
Banach limits defined immediately below.

Now, let us define an operator known as the shift
operator from w to w as follows

Son (x) = xn+1

for all ne€IN. In the literature, L, which is
defined on [_, is known Banach limit, which is
also a non-negative linear functional satisfying
the following conditions L(gox):L(x) and
L(e)=1. We all the sequence x=(x,)el,

almost convergent to the generalized limit &
when all Banach limits of x is equals& [3], and

denote it by ¢—lmx, =¢&. Let ’be the
composition of @ with itself j times and define
k,, (x) for a sequence x = (x, ) by

k,, (x)= Li @’ (x) forall m,n e IN.

It has been proved by Lorentz in [3] that
c-lmx, =¢ if and only if
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Im, . k, (x) = ¢& uniformly in 7. It is known
that every convergent sequence is almost
convergent and both limits are equal. By ¢ and

¢s , we denote the space of all almost convergent
sequences and series, in other words;

c= ivew l]m kmn( ) [, uniformly in n}

The inclusion ¢ < ¢ /[, are strictly hold [3].

Because of these relations among them, norms

Therefore, these spaces ¢ and C,are

BK —spaces  with  the
[ = suplk,, (x)

following norm

We are going to denote by U the set of all
sequences u for which u, # 0 for every k € IN.

For uelU, let %:(% ) Let us suppose
k

that wu,veU

Glu.v)=1{g,.}

matrices in this paper and known generalized
weighted mean or factorable matrix is defined as

and describe the matrices

which is one of the main

follows:
u,v, , k<n
gnk = unvn s k =n
0 ., k>n

for all k,neIN, where u,veU, also u,

depends only on nand v, bounds up with only

k.

Now, let us start giving the definition of double
band matrix B = B(rn,sn). Here and thereafter,

for any given two sequences F :(rn) and

m_ n+k
=1, uniformly in n.
= k=0 j= 0m+

Fz(sn) the terms of which are positive real

numbers; we are going to assume that these
sequences are convergent. Let us describe the

sequential band matrix B(7,s5) = {bnk (?,E)} by

r,oo, k=n
b,[7.5)=1s, , k=n-1
0 , O<Lk<n-lork>n

for each k,neIN . It can be understood in a
simple way, the generalized difference matrix
B(r,s) is obtained by making a special selection
in the band matrix B(7,5), with a clearer

expression; when 7, =r and s, =s are taken

for all n e IN.

V= (vk ) eU,
(rn) and (sn) are defined immediately in the

Now, suppose that u=(uk),

above page, two convergent sequences of
positive real numbers. Now, we are going to use

~

the notation R to represent the matrix

R(u,v,l} ) defined below as we did in previous.

R= R(u,v,§)= G(u,v).B(7.5)
and

a/-L LH(_JLH(_j

il Vi i=k

where; j,k € IN.

Now, it is time to give the definition sequence

space ég by

52 ={x=(xk)ew:y=(yk)=(§.x)k eé}
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where the frequently used sequence y = ( y k) by
the R = R(u, v,lN? )-transform of a given
sequence X :(xk ), thatis y, =u,v,r,x, and

forall £ >1

k-1

Y. =Uu, ( +SJVJ+1)Xj+VkaI"k
j=0

Similarly; we are also able to define the space

¢s? as follows;

5Sg ={x=(xk)e w:y:(yk)z(ﬁ.x)k eés}.

A B AB ]
We can redefine the spaces ¢, ¢, and cs; by

the notion of (1.1)

g =(0)g and ésg =(@s);
=(¢)z an csG cs
~B AB AoB
Theorem 2.1. The sets ¢,., ¢, and Cs; are
linear space.

Proof. Since this result is something familiar to
the basic linear algebra, details are omitted.

Theorem 2.2. i) The sequence spaces (?g is

normed space with

n+k+1
Zun+k Zk xi +vn+krn+kxn+k

ii) Th os? d
11 (] sequence Space CSG 1S norme Space

with

<SS [Le s

where k, =v,7, +v,,,s

Il..e

i+l

B AB A.B
Theorem 2.3. The spaces ¢,., ¢, and Cs are

linearly isomorphic to the sets ¢,, ¢ and Cs,
respectively. With another representation in the

sFma  pPmg and asF =6
same sense ¢, . =C,, C; =C and ¢s; =cs.

Proof. We prefer to prove just one because there
are three similar results. The first thing to do in
this proof is to show that a linear transformation

exist between the spaces ég and ¢. Namely, the
required tool is to describe a transformation from
ég to ¢. Using the matrix R introduced in the
second chapter, if the transformation 7 is
described as T (x): R.x for every x € (?g , it is
easy to see that 7T is linear. If 7' (x)zO then

x=0, so T is one-to-one. Finally, we need to

show that 7' is surjective. If x = (xk )is defined

k-1 1 )
_ J
X, = Qiy, +
j=0 U; Ul Ve

v, ;(kelN)

all y € ¢. With this in mind, it is easy to see that

the following equation is satisfied
/=
Uy (rjvj +Sjvj+l)xj TVXT | =V
=0

for all k& € IN, the following is true from here

n+k—1

m
zk + vk+nrk+n‘xk+nj| = hrn zyk-HZ
m—o =5
=c—lm y,.

This means that x = (xk)eég. In other words,

m—mk 0m+l{

T is surjective. Therefore, 7 is a linear bijection
which means that the spaces ég and C are

linear isomorphic.

As it is well-known that the matrix domain

X 4 of the normed sequence space y has a basis
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if and only if y has a basis whenever 4= (ank)

is a triangle and the almost convergent sequence

space ¢ has definitely not Schauder basis by
(Remark 2.4) [14] , we have;

Corollary 2.4. The space ég has no Schauder

basis.

3. THE ao—-, p—- and y—DUALS of
AFOREMENTIONED SPACES

The intuition of multiplier space plays very
crucial role in this section. In order to state « —,
p— and y—duals of the aforementioned

sequence spaces, we are going to give the
terminology a multiplier space.

The set S(X Y ) is known as the multiplier

space of a given sequence spaces X and Y,
S(X,Y)z{zew:zxeror allxeY}.

It can be note here that for any sequence space
@ satisfying both conditions with X < ¢ and

@ Y thatis ¢including X and included by
Y, it is valid not only S(X,Y)C S(X,(o) but
also S (X Y ) cS (¢, Y ) holds, respectively.

When evaluating the multiplier space S (X Y ),

the @ —, [ — and y —duals of a sequence space
X , which are respectively denoted by X“,
X7 and X7 are described by

X*=5(x.,7), X’ =8(x,Y), X" =5(X,Y).
By order, these duals are known by the names

Kothe-Toeplitz dual, generalized K&the-Toeplitz
dual and Garling dual, respectively.

Let us now state the following lemmas. Because
they will be necessary when we prove that we
will.

Lemma 3.1. A=(a, )e(é,7,) if and only if

Supz
nog

a,|<o [15].

Lemma 3.2. A=(a, )e(é,c) if and only if

supZ|ank|<oo, and there are o,,aeCin
nok

such a way that lma, =, for any

n—>0

kelIN tm Y a, =a [17].
n—»0 k

Theorem 3.3. The y — dual of the space ég is

<w},

the intersection of the following two sets.

L Zn:Q,iaj+ !

U j=k+1 UV

<oo}

Proof. The required idea in this proof is to use
the definition of the Kothe-Toeplitz dual.

Suppose that a= (ak ) ew. Under these

n—1
fi ={aew:supz

nok=l

n

unrnvn

5H :{aew:sup

n

assumptions, we are obviously able to get the
following equalities;

Zn:akxk:ia{f‘lf(gﬁ ! y/i
k=0 k=0 ‘

UV
n—1 a a
— J k n
- z An (Q)+ k + Y
k=0 U vy u,r.v,

= (Fy),

=
where A} (Q) = ZLQb}j and
j=0 U
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A,{(Q):L Zn:Ql;aj . Where F={f,,} is
Up j=k+1
defined by

k=0 UV
1
fnk = an > k =n
unrnvn
0 , k>n

for a given k,n e IN. Therefore, we observe

from Zakxk = (Fy)n that a.x € bs whenever
k=0

Xe ég if and only if F.y €/ whenever yec.

Thus, we derive with the aid of Lemma 3.1

(éfi)y = £, f,, which gives the desired result.

Theorem 3.4. The generalized Kothe-Toeplitz
dual of the space 5§ is the intersection of the

following there sets

fi={aew: }]Lrgfnk exists}

fi= {a e w:lim ank exists},
k

n—ow

Proof. The method for determining the
generalized Kothe-Toeplitz dual of the space 55

is based on the definition of £ — dual introduced
above. So, we will take the steps required by the
relevant definition. Suppose that a € w. In that
case, we can easily deduce, form

n
Zakxk = (Fy)n that axecs whenever
k=0

xeég if and only if F.yec whenever

y € . Therefore, we obtain from Lemma 3.2.

that (ég)ﬁ =f,Nf,Nf,, which proves our

assertion.

Theorem 3.5. The y —dual of the space ésg is

the intersection of the following sets;

S = aew:supZ|Afnk <oo},
n k

fi= ew:limfnk=0}.

k—w

~ 58
Namely sg} =f N f.

Proof. The proof can be done a much similar
way to proof of the Theorem 3.3, for this reason,
it will not be repeated here.

Theorem 3.6. Define the set

Js ={aew:lim Z‘Azfnk‘<oo}.

n—»0

Then {5S§}ﬁ =0 f N0 f

Proof. Since the proof does not have any
difficulty and even it is very similar to proof of
Theorem 3.4, it can be proven.

4. SOME MATRIX TRANSFORMATIONS

In this final section, we characterize some matrix
transformations.

We shall wuse representations following
throughout all over the section for brevity that
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m

: 1
a, = Zajk, a(n,k,m)=—2an+jjk and
J=0

m+1.3

Aa,, =a, —a

nk+1*

We will be able to prove our main theorem after
we have one more lemma with which to work.

Lemma 4.1. Let A be an FK — space, U be any
triangle matrix, V be its inverse matrix and u

be any subset of w. Then, we obtain
A=(a, )e(, : u) if and only if

c = (C,(n”k))e (1,¢) forall neIN

C=(c,)e(2:p)

where

m
oo Za”jvjk , 0<k<m,
mk

J=k

0 , k>m,
and ¢,, = a,v, forall k,mneIN [16].
J=k

Lemma 4.2. An infinite matrix A:(ank)

transforms all almost convergent sequences into
almost convergent sequences if and only if

|| =sup D |a,| <, ¢-tm>a, =a,
n & n—>0 A
¢—lm a, =a, for each kelN,
n—»0
1 q
lim Z(an+i,k—1 0t —a,,,)=0

T g +1[15
uniformly in 7 [17].

Let A= (an k) be an infinite matrix. From now

on, we will use the following notions;

d;k = 67nk (m): ! ank +i igianj

U TV Up jok+i

Il &GN
J
a, +— E Q;a,, for

UhVi U j=k+

and d,=a,=
all n,k,me IN.

Theorem 4.3. Suppose that the entries of the

infinite matrices given by A=(ank) and

Z = (Zn k) are linked to the following connection

for all k,neIN and u any given sequence

space. Then, Ae (@g , ,u) if and only if
laphp el for al nelN  and
Ze(é:p)

Proof. Firts of all, assume that z be a sequence
space and take into account the condition

z,, =d,, given above between the entries of the
matrices A and Z and let us remember the fact
that the newly defined sequence spaceé, and

almost convergent sequence space ¢ are linearly
isomorphic from the Theorem 2.3.

In this part of the proof, our first job is to take
both A€ (@g, ,u) and a given sequence y € C.

Because of these assumptions, it is fairly easy to
— 5

say that Z.R exists and {ank }ke]N € ﬂ f; . The
n=l1

newly  obtained results requires that

{an }keIN €l, for each n€IN. Thus, Z.y exists

and therefore, Zznkyk=Zankxk for all
k k

nelIN. We obtain, with the aid of z, =a,,

which results in the fact that Z € (@, ,u).

For proving the sufficiency of the claim, let

N4
{ank }ke]N € {CGB} for each nelN  and
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VA e(é, /1) hold, and take a given sequence

xXe ég . By our assumption, it is not difficult to

see that 4.x exists. Furthermore, we can easily
see that Ax=Z.y from the following

rudimentary calculations

m m

Za ke = Z Z Q] "JyJ nkyk

k=0 k=0| =0 U; Ul Vy

making m —>ooin this newly obtained formula.

This result indicates that A4 € (ég , ,u).

We obtain following theorem, by changing the

roles of spaces 55 and ¢ with .

Theorem 4.4. Suppose that the entries of the
infinite matrices 4=(a,,) and B=(b,,) are

linked to the connection b, =a, for all

k,neIN and u is a given sequence space.

Then, A€ (ﬂ, ek ) if and only if B € (u,¢).

Proof. For this, assume that x:(xk)e M and

after then let us make the following fairly simple
computation.  Actually, the process of

computation that {I?.(A.x)}n = {B.x}n is a little
long but not difficult, so we omit the details. It
is clearly seen that A.x eég if and only if

B.x €¢. In fact, this is exactly what we want to
prove.

It is time to present the conditions which are
going to be used in the proofs:

sup Y a, | <o [4.1]
nok

lim a,, = «,, for each fixed k € IN [4.2]

n—>0

lim Zank [4.3]
lim Z|A —a, ) =0 [4.4]
sup > (A, [)< 0 [4.5]
n %

lim a,, =0, for cach fixed n e IN [4.6]
lim Z\AZ [4.7]

¢-lma, =a, exists, for each fixed ke lIN
[4.8]

lim Z|a nk m) ak| =0, uniformly in7[4.9]

m—»0

é-tm>a, =a [4.10]
k

hmZ|Aankm) a,|=0,unif.in n [4.11]

m—»0

hmZ

Z(;Aa n+ik)-a 1=0

g—>0

umformly inn [4.12]

sup D _|Aa(n, k) < o [4.13]
n Tk

—Im a(n,k) =q, exists, for each fixed
kelIN [4.14]

Z[N (n+ik)-a,|=0

uniformly in 7 [4.15]

fin >

>0 g+ 112

sup Z|a(n,k)| <o [4.16]
n k
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Zank =aq, , for every fixed k € IN [4.17]

dDa,=a [4.18]
n k

lim >"|Aa(n,k)-a,| =0 [4.19]
k

n—»0

Let A= (an k) is an infinite matrix. Thus, the

subsequent expressions retain.

Lemma 4.5.1) A=(a, )e(l, :¢) iff[4.1],
[4.8] and [4.9] hold [17].

i) 4=(a,, )e(é:¢) iff[4.1], [4.8],[4.9] and
[4.10] hold [17].

iii) 4 =(a,, ) e (és: 1) iff [4.5], [4.6] hold [16].

iv) 4=(a,, )e(és:c) iff [4.2], [4.5] and [4.7]
hold [18].

v)A=(a, )e(c:¢) iff [4.1], [4.8] and [4.10]
hold [19].

vi) A= (a,, ) (bs:¢) iff [4.5], [4.6], [4.8] and
[4.12] hold [20].

viiy A =(a,, )€ (és: ¢) iff [4.6], [4.8], [4.11] and
[4.12] hold [21].

viii) 4 = (a,, ) € (cs : ¢) iff [4.5] and [4.8] hold
[22].

ix) 4=(a,, )e(bs:és)iff[4.6], [4.12], and
[4.14] hold [20].

x) A=(a,, )€ (s:és) iff [4.12] and [4.15] hold
[21].

xi) A=(a,, )e(cs:és) iff [4.13] and [4.14]
hold [22].

xii) 4 =(a,, ) (¢ : ¢s) iff [4.16] and [4.19] hold
[23].

Corollary 4.6. The following statements hold:

A= (ank ) € (ég : loo) iff {ank }kelN € (ég)g for
all n € IN and [4.1] holds with @, in place of

a,-

A :(ank)e(ég :c) iff {ank }kE[N IS (@gy for all
neIN and [4.1], [4.2] and [4.4] hold with &,

inplaceof a,, .

A=(ay)elc? :bs) it {a, ) <le?) for
all n € IN and [4.16] holds with @, in place of

ank .

A= (ank)e (ég :cs) iff {ank }ke]N IS (égy for
all n€ IN and [4.16] and [4.19] hold with @,

in placeof a,, .

Corollary 4.7. The following statements are
valid.

A:(ank)e(lw,ég) iff [4.1], [4.8] and [4.9]

hold with a,, in place of @, .

A:(ank)e(é,ég) iff [4.1], [4.8], [4.10] and
[4.11] hold with a,, in placeof a,, .

A=(a,)e (ccf) iff [4.1], [4.8] and [4.10] hold

with a,, inplace of a,, .

Corollary 4.8. The following expression retain:
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A:(ank)e(bs,ag ) iff [4.5], [4.6], [4.8] and
[4.9] hold with a,, inplace of @, .

A:(ank)e(as,ag ) iff [4.6], [4.8] and [4.13]

hold with a,, in place of a,, .

A=(a,)e (cs,ag) iff [4.5] and [4.8] hold with

a, inplaceof a,, .

Corollary 4.9. The following statements hold:
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