Gnoshurisy et Scionce Journal CS7

A Fibration Application for Crossed Squares

Koray YILMAZ
Dumlupinar University, Faculty of Science and Arts, Department of Mathematics, Kütahya, TURKEY

Received: 03.10.2017; Accepted: 07.02.2018
http://dx.doi.org/10.17776/ csj. 341390

Abstract

In this work we showed that the category of crossed squares of algebras has a left adjoint pair, and this category is fibred over the category of cornered crossed modules.

Keywords: Crossed square, Cornered crossed module, fibration

Çaprazlanmış Kareler için Bir Fibrasyon Uygulaması

Özet: Bu çalışmada cebirlerin çaprazlanmış karesinin sol adjoint çifte sahip olduğunu ve bu kategorinin köşeli çaprazlanmış modellerin kategorisi üzerinden fibre olduğunu gösterdik.

Anahtar Kelimeler: Çaprazlanmış Kare , Köşeli Çaprazlanmış Modül , Fibrasyon

1. INTRODUCTION

Crossed squares are defined as algebraic structures for homotopy connected 3-types by Guin-Walery and Loday [1]. Arvasi and Ulualan showed the connection between crossed squares, simplicial groups and 2-crossed modules in [2]. Crossed squares of commutative algebras is due to Ellis [3].

Whitehead in 1949-1950 investigated the algebraic structure for simply connected topological spaces of homotopy 2-types and by defining a classifying space functor from the category of these spaces to that of groups, he introduced the notion of crossed modules of groups [4]. In his work, Whitehead showed the mapping

$$
\partial: \pi_{2}(X, A, *) \rightarrow \pi_{1}(A, *)
$$

is a crossed module. Later, Porter, [5], defined the commutative algebra version of crossed modules.

For a \boldsymbol{k}-module M, if the k-bilinear map

$$
\begin{aligned}
& M \times M \rightarrow M \\
& \left(m_{1}, m_{2}\right) \mapsto m_{1} m_{2}
\end{aligned}
$$

satisfies the following conditions for $m_{1}, m_{2}, m_{3} \in M$
i) $m_{1} m_{2}=m_{2} m_{1}$
ii) $\left(m_{1} m_{2}\right) m_{3}=m_{1}\left(m_{2} m_{3}\right)$
then M is called commutative \boldsymbol{k}-algebra (or a commutative algebra over \mathbf{k}).

A crossed module of commutative algebras [6] is an algebra morphism $\partial: C \rightarrow R$ with an action of R on C satisfying $\partial(r \cdot c)=r \partial c$ and $\partial(c) \cdot c^{\prime}=c c^{\prime}$ for all $c, c^{\prime} \in M, r \in R$. The last condition is called the Peiffer identity. We will denote such a crossed module by (C, R, ∂).

[^0]A morphism of crossed modules from (C, R, ∂) to ($C^{\prime}, R^{\prime}, \partial^{\prime}$) is a pair of \boldsymbol{k}-algebra morphisms, $\phi: C \rightarrow C^{\prime}, \psi: R \rightarrow R^{\prime}$ such that
$\phi(r \cdot c)=\psi(r) \phi(c)$.
Brown and Sivera [7] showed the forgetful functor from the category of crossed squares of groups to the category of crossed corners of groups is a fibration. In this work we will investigate the commutative algebra version of this functor in analogous way.

2. CROSSED SQUARE

Definition 2.1. A crossed square of commutative algebras [3] is a commutative diagram

together with actions of Z on J, K and Y and a function called h-map

$$
h: K \times Y \rightarrow J
$$

satisfying the following conditions

1. The maps $\delta, \delta^{\prime}, \vartheta^{\prime}, \vartheta$ and the composition $\vartheta \delta,=\vartheta^{\prime} \delta^{\prime}$ are crossed modules.
2. The maps δ and δ^{\prime} preserve the action of Z.
3. $k^{*} h(k, y)=h\left(k^{*} k, y\right)=h\left(k, k^{*} y\right)$
4. $h\left(k+k^{\prime}, y\right)=h(k, y)=h\left(k^{\prime}, y\right)$
5. $h\left(k, y+y^{\prime}\right)=h(k, y)=h\left(k, y^{\prime}\right)$
6. $z \cdot h(k, y)=h(z \cdot k, y)=h(k, z \cdot y)$
7. $\delta h(k, y)=k \cdot y$
8. $\delta^{\prime} h(k, y)=y \cdot k$
9. $h\left(m, \delta^{\prime}(j)\right)=m \cdot j$
10. $h(\delta(j), y)=y \cdot l$
for $k, k^{\prime} \in K, y, y^{\prime} \in Y, z \in Z, j \in J, k^{*} \in \boldsymbol{k}$.

We can give the following result from [3].
Example 2.2. Let $\mu: K \rightarrow P, \vartheta: Y \rightarrow P$ be crossed modules and $K \otimes Y$ be the tensor product with the mapping

$$
\begin{gathered}
h: K \times Y \rightarrow K \otimes Y \\
(k, y) \mapsto k \otimes y
\end{gathered}
$$

then the following diagram

becomes a crossed square. Here the elements of the tensor product are defined as
$\mathrm{K} \otimes \mathrm{Y}=\mathrm{K} \otimes \mathrm{Y} /\{h(p, k) \otimes y=k \otimes h(p, y): k \in$ $K, y \in Y, p \in P\}$
with mappings

$$
\mu^{\prime}: K \bar{\otimes} Y \rightarrow Y
$$

$$
\vartheta^{\prime}: K \bar{\otimes} Y \rightarrow K
$$

$\mathrm{k} \bar{\otimes} \mathrm{y} \mapsto h(k, \vartheta(y))$

$$
\mathrm{k} \bar{\otimes} y \mapsto h(\mu(k), y))
$$

and the h-map

$$
\begin{gathered}
h: K \times Y \rightarrow K \bar{\otimes} Y, \quad: K \bar{\otimes} Y \times K \bar{\otimes} Y \rightarrow \\
K \bar{\otimes} Y
\end{gathered}
$$

$$
\begin{gathered}
(k, y) \mapsto k \bar{\otimes} y \quad\left(k \bar{\otimes} y, k^{\prime} \bar{\otimes} y^{\prime}\right) \mapsto \\
\mathrm{kk}^{\prime} \bar{\otimes} \mathrm{yy}^{\prime}
\end{gathered}
$$

3. CORNERED CROSSED MODULES

Brown and Sivera defined the notion of cornered crossed modules on groups. In this section we
will give the analogous definition for commutative algebras.

Let's denote the category of the pairs $\mu: M \rightarrow P$, $\vartheta: N \rightarrow P$ of crossed module pairs as $\mathbf{X M O D}^{2}$. We can illustrate the objects of this category with the following diagram.

We will call XMOD 2 the category of cornered crossed modules. We can express a morphism $f=\left(f_{1}, f_{2}, f_{3}\right)$ in $\mathbf{X M O D}{ }^{2}$ with the following commutative diagram

Thus we get $f_{1} \mu^{\prime}=\mu f_{3}$ and $\vartheta f_{2}{ }^{\prime}=f_{1} \vartheta^{\prime}$.

4. FIBRATION of CATEGORIES

We can give the following basic definition from [7].

Definition 3.1. Let $\Phi: \boldsymbol{C} \rightarrow \boldsymbol{D}$ be a functor. A morphism $g: A_{2} \rightarrow A_{3}$ in \boldsymbol{X} over $\beta:=\Phi(\beta)$ is called cartesian if and only if for all $\alpha: B_{1} \rightarrow B_{2}$ in \boldsymbol{B} and $\theta: A_{1} \rightarrow A_{3}$ with $\Phi(\theta)=\beta \alpha$ there is a
unique morphism $f: A_{1} \rightarrow A_{2}$ with $\Phi(f)=$ α and $\theta=g f$. We can express this as follows

A morphism $\gamma: A_{1} \rightarrow A_{2}$ is called vertical if and only if $\Phi(\gamma)$ is an identity morphism in \boldsymbol{D}. In particular, for $I \in D$ we write $\boldsymbol{C}_{\boldsymbol{I}}$, called the fibre over I , for the subcategory of C consisting of these morphims γ with $\Phi(\gamma)=i d_{I}$.

Definition 3.2. The functor $\Phi: \boldsymbol{C} \rightarrow \boldsymbol{D}$ is fibration or category fibred over D if and only if for all $\beta: B_{2} \rightarrow B_{3}$ in D and $C \in C_{I}$ there is a cartesian morphism $g: A_{2} \rightarrow A_{3}$ over β such a g is called a cartesian lifting of C along β.

Theorem 3.3. The forgetfull functor

is a fibration.
Proof. We should show that the category of cornered crossed smodules is fibred over algebras. For all $u: J \rightarrow I$ morphisms in the category of algebras and $X \in X M o d_{I}^{2}$ we need to show the morphism $\varphi: Y \rightarrow X$ is cartesian over u. Now we will construct a cornered crossed module over J. This is illustrated with the following diagram

Define

$$
\begin{gathered}
\sigma^{*}(M, N)=\left(M^{*}, N^{*}\right) \subset\left(J \widetilde{\otimes M) \times(J \widetilde{\otimes} N)} \begin{array}{c}
\sigma(j)=\partial_{1}(m)=\partial_{2}(n) \\
\beta_{1}(j \otimes m) \mapsto j \\
\beta_{2}(n \otimes j) \mapsto j
\end{array} .\right.
\end{gathered}
$$

due to $\beta_{1}: M^{*} \rightarrow J$ and $\beta_{2}: N^{*} \rightarrow J$ are crossed modules. It is clear that the following diagram

is a cornered crossed module. Thus the morphism $\quad\left(\sigma_{1} \sigma_{2}, \sigma\right)$ becomes cartesian morphism. Therefore the forgetfull functor Φ is a fibration of categories.

Now we show that the category $\mathbf{C r s}^{2}$ of crossed modules have a left adjoint pair that is XMOD ${ }^{2}$ the category of cornered crossed squares.

Theorem 3.4. The forgetful functor

$$
\Phi: \text { Crs }^{2} \rightarrow \text { XMod }^{2}
$$

is a fibration and have a left adjoint.

Proof.

Let Φ be the forgetful functor and Φ^{\prime} be the the functor taking a cornered crossed module to the crossed square via tensor product. Then Φ has a left adjoint.

Let the following diagram

be an object in $\mathbf{X M O D}^{2}$. As we know from example2.2. that the following diagram

is a crossed square. Thus for every object C in $\mathbf{X M O D}{ }^{\mathbf{2}}, \Phi^{\prime}(\mathrm{C})$ is an object in $\mathbf{C r s}^{\mathbf{2}}$. Next we will show that the morphism

$$
\eta_{C}: C \rightarrow \Phi\left(\Phi^{\prime}(C)\right)
$$

is a universal morphism. We need to show for any morphism $f: D \rightarrow D^{\prime}$ in $\mathbf{C r s}^{2}$ there is a morphism
$\Phi(f): C \rightarrow \Phi\left(D^{\prime}\right)$ and is a bijection from $M O R_{C r s^{2}}\left(D, D^{\prime}\right)$ to $M O R_{\text {XMOD }}{ }^{2}\left(C, \Phi\left(D^{\prime}\right)\right)$.

Let $\left(f_{1}, f_{2}, f_{3}\right)=f: \Phi(C) \rightarrow D$ be a morphism of cornered crossed squares given with the following commutative diagram

Since C is an object in $\mathbf{C r s}^{2}, \quad h_{C}: N \times M \rightarrow L$ is the h-map and for $\Phi\left(D^{\prime}\right), h_{D}: K \times_{R} Y \rightarrow K \otimes$ Y is the h-map. Define

$$
\begin{aligned}
\eta_{C, D}: \operatorname{Mor} & (\Phi(C), D) \rightarrow \operatorname{Mor}\left(C, \Phi^{\prime}(D)\right) \\
f \mapsto \eta_{C, D}(f) & =\eta_{C, D}\left(f_{1}, f_{2}, f_{3}\right) \\
& =\left(f_{1}, f_{2}, f_{3}, h_{D}\left(f_{2} \times f_{3}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Psi_{C, D}: \operatorname{Mor}\left(C, \Phi^{\prime}(D)\right) \rightarrow \operatorname{Mor}(\Phi(C), D) \\
& \quad g \mapsto \Psi\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=\left(g_{1}, g_{2}, g_{3}\right)
\end{aligned}
$$

then we get

$$
\begin{aligned}
& \left(\Psi_{C, D} \circ \eta_{C, D}\right)(f) \\
& =\Psi_{C, D}\left(\eta_{C, D}\left(f_{1}, f_{2}, f_{3}\right)\right) \\
& =\Psi_{C, D}\left(f_{1}, f_{2}, f_{3}, h_{D}\left(f_{2} \times f_{3}\right)\right)=\left(f_{1}, f_{1}, f_{3}\right)
\end{aligned}
$$

$$
\Psi_{C, D} \circ \eta_{C, D}=1_{\text {XMOD }^{2}}
$$

Similarly

$$
\begin{aligned}
\left(\eta_{C, D} \circ \Psi_{C, D}\right) & (g) \\
& =\eta_{C, D}\left(\Psi_{C, D}\left(g^{1}, g^{2}, g^{3}, g^{4}\right)\right) \\
& =\eta_{C, D}\left(g_{1}, g_{2}, g_{3}\right) \\
& =\left(g_{1}, g_{2}, g_{3}, h_{D}\left(g_{2} \times g_{3}\right)\right)
\end{aligned}
$$

since the tensor product is universal

$$
h_{D}\left(g_{2} \times g_{3}\right)=g_{4}
$$

is unique. Thus

$$
\eta_{C, D} \circ \Psi_{C, D}=1_{C r s^{2}}
$$

This shows that the $\boldsymbol{C r} \boldsymbol{s}^{2}$ has a left adjoint. The following diagram

with

$$
\begin{aligned}
f^{*}=\left\{\left(n^{\prime}, m^{\prime}, l\right)\right. & \in N \times M \times L: \vartheta^{\prime}(n) \\
& =\mu^{\prime}(m), f_{3}\left(m^{\prime}\right) \\
& \left.=\partial(l), f_{2}^{\prime}\left(n^{\prime}\right)=\delta(l)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{1}\left(n^{\prime}, m^{\prime}, l\right)=m^{\prime} \\
& \beta_{2}\left(n^{\prime}, m^{\prime}, l\right)=n^{\prime}
\end{aligned}
$$

is a crossed square. Let the following diagram be any crossed square

Define $\quad \alpha: f^{*} \rightarrow L \quad, \alpha\left(n^{\prime}, m^{\prime}, l\right)=l$, then ($f^{*}, \beta_{1}, \beta_{2}$) is the pullback ($\mu^{\prime}, \vartheta^{\prime}$). Since the categories with pulback and left adjoint has a fibration we deduce that the category $\boldsymbol{C r s}{ }^{2}$ is fibred over the category $\boldsymbol{X M O D}{ }^{2}$.

REFERENCES

[1]. Guin-Walery, D, and Loday J,L, Obstruction a l'excision en K-Theories algebrique, Lecture notes Math, 854 (1981) 179-216.
[2]. Arvasi, Z. Ulualan, E, Homotopical aspects of commutative algebras I freeness conditions for crossed squares, Journal of Homotopy and Related Structures, 10 (2015) 495-518.
[3]. Ellis, G.J, Crossed modules and higher dimensional analogues, Phd Thesis, Bangor, 1984.
[4]. Whitehead, J. H. C. Combinatorial homotopy II, Bull. Amer. Math. Soc., 55 (1949) 453-496.
[5]. Porter, T. Homology of commutative algebras and an invariant of simis and vasconcelos, Journal of Algera, 99 (1986) 458-465.
[6]. Arvasi, Z., Crossed squares and 2-Crossed modules of commutative algebras, Theory and Applications of Categories, 3-7 (1997) 160-181.
[7]. Brown, R. Sivera. R., Algeabraic colimit calculations in homotopy theory using fibred and cofibred categories, Theory and Application of Categories, 22 (2009) 222251.

[^0]: * Corresponding author. Email address: koray.yilmaz@dpu.edu.tr
 http://dergipark.gov.tr/csj ©2016 Faculty of Science, Cumhuriyet University

