
274 

  

Cumhuriyet Science Journal 

Cumhuriyet Sci. J., 46(2) (2025) 274-285 
DOI: https://doi.org/10.17776/csj.1599148 

 

 

│ csj.cumhuriyet.edu.tr │ Founded: 2002 ISSN: 2587-2680  e-ISSN: 2587-246X Publisher: Sivas Cumhuriyet University 

 

Investigation of a Stable Interaction of Levothyroxine with AFP through Molecular 
Modelling 

Emel Akbaba1,a, Deniz Karataş2,b,*, Ataman Gönel3,c, Ezgi Soylu2,d, Beste Kiraz2,e, Yusur Almahdi2,f  
1Department of Medical Biology, Faculty of Medicine, Kırıkkale University, Kırıkkale, 71450, Türkiye 
2Department of Bioengineering, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, 45140, Türkiye 
3Department of Biochemistry, Faculty of Medicine, Sanko University, Gaziantep, 27580, Türkiye 

*Corresponding author  

Research Article ABSTRACT 
 

History 
Received: 12/12/2024 
Accepted: 19/05/2025 
 
 

 

 

 

 

 

 
 
 

 
This article is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 
International License (CC BY-NC 4.0) 

Thyroid dysfunctions are common all over the world, and accordingly, the use of thyroid drugs has increased. 
Incorrect measurement of tumor markers may lead to missed cases of cancer. We hypothesized that the 
interaction between tumor markers and thyroid medications could lead to decreasing measurement of tumor 
markers in serum. The most used cancer markers are CA19-9, CA125, CEA, PSA, and AFP molecules. In this study, 
the molecular interactions of these markers with the thyroid medications of levothyroxine, methimazole, and 
propylthiouracil were investigated via molecular docking and dynamics simulations. In the molecular docking 
studies, levothyroxine was shown to interact with AFP, CEA, and CA15-3 in low concentrations. As a result of the 
MD simulations, the AFP/LEVO model exhibited the highest level of interaction. For instance, while the RMSD 
values of AFP/Levothyroxine complex were consistently around 0.7, and for the others they were observed 
above 1. This tight binding was reflected in interaction energies, with the total interaction in the 
AFP/Levothyroxine model computed as -192.04 kJ/mol. In contrast, for CA15-3/Levothyroxine and 
CEA/Levothyroxine complexes, these values were calculated as -135.26 and -88.56 kJ/mol, respectively. The 
SASA analysis also suggested the superiority of AFP/Levothyroxine complex due to ligand masking and a 
decrease in standard deviation, as the SASA mean difference area was found to be -0.46. This unique and only 
study elucidates the interactions between drugs used in thyroid cancer and biomarkers at the atomistic level. 
This clarity suggests a potential to mitigate misunderstandings that may arise in clinical and experimental 
studies. 
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Introduction 
 

Thyroid function abnormalities are commonly 
encountered in general practice. Hypothyroidism and 
hyperthyroidism commonly arise from pathological 
processes within the thyroid gland. The diagnosis of 
thyroid dysfunction is predominantly based on 
biochemical confirmation [1]. Thyroid disfunction occurs 
much more often in females than males, with close to a 
million people being treated for hypothyroidism [2]. In 
iodine-replete populations, thyroid dysfunction is most 
commonly due to thyroid autoimmunity. The established 
treatment of hypothyroidism is carried out with 
levothyroxine [3]. Hyperthyroidism, on the other hand, is 
an excessive concentration of thyroid hormones in tissues 
causing a characteristic clinical state [4]. Hyperthyroidism 
caused by overproduction of thyroid hormones are 
commonly treated with antithyroid medications, 
methimazole and propylthiouracil [5].  

Alteration of glycosylation, which occurs early in 
cancer, results in the production of tumor-associated 
glycans or glycoproteins. These molecules are 
subsequently secreted or membrane-shed into the blood 

stream and thus serve as tumor-associated markers. 
These glycosylation markers, applicable for detection and 
monitoring of cancer, include CA 19-9, CA 125, CEA, PSA, 
and AFP. Because of their specific affinity to distinct sugar 
moieties, lectins are useful for developing assays to detect 
these tumors associated with glycans and glycoproteins in 
clinical samples. As such, various enzyme-linked lectin 
assays have been developed for diagnosis, monitoring and 
prognosis [6].  

Carbohydrate antigen 19-9 (CA 19-9) is a cell surface 
glycoprotein complex, most commonly associated with 
pancreatic ductal adenocarcinoma. Structurally, it is a 
tetrasaccharide carbohydrate with a 
transmembrane protein skeleton and extensively 
glycosylated extracellular oligosaccharide chains. CA 19-9 
is also used as a biomarker for gastrointestinal (such as 
colorectal and oesophageal cancers), urological, 
gynecological, pulmonary, and thyroid cancers [7]. CEA 
and CA 15-3 are generally associated with breast cancer 
[8].  Furthermore, CA 125 has been a valuable indicator for 
evaluating the efficacy of treatment and prognosis in 
ovarian cancer [9]. Alpha-fetoprotein (AFP) is considered 
as a diagnostic and prognostic cancer marker for 
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hepatocellular carcinoma which is one of the most 
common malignant tumors in the World [10]. Prostate 
specific antigen (PSA) is generally known as prostate 
cancer antigen [11]. Therefore, the specificity of cancer 
antigens is variable.  

Molecular docking is a method which analyses the 
conformation and orientation of molecules (ligands) into 
a macromolecular target (receptor). Molecular docking is 
extensively used to hypothesize interaction modes and 
better characterize the ligand-receptor interactions [12]. 
Indeed, molecular docking is among one of the most 
popular and successful structure-based in silico methods, 
which help predict the interactions occurring between 
molecules and biological targets. Based on the protein 
structures, many possible poses of ligand are generated. 
Therefore, the first step is predicting the molecular 
orientation of a ligand within a receptor, and then 
estimating their complementarity through the use of a 
scoring function [13]. This molecule/protein complex 
must form a stable complex [14]. The binding free energy 
directly mirrors the ability of the ligand to interact with 
the protein, and is, therefore, regarded as the key 
quantity in studies of molecular recognition and 
association phenomena. The lowest the binding energy, 
the highest the binding affinity is [15]. The important 
energetic factors for protein–ligand binding, such as 
hydrogen bonds, and hydrophobic effects are also used to 
predict binding affinity [16]. Molecular dynamics (MD) 
simulations, on the other hand, predict how every atom in 
a protein or other molecular system will move over time, 
based on a general model of the physics governing 
interatomic interactions. These simulations can capture a 
wide variety of important biomolecular processes, 
including conformational change, ligand binding, and 
protein folding, revealing the positions of all the atoms at 
femtosecond temporal resolution [17]. In this study, MD 
simulations were performed to evaluate the stability of 
ligand/receptor complexes. Recently, the molecular 
interactions between propylthiouracil and thyroid 
peroxidase, a key enzyme in thyroid hormone synthesis 
has investigated with MD and docking. The aim is to 
elucidate the binding mechanism of propylthiouracil as an 
inhibitor of thyroid peroxidase at the atomic level. The 
study clarifies the key interactions, like hydrogen bonds, 
and hydrophobic interactions, that contribute to 
propylthiouracil’s inhibitory activity [18]. In another 
recent study utilizes an integrated computational 
approach to explore the molecular mechanisms by which 
perfluorooctane sulfonic acid induces thyroid toxicity. 
Molecular docking and molecular dynamics simulations 
revealed the potential binding interactions between 
perfluorooctane sulfonic acid and key thyroid-related 
proteins, such as thyroid peroxidase and thyroid hormone 
receptors [19]. Another paper used molecular dynamics 
simulations to investigate the molecular mechanisms 
behind the resistance to resmetirom, a selective thyroid 
hormone receptor beta agonist, in certain contexts. The 
simulations identified key amino acid residues and 
interactions that are crucial for resmetirom binding and 
how these are affected in resistant variants [20]. Another 

paper suggested that two common anti-thyroid drugs, 
methimazole and propylthiouracil, inhibited the 
enzymatic activity of thyroid peroxidase in the results 
which obtained through computational study [21]. One 
another theoretical and experimental study showed the 
interaction between levothyroxine, and bovine serum 
albumin [22]. In silico studies on biomarkers and thyroid 
cancer have also become popular in recent years. One 
comparative modelling study investigated the role of Iron-
Sulfur Cluster Assembly 1 (ISCA1) across various cancer 
types, with a specific focus on its correlation with 
ferroptosis-related genes and its potential as a biomarker 
in thyroid carcinoma. [23]. Another study investigated a 
multi-omics network approach to identify systems 
biomarkers for papillary thyroid cancer prognosis and 
treatment. [24]. Another study employed gene-
expression profile analysis to identify potential 
biomarkers for thyroid carcinoma. [25]. In the meantime,  
another study combined network pharmacology and 
molecular docking to investigate the mechanisms by 
which polybrominated diphenyl ethers to induce thyroid 
dysfunction. [26]. Another study performed a 
comprehensive, large-scale transcriptomic analysis of 
RNAs in thyroid cancer to identify pathological biomarkers 
related to the tumor immune microenvironment and to 
explore potential target therapies [27]. Although there is 
a body of research on the interactions between thyroid 
cancer therapeutics and diverse protein targets, 
theoretical studies pertaining to the interaction of these 
drugs with glycosylation markers are notably absent from 
the current literature. Therefore, in this study, our 
hypothesis was as follows: The medications used for 
thyroid disorders may interact with tumor markers, 
preventing their detection in blood tests. Given the 
widespread use of thyroid medications in the population, 
the suppression of tumor markers could adversely affect 
cancer diagnosis or follow-up treatments. The 
interactions of thyroid drugs with tumor markers may 
alter the serum levels of tumor antigens, which may cause 
a possible case of cancer to be missed as a result. 
Therefore, we investigated the interactions between 
certain thyroid medications and the tumor markers 
through the use of molecular docking, and dynamics 
simulations.   

 

Materials and Methods 
 

Protein Preparation 
The molecular structures of tumor markers were 

imported from PDB (Protein Data Bank). The chosen 
tumor markers are AFP (PDB id: 3MRK), CA125 (PDB id: 
1IVZ), CEA (PDB id: 5DZL), PSA (PDB id: 1GVZ), and CA15-3 
(PDB id: 6BSC). Only CA19-9 was imported from PubChem 
(PubChem CID: 643993). All macromolecules were 
exhibited in alpha helixial and beta sheet structures, 
except CA19-9 which is the only non-protein cancer 
marker studied in this research. CA19-9 is a carbohydrate 
antigen; therefore, it is displayed in sticks with the colors 
specific to atom type (Figure 1). 
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Figure 1. The structures of tumor markers are shown in 
rainbow form except CA19-9 of which is displayed in 
balls and sticks. Grey, red, white, and blue colors for 
CA19-9 represent carbon (C), oxygen (O), hydrogen 
(H) and nitrogen (N), respectively. 

 

Before starting docking, water molecules and other 
irrelevant ligands were removed. Then marker molecules 
were prepared as a PDBQT file format using AUTODOCK 
TOOLS [28]. The missing residuals were checked and 
repaired. Hydrogen atoms were added to the dangling 
bonds. In the following step, Kollman charges were 
assigned and added to the marker molecules. 

 

Ligand Preparation 
The molecular structures of all drugs were imported 

from the PubChem databank, saved in .sdf format. The file 
in SDF format was converted to PDBQT format using the 

OpenBabelGUI (ObGUI) program [29]. The structures of 
the ligands (drugs) are shown in the Figure 2.  

 

 

Figure 2. The structures of drugs are shown in ball-stick 
model. White, red, pink, purple, blue, and yellow 
colors represent hydrogen (H), oxygen (O), carbon (C), 
iodine (I), nitrogen (N), and sulfur (S), respectively. 

 
Launching Autogrid 

The number of grid box points and xyz coordinates 
adjusted that completely cover the macromolecule 
structure entered from the grid box section. The grid 
parameter file (GPF) was saved with the entered values. 
All GPF parameters were illustrated in Table 1. These 
parameters are the default values generated by the 
AutoDock Tools software subsequent to the definition of 
the grid box. Before selecting, GPF file to run autogrid, 
autogrid4.exe program was launched. As GPF file was 
selected from working directory, at the same time a grid 
log file (GLG) with the same name was automatically 
generated. After the running finished all parameters, such 
as atom types, grid box details, dielectric constants, and 
lowest pairwise-atomic interaction energies.

 
Table 1. GPF parameters for ligand/marker models. 

DRUG MARKER # of Grid Points (xyz) Spacing xyz Grid Center Coordinates(Å) 

P
ro

p
ylth

io
u

racil 

AFP 126 126 126 0.55 7.391 x -0.582 x 9.49 
CA 19-9 50 50 50 0.375 -1.154 x  5.576 x -2.915 
CA 125 126 126 126 0.55 -1.929 x 11.891 x -4.083 

CEA 126 126 126 0.575 11.566 x -10.159 x 1.684 
PSA 126 126 126 0.5 11.3 x 23.915 x 24.743 

CA 15-3 100 100 100 0.375 -19.265 x 11.673 x 4.338 

Levo
th

yro
xin

e 

AFP 126 126 126 0.55 7.391 x -0.582 x 9.49 
CA 19-9 50 50 50 0.375 -1.154 x 5.576 x -2.915 
CA 125 126 126 126 0.55 -1.929 x 11.891 x -4.083 

CEA 126 126 126 0.575 11.566 x -10.159 x 1.684 
PSA 126 126 126 0.5 11.3 x 23.915 x 24.743 

CA 15-3 110 110 110 0.5 -19.265 x 11.673 x 4.338 

M
eth

im
azo

le 

AFP 126 126 126 0.55 7.391 x -0.582 x 9.49 
CA 19-9 50 50 50 0.375 -1.154 x  5.576 x -2.915 
CA 125 126 126 126 0.55 -1.929 x 11.891 x -4.083 

CEA 126 126 126 0.575 11.566 x -10.159 x 1.684 
PSA 126 126 126 0.5 11.3 x 23.915 x 24.743 

CA 15-3 100 100 100 0.375 -19.265 x 11.673 x 4.338 
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All the values of grid points, spacing, and grid center 
coordinates of propylthiouracil and methimazole are 
identical as shown in Table 1. However, values of grid 
center points and spacing of CA15-3/levothyroxine 
complex are different from that of CA15-
3/propylthiouracil and CA15-3/levothyroxine complexes. 
The reason for this exceptional situation is molecular size 
and structurally complexity of Levothyroxine.  

 

Molecular Docking 
Apolar hydrogens cannot be read in XRD. To get exact 

results with XRD, nonpolar hydrogens were neglected. 
OpenBabel GUI (ObGUI) was used to calculate the 
minimum (most stable) charges. The codes of the drugs 
were inserted into the input format section of the ObGUI. 
The file type was selected as SDF. The output file was then 
saved as ".pdbqt" format in the relevant drug folder. Then 
the AutoDock program was started. Before submitting 
docking, macromolecule was selected to set receptor 
molecules as rigid body. Genetic algorithm (GA) was 
selected as search parameters. The number of runs and 
population size were selected as 100, and 300, 
respectively. Furthermore, the number of evals was 
chosen as long level. Hybrid Lamarckian and GA 
parameters were assigned, and the input file was saved as 
docking parameter file (DPF) (Table 2). Finally, DPF was 
selected to launch docking [30]. 
 

Table 2. DPF parameters for ligand/marker models. 

Program Autodock4.exe 

Search Parameters Lamarckian Genetic Algorithm 
# of Run 100 
# of Generations 27000 
Maximum # of Energy 
Evaluations (Long level) 

25000000 

Population Size 300 
 
For the analysis of the results, the run number where 

the lowest binding energy occurs should be entered in the 
conformations section and visualized. In the result pop 
out, all RMSD results were exhibited in detail.  
The free binding energy (BE) calculation was carried out as 

follows. 

Estimated Free Energy of Binding = (1) + (2) + (3) - (4) 
(1): Final Intermolecular Energy = [vdW + Hbond + 

desolvation Energy] + Electrostatic Energy; (2): Final Total 
Internal Energy; (3): Torsional Free Energy; (4): Represents 
Unbound System's Energy = [(2) Final Total Internal 
Energy]. 

 

Molecular Dynamics (MD) 
The ligand/receptor complexes with the highest 

binding affinities were further evaluated via MD 
simulations which were conducted using the GROMACS 
program to elucidate the interaction regions and energies 
in aqueous environments with full atomic mobilities as 
compared to molecular docking. Prior to initiating MD 

simulations, all atoms in the model were assigned using 
the CHARMM36 force field recommended for protein-
ligand complexes. The TIP3P water model was selected for 
the solvent environment. Subsequently, a simulation box 
in the form of a dodecahedron was constructed, 
considering the protein structure, after merging the ligand 
molecule prepared on the swissParam website with the 
protein. Ion addition was performed to neutralize the 
ligand/protein simulation boxes containing water, 
followed by sufficient minimization using the steepest 
descent algorithm in 3D periodicity to reduce over-
accessed energy on atoms and prepare the supercell for 
simulation. Next, equilibration was carried out in NVT and 
NPT ensembles for each of the three boxes, with 100 
picoseconds (ps) each, followed by independent 50-
nanosecond (ns) simulations. Moreover, temperature and 
pressure were maintained constant during the simulation 
via a modified Berendsen thermostat and the Parrinello-
Rahman barostat. A temperature of 300 K and a pressure 
of 1 bar were applied. Short-range van der Waals forces 
were truncated at a cutoff distance of 1.2 nm, and long-
range electrostatic forces were computed employing the 
Particle Mesh Ewald summation [23, 31]. To analyze 
molecular interactions and sizes between protein and 
ligand, RMSD, RMSF, radius of gyration, SASA, RDF, and 
interaction energy analyses were successively performed. 
In all relevant analyses, the entire ligand molecule was 
selected in contrast to the protein backbone for thorough 
examination.  

 

Results and Discussion 
 
In silico studies revealed new insights about the 

possible binding mode of different compounds with 
receptors [32]. This research aimed to study possible 
interactions of the selected drugs used in hyperthyroidism 
or hypothyroidism with the serum tumor markers via 
molecular docking analysis. Propylthiouracil (PRO) and 
methimazole (MET), the drugs used in hyperthyroidism, 
and levothyroxine (LEVO) which is used in hypothyroidism 
were chosen as the ligand molecules. On the other hand, 
AFP, CA19-9, CA125, CA15-3, CEA, and PSA were selected 
as the receptors which are commonly known as tumor 
antigens routinely used to predict various cancers. The 
elevated levels of tumor markers could be a sign of cancer, 
therefore, should not be underestimated. Tumor markers 
can be evaluated by a blood test which is an easy and 
inexpensive method. This study aims to question the 
reliability of tumor marker measurement tests in people 
using the selected thyroid medications. The possible 
interactions of tumor markers and thyroid drugs are 
possibly change the serum levels of the antigens. One of 
the possible outcomes of the tumor marker with drug 
interaction is a decrease in serum tumor marker levels, 
which may be interpreted as ignoring the cancer, which 
may have devastating outcomes. Thyroid disease is 
common in older adults. Up to 5%, and 2.3% of older 
people are diagnosed with hypothyroidism and 
hyperthyroidism, respectively [33]. It is obvious that 



Cumhuriyet Sci. J., 46(2) (2025) 274-285 

278 

cancer cases also increase with age. The interactions of 
thyroid medications with cancer markers could result in 
the elimination or delay of cancer diagnosis in the case of 
an elderly using thyroid drugs with no symptoms of 
cancer, who only has cancer marker bioassays. Therefore, 
it is essential to make certain that the medications used to 
treat thyroid diseases do not have any kind of interaction 
with the cancer markers.  

In all the selected tumor markers, the simplest and 
smallest marker is CA19-9 whereas AFP, CEA and PSA are 
more complex and bulkier than others (Figure 1). All 

examined ligand molecules with the polar hydrogens were 
depicted in Figure 2. Four iodine atoms just exist 
covalently in LEVO, the biggest, bulkiest, and longest 
ligand whereas sulfur belongs to the other drugs, 
relatively smaller and simpler structures (Figure 2). 

 

Molecular Interactions of Markers and PRO 
The molecular interactions of marker and PRO from 

the total 100 runs are shown in Table 3. 

 
Table 3. Molecular interactions of markers and PRO. 

MODEL BE from Lowest to 
Highest (kcal/mol) 

IC From Lowest 
to Highest (mM) 

Number of 
Clustering 

Lowest 
Binding 

Run 

Detected H-bonds 
(Å) 

AFP/PRO (-5.51) 
(-4.79) 

(0.09) 
(0.31) 

8 72 No H-Bond formed 

CA19-9/PRO (-3.88) 
(-3.70) 

(1.44) 
(1.95) 

2 11 (1.971) 
(2.131) 

CA125/PRO (-3.95) 
(-3.57) 

(1.28) 
(2.42) 

15 15 No H-Bond formed 

CEA/PRO (-4.40) 
(-3.80) 

(0.59) 
(1.65) 

19 18 ASP82:A(2.133) 

PSA/PRO (-5.39) 
(-4.00) 

(0.11) 
(1.16) 

10 16 LYS95F:A(1.965) 

CA15-3/PRO (-4.67) 
(-3.78) 

(0.37) 
(1.70) 

9 3 PHE1094:A (2.234) 

 

The amino acids contributing to the H-bonds which are 
listed in Table 3 are also shown in Figure 3. The lowest and 
highest binding energies of AFP/PRO model were 
determined to be -5.51 and -4.79 kcal/mol, respectively. 
Clearly, less than 1 kcal/mol difference was obtained 
between the lowest and highest binding energies of 
AFP/PRO model. Furthermore, AFP/PRO complex was 
found to be clustered in 8 sites out of 100 conformations. 
No hydrogen (H) bond was observed in this model, 
however, hydrophobic interactions with PHE22 and 
PRO20 which exist on A chain of AFP with PRO were 
determined. Also, other intermolecular interactions were 
observed in PRO with the residues SER11A, GLU19A, 
SER38A, SER71A, GLN72A, and ARG75A of AFP. 
Furthermore, a low inhibition constant (IC) value (0.09 
mM) was found in AFP/PRO complex. Therefore, all these 
factors contributed to the low binding energy, suggesting 
AFP as the most favorable tumor marker with the 
interaction of PRO. A recently published study reported 
docking scores for Propylthiouracil spanning from -4.485 
to -5.144 kcal/mol across ten distinct models, which 
closely align with the results obtained in our current 
research [18]. The aforementioned study highlighted the 
substantial interaction exhibited by the Propylthiouracil 
molecule with the thyroid hormone receptor. Another 
study, employing not only docking but also MD 
simulations, demonstrated a considerably strong 
interaction between the same drug and the same receptor 
[21]. 
 

 

Figure 3. The marker/PRO interaction poses. The amino 
acids contributing to H-bonds are shown in green. 
Propylthiouracil (PRO) is shown in pink. 
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PSA/PRO model was also found to have low binding 
free energy (-5.39 kcal/mol) with one H-bond interaction. 
The IC value of this model was shown to be 0.11 mM. 
Furthermore, CA15-3/PRO model which has a binding 
energy of -4.67 kcal/mol displayed one H-bond as well as 

low IC value (0.37 mM). -cation interactions were also 
observed in PRO with LYS1093A, in addition to 
hydrophobic interactions with PHE1054A, PRO1061A, and 
PRO1096A of CA 15-3. Furthermore, other intermolecular 
interactions were predicted between PRO and CA 15-3 
with GLU1059A, TYR1066A, and ARG1095A residues. The 
marker/PRO poses displaying the lowest binding energies 
are shown in Figure 3. H-bonds were determined in all 
models except AFP/PRO and CA125/PRO. The effective 
driving forces in AFP/PRO and CA125/PRO models were 
determined as van der Waals interactions (-5.92 and -4.41 

kcal/mol, respectively), while electrostatic interactions 
remained at minimum levels (-0.19 and -0.05 kcal/mol, 
respectively). However, in the other marker/PRO models, 
the effective driving forces were determined to be H-
bonds and van der Waals interactions, with the minimum 
electrostatic contribution. Such hydrogen bonding and 
hydrophobic interactions have also been identified by 
using molecular docking and dynamics investigations 
involving PRO, which have further elucidated their 
function in regulating the interactions with the receptor 
[18, 21]. 

 

Molecular Interactions of Markers and LEVO 
Molecular interactions of markers and LEVO are 

shown in Table 4. 

 
Table 4. Molecular interactions of markers and LEVO. 

MODEL 
Binding Energy 

(kcal/mol) 
Inhibition Constant 

(mM) 
Number of 
Clustering 

Lowest 
Binding Run 

Number of Detected 
H-bonds (Å) 

AFP/LEVO 
(-8.10) 
(-4.54) 

(0.001) 
(0.4) 

60 83 
ASP30:A(2.084) 

GLY237:A(1.968) 
ARG12:B(1.992)  

CA19-9/LEVO 
(-4.53) 
(-3.01) 

(0.478) 
(6.21) 

22 36 2.239 

CA125/LEVO 
(-5.30) 
(-3.16) 

(0.063) 
(4.86) 

67 73 
ASP95:A(2.129) 

ARG120:A(2.168) 
ARG96:A(2.152) 

CEA/LEVO 
(-8.60) 
(-4.51) 

(0.0004) 
(0.494) 

51 78 
THR4:B(2.131) 

THR101:B(1.813) 
SER6:C(2.103) 

PSA/LEVO 
(-7.16) 
(-4.48) 

(0.005) 
(0.5) 

57 48 
LYS95F:A(1.722) 
ARG150:A(2.068) 

CA15-3/LEVO 
(-8.35) 
(-5.73) 

(0.0008) 
(0.06) 

37 8 No H-Bond formed 

 

Clearly seen from Table 4 that low binding energies 
were determined in all models of LEVO/marker. Figure 4 
shows the best conformations of LEVO with the markers. 
A combined experimental and computational study into 
the molecular interplay between levothyroxine and 
thyroid hormones revealed a considerably high degree of 
interaction. Moreover, the binding affinity of the lowest 
energy conformer was determined to be -6.4 kcal/mol 
through docking simulations. The underlying interactions 
responsible for this affinity were illustrated as 
predominantly involving hydrogen bonds and 
hydrophobic forces [22]. 

The highest affinity between LEVO and tumor markers 
was determined to be in LEVO/CEA model which displayed 
an incredibly low binding free energy as -8.60 kcal/mol. H-
bond interactions were predicted in LEVO with the 
residues THR4B, THR 101B, and SER6C of CEA. 
Furthermore, hydrophobic interactions with LEU2B, 
PHE9C, and ALA100B residues as well as other 
intermolecular interactions with ASN42A, GLN1B, 
GLU99B, THR3C, THR4C, GLN103C of CEA also contributed 
to the low binding energy. IC value of LEVO/CEA complex 
was found to be 0.0004 mM which is the lowest in all 
LEVO/marker models. 

 

Figure 4. The LEVO/marker interaction poses. The amino 
acids are shown in green. Levothyroxine (LEVO) is 
shown in pink. 
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On the other hand, LEVO/CA 15-3 model was shown to 
display the second lowest binding energy (-8.35 kcal/mol). 
Although no H-bonds were predicted in LEVO with CA 15-
3, hydrophobic interactions were observed with 
PHE1042A, LEU1078A, GLY1088A, LEU1089A, ALA1106B 
and ALA1106B, in addition to other intermolecular 
interactions with GLN1070A, SER1074A, SER1090A, 
ASN1091A, THR1104B amino acids of CEA. The low IC 
value of LEVO/CEA complex was noticed as 0.0008 mM. 
Therefore, CEA and CA 15-3 were suggested as the most 
favorable tumor markers in the interactions with LEVO. 
Furthermore, LEVO displayed low binding free energies of 
-8.10 kcal/mol and -7.16 kcal/mol with AFP and PSA, 
respectively. ASP30A, GLY237A, and ARG12B residues of 
AFP constituted H-bond interactions. Also, hydrophobic 
interactions in LEVO with TRY27A, LEU65B, and TYR67B 
were determined, in addition to other intermolecular 
interactions with THR31A, GLN32A, ARG48A, and SER52B 
residues of AFP. On the other hand, H-bond interactions 
in LEVO with LYS 95FA and ARG 150 A of PSA were 
observed. MET60, and LEU95I residues of PSA were 
observed to form hydrophobic interactions with LEVO. 
Also, other intermolecular interactions were observed 
between LEVO and PSA with HIS35, HIS39, GLN41, HIS57, 
and LYS95G residues. Therefore, the above-mentioned 
interactions of LEVO with AFP and PSA contributed to the 
low binding energies.  

Among all LEVO/marker models, a relatively low 
binding affinity between LEVO and CA125 was observed 
as -5.30 kcal/mol binding energy. However, many bonding 
interactions were predicted in this complex such as H-
bond interactions with residues ASP95A, ARG120A and 
ARG96A at high distances. On the other hand, 
hydrophobic interactions in LEVO were observed with 
VAL97, TYR100, PHE124, and VAL125, in addition to 
intermolecular interactions with ASP95, TYR100, and 
ARG120 residues of CA125. Therefore, although binding 
score of LEVO/CA125 complex was shown to be relatively 
low, many bonding interactions in this complex suggest 
good binding affinity.  

As it can be seen from Table 4, high number of 
clustering in all LEVO/marker models were obtained. For 
example, in LEVO/CEA model, number of clustering was 
determined to be 51 in 100 conformations, suggesting 
many binding sites of the markers. Although LEVO is the 
bulkiest ligand in this study, substantially low binding 
energies with the markers were shown. LEVO is the only 
ligand in this study, possessing iodine residue and many 
polar hydrogens. Probably, these factors increased the 
affinity of LEVO to tumor markers, especially CA15-3, CEA, 
AFP, and PSA.  

H-bonds and van der Waals interactions were found to 
be the effective driving forces in the interactions of LEVO 
with tumor markers. However, electrostatic interactions 
remained at minimum levels in all LEVO/marker 
complexes. 

 

Molecular Interactions of Markers and MET 
Molecular interactions of markers and MET are given 

in Table 5. The binding energy of MET with PSA was 
observed to be -3.70 kcal/mol which is the lowest value 
within all MET/marker complexes. No H-bond interactions 
of MET with PSA were predicted. Furthermore, MET was 
found to represent a binding energy of -3.22 kcal/mol with 
CA125 which is also considered as low binding affinity. A 
H-bond interaction of MET was observed with VAL 125A 
of CA 125. Also, the IC value (4.39 mM) was determined to 
be moderately higher than PSA/MET model (1.94 mM). 
Figure 5 illustrates the best conformations of MET with 
the tumor markers. Clearly, MET did not reveal good 
binding affinities with any of the tumor markers in 100 
conformations. Therefore, MET is not considered to be a 
favorable ligand for the studied tumor markers. With only 
one polar hydrogen, MET is the smallest ligand in this 
study. Possibly, the interactions of MET with the chosen 
markers are constrained by the presence of a single polar 
hydrogen. In silico study involving methimazole have 
demonstrated its interaction with thyroid peroxidase 
enzymes, mediated by hydrogen bonds and hydrophobic 
forces [21]. 

 
Table 5. Molecular interactions of markers and MET. 

MODEL 
Binding Energy 

(kcal/mol) 

Inhibition 
Constant 

(mM) 

Number of 
Clustering 

Lowest 
Binding Run 

Number of Detected H-
bonds (Å) 

AFP/MET 
(-3.10) -5.37 

4 39 HIS70:A (1.521) 
(-2.87) -7.88 

CA19-9/MET (-2.58) 12.85 1 65 -2.134 

CA125/MET 
(-3.22) -4.39 

3 83 VAL125:A (1.825) 
(-2.84) -8.27 

CEA/MET 
( -3.06) -5.73 

12 97 No H bond 
(-2.74) -9.76 

PSA/MET 
(-3.7) -1.94 

7 95 No H Bond 
(-3.32) -3.67 

CA15-3/MET 
(-3.09) -5.46 

2 84 ASN1091:A (2.021) 
(-2.93) -7.11 
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Figure 5. The marker/MET conformations with the lowest 
binding energies. The amino acids are shown in green. 
Methimazole (MET) is shown in pink. 

 

Other forces affecting the molecular interactions 
between the tumor markers and the drugs, apart from the 
H-bond interactions, are given in Figure 6. The van der 
Waals spheres forming the molecular surface and close 
contacts of the left images are removed in the right 
images so that the -cation yellow light beam can be seen. 
Two -cation interactions occurred in the CA15-3/PRO 
model, while one was formed in CA15-3/LEVO. As a result 
of the docking, it was observed that the other parameters 
affecting the molecular interactions apart from the H-
bond were -cation and van der Waals interactions.  

 

 

Figure 6. The molecular shape of CA15-3/PRO model 
shows amino acids causing hydrophobic interactions. 
The grey van der Waals spheres are carbonaceous 
region; red wireframe spheres are oxygen; the yellow 
region is sulfur, the purple spheres are iodine region, 
and the white spheres are hydrogenous region. 

 

As a result, molecular docking analyzes revealed high 
binding affinities of LEVO to AFP, CA15-3, and CEA tumor 
marker proteins. Further, MD simulations were 
performed to support the stability of the aforementioned 
ligand/receptor interactions. ARG96 residue constituted 
-cation interaction between LEVO and CA125, as well. 

 

Structural and Dynamic Analyses 
RMSD, RMSF and Rg graphs, which are indicators of 

structural changes and protein stability of LEVO, are given 
in Figure 7.  

 

 

 
Figure 7. RMSD (a), RMSF (b), and Rg (c) graphs of 

AFP/LEVO, CA15-3/LEVO, and CEA/LEVO models. 

 
RMSD (Root Mean Square Deviation) is the average 

measurement of atomic positions between two 
structures. In MD simulations, RMSD is employed to 
assess the similarity or dissimilarity between the 
generated protein and ligand complex and a reference 
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structure by comparing the variations in their positional 
alignment [34]. RMSD graphs facilitate the analysis of 
structural variations and stabilities in proteins and ligands. 
Additionally, they enable the interpretation of 
interactions between the ligand and protein throughout 
the simulation, as well as the observation and analysis of 
structural conformational changes during the binding of 
the ligand to the receptor [35].  

It is a crucial type of graph for determining the 
equilibrium of the structure and dynamic stability. Figure 
7a shows the RMSD graphs of AFP/LEVO, CA15-3/LEVO 
and CEA/LEVO complexes during a 50-nanosecond 
duration of MD simulation. The AFP/LEVO model exhibits 
a stable simulation, converging around 0.7 nm after the 
initial 10 ns and continuing steadily until completion. 
Similarly, the CA15-3/LEVO model stabilizes around 1.25 
nm and continues consistently. In contrast, the CEA/LEVO 
model shows relatively larger fluctuations, reaching 
approximately 1.5 nm, with oscillations exceeding 2 nm 
observed between 35-45 ns of the simulation interval. 
This variation can be attributed to the presence of four 
chains in CEA, unlike the other models which have only 
one chain, and the stability of CEA appears to be 
influenced by the presence of the ligand. Indeed, in a 
study reporting the resolution as 3.4 Å in the X-Ray PDB 
validation report properties, it was observed that the 
resolution was notably lower, especially when compared 
to CA15-3 [36]. It is evident that the presence of the ligand 
affects the stability of the protein-ligand complex. 

Root Mean Square Fluctuation (RMSF) denotes the 
calculation of atomic fluctuations in protein-ligand 
complexes generated during MD simulations over a 
specified time interval. The RMSF value allows for 
calculations regarding the extent to which the average 
positions of each structure deviate [34]. In MD 
simulations, the RMSF value provides information about 
the flexibility and conformational changes in specific 
regions of the protein, such as the binding site [37]. Figure 
7b shows the RMSF graphs of AFP/LEVO, CA15-3/LEVO 
and CEA/LEVO complexes. Clearly, the CEA/LEVO model 
exhibits the highest fluctuations, attributed to the bulkier 
and more flexible nature of the CEA structure. The 
ordering of atom indices from large to small is a 
consequence of the CEA molecule having the longest total 
sequence length, followed by the sequence length of the 
single chain in AFP. The prominent peaks in AFP/LEVO 
correspond to atoms at indices 3088, 3503, and 4335. In 
CEA/LEVO, the most distinct peak is at index 1653, 
measuring 0.46 nm. 

The gyration radius is utilized in MD simulations to 
discern the compactness of the protein-ligand complex, 
aiming to observe the shape and stability of the complex 
[38] [39]. This type of graph enables the assessment of the 
compactness of the protein-ligand complex. Gyration 
radius graphs corresponding to AFP/LEVO, CA15-3/LEVO 
and CEA/LEVO complexes are presented in Figure 7c. 
When examining the averages of the gyration radius (Rg) 
results, it is noted that their numerical average is 
approximately 0.43 nm for all models. However, as 
evident in Figure 7c, the CEA/LEVO complex exhibits a 
notably lower Rg value, especially in the last 4 ns of the 
simulation, compared to the others. This suggests that 
CEA is more flexible and disordered confirming the RMSD 
and RMSF results. 

Solvent Accessible Surface Area (SASA) 
SASA is the surface area accessible to the solvent 

molecules in a molecular system. SASA enables the 
measurement of the area accessible to the solvent in 
protein-ligand complexes. The determination of SASA is 
crucial for understanding protein folding and stability. 
Additionally, SASA reflects the hydrophobic compactness 
of protein structures [40].  
 

 

 

 
Figure 8. SASA curves for protein and protein/ligand 

models for the complexes of AFP/LEVO (a), CA15-
3/LEVO (b), and CEA/LEVO (c). 
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In Figure 8, SASA graphs of protein-ligand complexes 
have been obtained to illustrate their behavior concerning 
solvent interactions. A slight decrease in SASA is observed 
in the presence of LEVO in the AFP/LEVO complex shown 
in Figure 8a. Indeed, the calculated difference in average 
areas is -0.46. Conversely, in the other two models, 
opposite results are obtained, with differences calculated 
as +0.80 and +2.13 for CA15-3/LEVO and CEA/LEVO 
complexes, respectively. According to these results, it can 
be inferred that the ligand masks the surface accessibility 
of the protein. On the other hand, the reason for the 
higher overall fluctuation areas in AFP is due to its having 
the shortest sequence length (57 amino acids) among the 
proteins. In the others, these fluctuation ranges are 
relatively less, especially in CA15-3. These minor 
fluctuations may suggest the formation of a stable 
complex between the ligand and the protein. 

 

Radial Distribution Function (RDF) Analyses and 
Interaction Energies 

 The term RDF refers to measuring the distance 
distribution of a specific molecule with reference 
molecules. In MD simulations, the RDF graph enables the 
interpretation of protein-ligand interaction sites, 
interaction dynamics, binding regions, and stabilities [41]. 
In Figure 9, the RDF graph for LEVO with the receptors' 
backbone is provided. 
 

 

Figure 9. RDF graphs for AFP/LEVO, CA15-3/LEVO, and 
CEA/LEVO models. 

 
The ligand exhibited its highest peak around 1 nm with 

the CA15-3 receptor, as indicated by the RDF results, 
highlighting this region as the most frequently occupied. 
In the AFP/LEVO model, the highest peak was observed 
around 1.6 nm, while in CEA/LEVO, a dominant and broad 
peak occurred in the range of 1-3 nm. These peaks and 
regions serve as clear evidence of the interaction between 
the ligand and the protein. To quantify these interactions, 
interaction energies between protein and ligand 
molecules were calculated, and the results are provided in 
Table 6. 

Table 6. Total short range interaction energies and their 
contributions. 

Energy, kJ/mol AFP/LEVO CA15-3/LEVO CEA/LEVO 

Coulombic  -78.13 -25.26 -23.17 

Lenard-Jones -113.91 -110 -65.39 

 
Upon examining the results in Table 6, it can be 

asserted that the LJ parameter, and thus van der Waals 
interactions, are more effective. Regarding electrostatic 
interactions, the contribution is -78.13 kJ/mol in 
AFP/LEVO complex. In molecular docking results, 
however, CEA/LEVO exhibits the lowest total interaction 
energy. This observation may suggest that one of the 
influential parameters here is the hydrogen bonding.  

Molecular docking and dynamics investigations were 
performed in this study, and the results showed that LEVO 
has a high affinity in low concentrations for binding to 
CEA, CA15-3, and AFP, which are all tumor markers. In 
particular, the MD results demonstrated that the 
LEVO/AFP complex exhibited a significant degree of 
stability while being simulated for fifty nanoseconds. As a 
result, we propose that the thyroid medicine LEVO 
interacts with AFP, which may result in a change in the 
amount of AFP that is present in the blood serum. The 
molecular structure of the protein will almost certainly 
undergo a change, whether it is in a single form or 
contained within a complex. That being the case, it is quite 
possible that the complex form of AFP is not detectable in 
blood serum. As a consequence of this, the amount of AFP 
that is present in the serum can appear to be quite low, 
which might lead to inaccurate findings. 

 

Conclusion 
 
In this study, molecular docking and dynamic studies 

have revealed the interactions of levothyroxine used in 
thyroid disfunction with tumor markers of CEA, CA 15-3, 
and AFP. Other than H-bond and van der Waals 

interactions, hydrophobic and -cation interactions were 
also found to contribute this interaction. According to the 
results of MD simulations, the stability of levothyroxine to 
AFP is quite remarkable. As a result of the interaction 
between tumor markers and drugs, molecular changes 
may complicate the detection of these molecules. The 
molecular changes in the structure of AFP in the 
AFP/levothyroxine complex quite possibly decrease the 
detection of serum AFP levels. Levothyroxine’s interaction 
with CEA, CA 15-3, and especially with AFP molecules at 
low concentrations suggests that it may produce 
erroneous results in cancer patients undergoing diagnosis 
and treatment. The limitations of the study is that we only 
performed in silico analysis to show the binding of 
levothyroxine to the studied tumor markers. Experimental 
studies are necessary to validate the findings of the study, 
particularly those examining the effect of levothyroxine 
on the serum concentrations of CEA, CA 15-3, and AFP. 
Moreover, although this research hypothesizes a 
potential reduction in serum AFP levels due to 
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levothyroxine, this conclusion is exclusively derived from 
computational analyses. Therefore, experimental 
corroboration, including techniques like ELISA and 
immunological assays, is essential to ascertain its clinical 
relevance. As a consequence of this study, the amount of 
AFP that is present in the serum could appear to be quite 
low, which might lead to inaccurate findings. The 
misleading results of serum AFP levels in patients under 
diagnosis and cancer follow-up treatment could result in 
devastating outcomes. 
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