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Today, drug discovery and design, the determination of molecular properties, in particular the determination of 
a molecule's pKa value, is essential for understanding and optimising the biological activity of drugs. In this 
context, in addition to traditional chemical methods, artificial intelligence techniques such as machine learning 
and deep learning are increasingly used to predict molecular properties and drug design processes. In this paper, 
we present an approach that investigates the effect of molecular properties on pKa prediction and implements 
this prediction using a deep learning model. The model considers molecular weight together with chemical 
fingerprinting methods such as Morgan fingerprinting to represent molecular structures. The dataset used in 
this study contains 2093 molecular data points obtained from PubChem. The method presented in the paper 
predicts the pKa values of many molecules with 96.66% accuracy. This can save time and money in the drug 
discovery, design process, and provide valuable guidance for experimental studies. The paper also presents a 
comprehensive analysis of the training process, accuracy metrics and performance of the deep learning model. 
Finally, this paper presents research that evaluates the impact of molecular features on pKa prediction and 
demonstrates the success of the deep learning model in these predictions. 
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Introduction 
 

The pKa values of molecules determine many 
important properties such as the direction and rate of 
chemical reactions, solubility, biological activity and 
environmental behaviour. The determination of pKa 
values by conventional methods requires laboratory 
experiments. Therefore, rapid and accurate estimation of 
pKa values is of great importance in chemistry and 
biochemistry. 

In recent years, the application of artificial intelligence 
and machine learning techniques to chemistry has led to 
significant advances in the prediction of molecular 
properties. These techniques can model complex 
properties of molecular structures by learning from large 
data sets and predict them with high accuracy. In 
particular, deep learning models have the potential to 
make successful predictions by processing the structural 
information of molecules. 

In this study, a deep learning model was developed to 
predict the pKa values of molecules using Simplified 
Molecular Input Line Entry System(SMILES) codes. SMILES 
is a common notation system that represents the 
structures of molecules in text format and is widely used 
in chemical information processing. The model developed 
uses Morgan fingerprinting to represent molecular 
structures, taking into account molecular weight.  

This paper details the steps taken to develop the 
model, the data sets used, the training and validation 
processes, and the performance analyses of the model. 

 
 

Related Works 
Estimating the pKa of molecules is a topic that has long 

been studied in chemistry and biochemistry. Traditionally, 
pKa values are determined by laboratory methods such as 
titration experiments. These methods provide high 
accuracy but are time consuming and costly. Therefore, in 
recent years there has been a great deal of interest in 
computational estimation methods. 

Quantum chemistry and molecular dynamics 
approaches 

Quantum chemical calculations and molecular 
dynamics simulations attempt to predict pKa values by 
calculating molecular structures and energy levels. Gao et 
al (2009) successfully predicted the pKa values of several 
organic molecules using quantum mechanical and 
molecular mechanical (QM/MM) approaches [1]. Ho and 
Coote studied the prediction of acidity in the gas and 
solution phases from the first principles [2]. Cramer and 
Truhlar developed methods for transition metal chemistry 
using density functional theory [3]. 

Machine learning approaches 
Machine learning techniques, especially deep learning 

models, have revolutionised the prediction of molecular 
properties. Xu et al. predicted pKa values on a large 
dataset using machine learning algorithms and achieved 
high accuracy [4]. Wang et al. improved the accuracy of 
pKa predictions by combining deep learning models and 
chemical fingerprinting methods [5]. Mayr et al. 
investigated toxicity prediction using deep learning and 
developed a model called DeepTox [6]. Ramsundar et al. 
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presented a comprehensive review of the use of deep 
learning in life sciences [7]. Feinberg et al. achieved 
significant success in molecular feature prediction using a 
model called PotentialNet [8]. Gilmer et al. developed 
highly accurate models for quantum chemistry using 
neural message passing techniques [9]. Wu et al. 
evaluated molecular machine learning models using a 
benchmark called MoleculeNet [10]. Rupp et al. quickly 
and accurately modelled molecular atomisation energies 
using machine learning [11]. Faber et al. showed that 
molecular machine learning models have lower prediction 
errors than hybrid DFT errors [12]. Schütt et al. developed 
a convolutional neural network with a continuous filter 
called SchNet for modelling quantum interactions [13]. De 
Cao and Kipf introduced a generative model called 
MolGAN for small molecular graphs [14]. Kearnes et al. 
managed to go beyond fingerprints using molecular graph 
convolutions [15]. Winter et al. learned continuous and 
data-driven molecular descriptors by transforming 
equivalent chemical representations [16]. Altae-Tran et al. 
used one-shot learning techniques for low-data drug 
discovery [17]. Ragoza et al. achieved significant success 
in protein-ligand scoring using convolutional neural 
networks [18]. 

SMILES and chemical fingerprinting methods 
SMILES codes are a common notation system that 

represents the structures of molecules in a compact and 
understandable form. Chemical fingerprinting methods 
are widely used to numerically represent the structural 
properties of molecules. Rogers and Hahn provided a 
detailed encoding of molecular structures using the 
Morgan fingerprinting method and showed that this 
method provides important input for machine learning 
models [19].  

In this study, a deep learning model was developed to 
predict the pKa values of molecules using SMILES codes 
and chemical fingerprinting methods. The developed 
model aims to increase the accuracy of pKa predictions by 
taking into account traditional molecular properties. 
Considering previous studies in the literature, it seems 
that this approach provides a significant improvement in 
pKa predictions and can be a valuable tool for chemical 
research. 

 

Materials and Methods 
 

Data Collection  
The data used in this study were obtained from the 

PubChem database. PubChem is an open-access resource 
providing comprehensive information on chemical 
compounds, biomolecules and biological activities. The 
PubChempy library developed for this purpose was used.  

 

SMILES and its Implementation  
SMILES is a naming system designed to represent the 

structure of chemical molecules in text format. This 
representation consists of a sequence of characters 
without spaces.  SMILES has found wide application in 
chemical information processing by expressing the atomic 

and bonding structures of molecules in human-readable 
and writable strings. The SMILES format is widely used in 
chemical databases due to its ability to efficiently encode 
both simple and complex molecules. This convenience of 
SMILES allows chemical data to be efficiently stored, 
searched and compared [20]. Furthermore, the flexibility 
and ease of use of the SMILES format have  led to its 
preference in many chemical data processing software 
and databases [21]. These features make SMILES an 
important tool in the field of chemical information 
systems.   

Table 1 compares the the International Union of Pure 
and Applied Chemistry (IUPAC) names of various 
molecules with their SMILES representations. For 
example, the SMILES representation of the water 
molecule called 'oxidane' is 'O'. The more complex 
molecule 6-(hydroxymethyl)oxane-2,3,4,5-tetrol is 
represented as 'C(C1C(C(C(C(O1)O)O)O)O)O)O'. This table 
clearly demonstrates the ability of the SMILES format to 
represent both simple and complex molecules. 

 

Table 1. IUPAC names of molecules, SMILES 
representations 

IUPAC Names SMILES Representations 

Oxidane O 
Ethanol CCO 
Acetic acid CC(=O)O 
Benzene c1ccccc1 
6-(hydroxymethyl)oxane-
2,3,4,5-tetrol 

C(C1C(C(C(C(O1)O)O)O)O)O 

2-acetyloxybenzoic acid CC(=O)Oc1ccccc1C(=O)O 
Metan C 
Propan CCC 

 
Chemical Fingerprinting Methods 
The Morgan Fingerprint is a molecular descriptor 

widely used in chemoinformatics. It represents the 
structural properties of molecules in a numerical format 
that is ideal for comparing molecular similarities and 
predicting molecular properties in machine learning 
models. Morgan FingerPrint takes into account the 
chemical environment within a certain radius from the 
atoms of the molecules and encodes this environment as 
a unique bit sequence. This method, commonly known as 
Extended-Connectivity FingerPrints(ECFP), captures the 
topological properties of molecules, effectively 
representing the environmental information of chemical 
bonds and atoms. For example, the Morgan fingerprint of 
a molecule is calculated based on the chemical bonding 
pattern of atoms within a given radius, and this 
information is uniquely encoded in a bit string. In this way, 
Morgan fingerprints can be used quickly and efficiently for 
molecular similarity searches in large chemical databases 
and for predicting associated biological activities. 

Table 2 compares the representation of several 
molecules in the SMILES format with the 64-bit Morgan 
FingerPrint representation of these molecules. The table 
shows how Morgan FingerPrint encodes chemical 
structures into a numerical format and captures the 
topological properties of molecules. Örneğin, 



Cumhuriyet Sci. J., 46(2) (2025) 233-239 

235 

'OC=1(N(N=C(C=1)C2(=CC=CC=C2))C)' The molecule 
represented by the SMILES notation is encoded as a bit 
string in the Morgan FingerPrint format 
'101001001000000001001010100000011100100110011
0010011010001100000'. This table helps to understand 
the use of Morgan FingerPrint for calculating molecular 
similarities and for fast searching in chemical databases. 

 

Table 2. SMILES and 64-bit Morgan FingerPrint 
Representations of Molecules 

SMILES Demonstration 64-bit Morgan FingerPrint 

OC=1(N(N=C(C=1)C2(=CC=
CC=C2))C) 

10100100100000000100101
01000000111001001100110
010011010001100000 

S(=O)(=O)(NC1(=NC(=CC=N
1)C))C2(=CC=C(N)C=C2) 

10011000011110001101011
00001001001001000000010
100101001010100001 

ON=C1(C(=NO)CCCCC1) 
00111000001000000010010
10000001000001001100010
000000001000000000 

O=[N+]([O])C1(=CC(=CC=C1
)[CH][N+]3(=CC=C(C(=O)CC
2(=CC=CC=C2))C=C3)) 

10010110001100111110101
01010011000101001011101
110100000100100100 

O=C(O)C=1(OC=2(C=CC=CC
=2(C=1OC))) 

10001100111001001100011
00010001001001101100001
011000000100000101 

 
Deep Learning Model  
Deep learning, a subset of machine learning, is a 

technique that uses artificial neural networks to learn and 
make decisions from data. When supported by large data 
sets and high computing power, this method is capable of 
solving complex problems and achieving high accuracy 
rates. Deep learning models use artificial neural networks 
consisting of many layers and learn complex relationships 
in the data through these layers [22]. 

The basic building block of deep learning is the artificial 
neural network. Artificial neural networks are inspired by 
biological neural networks and consist of interconnected 
artificial neurons (Fig. 1). Each neuron receives inputs 
multiplied by a given weight, processes them through an 
activation function, and produces an output. The network 
is organised in layers; the input layer receives the data, 
hidden layers process the data and the output layer 
produces the final prediction or classification result. This 
multi-layer structure forms 'deep' neural networks, and 
deeper networks are generally capable of learning more 
complex and abstract features [23]. 
 

  
Figure 1. Schematic representation of Deep Learning 

 
Deep learning models are trained on large datasets. 

The training process involves optimising the parameters 
(weights) of the model. This is done by minimising the 
difference (loss) between the model's predicted values 
and the actual values. Optimisation algorithms such as 
Stochastic Gradient Descent (SGD) or Adam are used to 
minimise this loss [24]. In each training cycle, the model 
learns from the data and updates its parameters. 

Deep learning becomes more effective as the amount 
of data and computing power increases. Today, thanks to 
GPUs and specialised hardware (e.g. TPUs), deep learning 
models can be trained quickly and efficiently on large 
datasets [25]. The development of this technology is 
enabling artificial intelligence to achieve results close to or 
better than human performance in several areas. 

 

 Metrics Used 
Mean Absolute Error (MAE) is a performance metric 

that measures the average absolute difference between a 
model's predicted and actual values. The MAE is used to 
assess the accuracy of predictions and is calculated as 
follows: 
 

𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (1) 

 
In Eq.1, �̂�𝑖 is the predicted value, 𝑦𝑖 is the true value 

and  𝑛 is the total number of data points. The MAE shows 
the average error of the model's predictions and is easy to 
interpret. Low MAE values indicate that the model is 
predicting with high accuracy. 

Mean Squared Error (MSE) is a performance metric 
that measures the average of the squares of the 
differences between a model's predicted and actual 
values. The MSE is used to assess the amount of error in 
the model's predictions and the magnitude of these errors 
and is calculated as follows: 
 

𝑀𝑆𝐸 =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (2) 

 
In Eq.2, �̂�𝑖 is the predicted value, 𝑦𝑖 is the true value 

and 𝑛 is the total number of data points. The MSE squares 
and magnifies errors, so that large errors are penalised 
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more. Low MSE values indicate that the model is 
predicting with high accuracy. 

 

 Software and Algorithm 
Computations were performed on an Intel 8700 

processor computer running Ubuntu 24.04 LTS Linux with 
kernel version 5.4.0-12.15-generic. All computations were 
performed using Python 3.12.4, Scikit-learn 1.4.2, 
Tensorflow 2.17.0 and Keras 3.4.1. A schematic 
representation of the developed software is shown in 
Figure 2. 
 

  
Figure 2. Schematic representation of algorithm 

 
Analysis and Results 

 
In machine learning, all data features must be on the 

same scale [26]. Differences between the original features 
in the dataset can cause problems for many machine 
learning models. Variables measured at different scales do 
not contribute equally to the model fit and learning 
function, which can lead to biased results. For example, if 
a feature in the dataset is numerically large, it will become 
dominant. To avoid this, I scale the data using 
standardisation or z-score normalisation. To do this, I use 
the StandardScaler function in the Sklearn.Preprocessing 
library in Python. StandardScaler sets the mean of each 
column in the data set to 0 and the standard deviation to 
1. 

To evaluate the performance of the model during the 
classification process, 30% of the dataset was randomly 
selected as test data. The remaining 70% was used to train 
the model. This split of the dataset allows a more general 
and reliable evaluation of the model's performance. This 
was done using the 'train_test_split' function in the 
‘sklearn.model_selection’ library in the Python 
programming language. This function allows the model to 
be accurately evaluated on both training and test data, 
while randomly splitting the data set. In this way, the 
overall validity and generalisability of the model is tested. 

In order to prevent overfitting during the development 
of the model, the “Dropout” technique was applied to 
each hidden layer. This technique increases the 
generalisation capability of the model and reduces the risk 
of overfitting by randomly disabling neurons at certain 
rates during the learning process of the model[27-28]. In 
this study, 30% of the neurons were randomly disabled for 
each hidden layer. 

In the optimisation process, the Adaptive Moment 
Estimation (Adam) algorithm was used, which is widely 
preferred and provides effective results[29]. By adapting 
the learning rate for each parameter separately, Adam 
provides successful results, especially in deep learning 
models[30]. The deep learning model was trained for a 
total of 750 epochs; this number of epochs was chosen to 
allow the model to learn and generalise sufficiently. MAE 
and MSE functions were used to evaluate and optimise 
the performance of the model. In understanding the error 
distribution, MAE treats all errors equally, while MSE 
penalises large errors more. Using these two metrics 
together, one can evaluate both the overall error size 
(MAE) and the sensitivity of the model to large errors 
(MSE). In performance balancing, using MAE and MSE 
together ensures that the model performs well against 
both small and large errors. For example, if a model avoids 
making very large errors, this may result in a large 
improvement in MSE, but not necessarily the same 
improvement in MAE. A low MAE and MSE function is an 
indication that the model is being better optimised by 
making accurate predictions. Therefore, minimising the 
loss function during the training process is critical to the 
overall performance of the model. 

The model created in this study consists of 5 layers in 
total. These consist of 1 input, 1 output and 3 hidden 
layers. The structure used 128 input neurons and a hidden 
layer of 256 neurons. The rectified linear unit (ReLU) 
function was preferred as the activation function of the 
input and hidden layers.  A linear function was used to 
activate the output layer. The output layer of the pKa 
prediction system was configured as 1 neuron. 

 
Table 3. Performance Metrics across Different Hidden 

Layers and Epochs 

HL Epoch MAE MSE Accuracy 

1 100 0.0317 0.0092 0.8559 

1 250 0.0229 0.0092 0.7889 

1 500 0.0187 0.0093 0.7978 

1 750 0.0179 0.0092 0.748 

1 1000 0.0179 0.0094 0.7684 

2 100 0.0394 0.0099 0.9508 

2 250 0.0239 0.0086 0.9611 

2 500 0.0175 0.0081 0.9303 

2 750 0.0177 0.008 0.9413 

2 1000 0.0177 0.0082 0.9549 

3 100 0.0353 0.009 0.9598 

3 250 0.021 0.0079 0.9545 

3 500 0.0172 0.0076 0.9659 

3 750 0.0166 0.0076 0.9666 

3 1000 0.0178 0.0079 0.9666 

 
The main objective in choosing the different hidden 

layer configurations listed in Table 3 is to balance the 
complexity of the model with the overall accuracy. 
Increasing the number of hidden layers allows the model 
to learn more parameters and better represent complex 
relationships in the dataset, while at the same time it may 
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increase the risk of overfitting. Although fewer hidden 
layers allow the model to learn faster and have a higher 
generalisation capacity, the accuracy level may be lower 
for more complex data. The experiments conducted in the 
study showed that the model with three hidden layers 
gave the best results in terms of both accuracy and error 
rates. For example, this structure showed the highest 
performance with an accuracy of 96.66% between 750 
and 1000 epochs, while at the same time increasing the 
capacity to learn complex relationships with low error 
rates (MAE and MSE). After 750 epochs, the performance 
stabilised, indicating the optimal learning limit for this 
structure and avoiding the risks of adding more layers. 
These results show that deep structures offer better 
generalisation capacity in pKa estimation and allow for a 
balanced optimisation of small and large errors. These 
results are more clearly visualised in Figures 3, 4 and 5. 
 

  
Figure 3. MAE Results: Change with Number of Layers and 

Epoch 

 
Figure 3 shows the (MAE) performance of the model 

for different number of layers and epoch values. In this 
figure, the sensitivity of the MAE, which reflects the 
average magnitude of the model's prediction errors, to 
the model's configuration parameters is examined. It is 
clear from the figure that adding more hidden layers 
generally leads to lower MAE values.  In particular, the 
three-layer model provided the lowest MAE values at all 
epoch values, indicating that the model can make more 
accurate predictions with a deeper structure. This 
indicates the capacity of deep learning models to learn 
more complex relationships in the data. With the increase 
in the number of epochs, a significant decrease in MAE 
values was observed at first. However, after 750 epochs, 
the improvement in MAE values came to a halt and 
fluctuations occurred from time to time. This trend 
indicates that the learning reaches a saturation point 
when the model is trained further and additional training 
processes do not significantly reduce the error. 
Furthermore, no signs of overlearning were observed up 
to 1000 epochs, indicating that the generalization capacity 
of the model is high. 

  
Figure 4. MSE Results: Change with Number of Layers and 

Epoch 

 
Figure 4. shows the mean square error (MSE) 

performance of the model for different number of layers 

and epoch values. This graph examines the sensitivity of 

the model to the squared prediction errors and its 

dependence on the reconstruction parameters. It is 

observed that there is a significant decrease in the MSE 

values with increasing number of layers. In particular, the 

three-layer model provides the lowest MSE values at all 

epoch levels, proving that prediction accuracy improves 

with more complex structures. While the MSE initially 

decreases rapidly with the increase in the number of 

epochs, this decrease slows down after approximately 750 

epochs and the values start to stabilize. This suggests that 

the model reaches a saturation point during the training 

process and the performance does not improve 

significantly with additional training. Furthermore, the 

absence of signs of overlearning up to 1000 epochs 

demonstrates the robustness of both the generalization 

ability and the learning process of the model. 

Figure 3 and Figure 4 show an overall improvement in 
both MAE and MSE values as the number of layers 
increases, indicating that deeper models provide better 
learning. With a single layer structure, the model achieves 
76.84% accuracy and 0.00179 MAE in 1000 epochs with 
0.00178 MAE. Furthermore, the MSE  values ranged from 
0.00076 to 0.00094, indicating that the overall 
performance of the model is high. 

Although increasing the number of epochs will initially 

improve performance, the improvement will plateau or 

slightly deteriorate in the 750-1000 epoch range. The 

epoch value is not increased further as the model may 

overfit after a certain point with more training. The 

agreement between MSE and MAE shows that the model 

improves similarly for small and large errors. 
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Figure 5. Accuracy Results: Comparison of Model 

Performance 

 
Figure 5. shows that the three-layer model performs 

best in the range of 750-1000 epochs and reaches 96.66% 
accuracy in pKa predictions. This proves that the model 
can be successfully trained and predicted with both low 
error rates (MAE and MSE) and high accuracy. The 
superior performance of the three-layer model points to 
the capacity of deep learning models to learn complex 
relationships. A deeper structure allowed the model to 
learn the fine details in the data, producing more 
consistent and accurate results. In particular, both MAE 
and MSE values are low, indicating that the model 
improves small and large prediction errors similarly. It is 
observed that increasing the number of epochs initially 
improves the performance, but the improvement slows 
down after 750 epochs and stabilizes up to 1000 epochs. 
This suggests that the model reaches a saturation point at 
this point and additional training runs do not significantly 
reduce the error rates. Furthermore, the absence of signs 
of overfitting (overlearning) in the model proves that the 
model has a good generalization capacity in general and 
that this configuration is a reliable forecasting tool. 

   

Conclusions 
 
This study has shown that molecular pKa values can be 

predicted with high accuracy using a deep learning model. 
The model was trained on a dataset of 2093 molecules 
and achieved a prediction accuracy of 96.66%. The results 
show that deep learning methods are an effective tool for 
predicting chemical properties. In particular, careful 
selection and modelling of molecular features play a 
critical role in improving the accuracy of pKa predictions. 

The results of the study can contribute to a wide range 
of practical applications in chemistry and biochemistry. 
For example, in the drug discovery and design process, 
rapid and accurate estimation of pKa values can be an 
important step in optimising the biological activities of 
new drug molecules. These methods can also be used in 
environmental chemistry to model processes such as the 
dispersion and biodegradability of pollutants. 

For future studies, the effect of different combinations 
of molecular features on deep learning models can be 
investigated in more detail. In addition, the generalisation 
ability of the model can be tested and improved by using 
larger and more diverse data sets. Such improvements can 
increase the usability of the model not only in academic 
research, but also in industrial applications. 
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