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Kinetics of the mixed spin (1, 3/2) Ising ferrimagnetic system on the two interpenetrating square lattices with 
the bilinear and crystal-field interactions under an oscillating magnetic field were investigated by using the path 
probability method (PPM). We examined time variations in average dynamic magnetizations and obtained 
phases and then we investigated the thermal behaviors of dynamic magnetizations to determine the nature of 
the dynamic phase transitions and find their temperature values. We also constructed the dynamic phase 
diagrams in (𝑑, 𝑇) and (ℎ0, 𝑇) planes. Dynamic phase diagrams display the paramagnetic (p), ferrimagnetic (i), 
and mixed phases (i+p), and one dynamic tricritical point and dynamic double critical endpoints.  We found that 
the PPM is a more convenient method to investigate the kinetics and dynamics behaviors of ferrimagnetism. 
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Introduction 
 

The usage areas of molecular-based magnetic 
materials in today's technology are increasing. Therefore, 
both theoretical and experimental studies on 
understanding the magnetic properties of these materials 
have increased and will continue to increase. Since it is 
essential to understand the equilibrium and 
nonequilibrium phase behaviors of these materials, many 
different theoretical models and methods have been 
developed in this context, the different Ising spin systems 
being the origin of most of them, and it has been observed 
that mixed spin systems give better results than the pure 
spin system. The mixed spin (1, 3/2) Ising system is one of 
the most practical prototype system to investigate 
molecular-based magnetic materials, such as  
[NiCr2(bipy)2(𝐶2𝑂4)4(𝐻2𝑂)]𝐻2𝑂 [1], Fe4𝑁 [2], and 
[Co(hfac)2]BNO

∗ [3]. Moreover, the system also gives 
interesting hysteresis loop behavior and rich equilibrium 
and nonequilibrium critical phenomena. Equilibrium 
behaviors of the system were studied by using the mean-
field theory, the effective-field theory, the 
renormalization group theory, Green's function 
technique, Monte Carlo simulations, etc., (see [4-8] and 
references therein). The system was also used to 
investigate nanomaterials’ thermal and magnetic 
properties, such as nanowires, nanotubes, and 
nanoislands [9-12]. 

On the other hand, less work was performed on the 
dynamic behaviors of the system. Keskin and co-workers 
conducted one of the earlier works [13, 14]. They 
determined the dynamic phase transition [13] and 
dynamic compensation temperatures using the dynamic 

mean field approximation (DMFA) and presented the 
dynamic phase diagrams [14]. The dynamic magnetic 
properties of the Fe4𝑁 compound structure were 
investigated by Kantar and Ertaş [2] using the DMFA, and 
by Shi and Qi [15] using the dynamic effective field theory 
(DEFT). Also, Ertaş and Keskin [16] investigated the 
dynamic hysteresis and dynamic compensation 
temperatures of the system using the DEFT. The dynamic 
magnetic behavior of double-walled nanotubes was 
investigated by Benhouria et al., using the dynamic Monte 
Carlo simulations (DMCs) [18]. The path probability 
method (PPM) [27] used in the present paper has been 
very popular in Ising-like systems in recent years. While 
other methods include only one rate constant, the PPM 
includes two rate constants, one of which (𝑘2) 
corresponds to the wheel speed in the melt spinning 
technique in the rapid solidification process. (2) Even in 
the simplest use of the Hamiltonian, the order parameters 
become coupled. (3) The derivation of the dynamic 
equations is easier and more systematic than the other 
methods. Therefore, the application area of this method 
is quite wide. With the motivation of this information, 
Gençaslan and co-workers used the PPM to various mixed 
spin Ising ferrimagnetic systems (IFSs) in the presence of 
an oscillating magnetic field applied on different crystal 
fields to investigate the dynamic magnetic properties of 
molecular-based magnetic materials, namely dynamic 
hysteresis loops behaviors [19-24] and the dynamic phase 
diagrams (DPDs) [24-30]. They reported some interesting 
and rich dynamic phase diagram behaviors and dynamic 
hysteresis loop behaviors. 

http://csj.cumhuriyet.edu.tr/tr/
https://orcid.org/0000-0002-5726-1733
https://orcid.org/0009-0009-7377-7877


Cumhuriyet Sci. J., 46(1) (2025) 142-151 

143 

In this study, we investigate the dynamic phase 
transition temperatures (DPTs) and DPDs of the mixed 
spin (1, 3/2) IFS with the bilinear (J) and crystal field 
interactions (D) under a time-varying magnetic field 
(sinusoidal) by using the PPM. Moreover, we give the time 
variations of average dynamic magnetizations for 
different system parameters. After Section 2, where the 
model and derivations of dynamic equations are 
presented, the results and discussion are given in Section 
3. Finally, concluding remarks are presented in Section 4. 

 

Model and Derivation of Dynamic Equations 
 
As depicted in Fig. 1, the mixed spin-1 and spin-3/2 IFS 

are defined on two square lattices with interpenetrating 

sublattices A and B. Sublattice A have spin values𝜎𝑖
𝐴 =

±1,0, sublattice B have spin values 𝑆𝑗
𝐵 = ±

3

2,±
1

2

.  

 

Figure 1. (Color online) The schematic representation of 
the two interpenetrating square lattices. The lattice is 
filled by 𝜎𝑖  (solid blue circles) and 𝑆𝑗  (solid red circles) 

spins. 𝐽 is the exchange couplings between the 
nearest-neighbor pairs of spins 𝜎𝑖 − 𝑆𝑗. 

 
Hamiltonian of the system with bilinear (J) nearest-

neighbor pair interaction and a crystal field interaction 
(D), under the presence of a sinusoidal magnetic field is 
written as 

ℋ = −𝐽∑ 𝜎𝑖
𝐴

(𝑖,𝑗) 𝑆𝑗
𝐵 + 𝐷∑ [(3𝜎𝑖

𝐴
𝑖 )2 − 2] +

𝐷∑ [(𝑆𝑗
𝐵)2 −

5

4
]𝑗 −𝐻(∑ 𝜎𝑖

𝐴
𝑖 +∑ 𝑆𝑗

𝐵
𝑗 )   (1)  

        
where < 𝑖, 𝑗 > on the sublattices imply a summing of all 
nearest-neighboring sites. 𝐻is a sinusoidal magnetic field 
with amplitude 𝐻0 and the angular frequency 𝜔 = 2𝜋𝜈, 
thus 𝐻 = 𝐻0cos(ωt). 

 
The system has the following five order parameters: 

(1) The average magnetization or the dipole 

moment𝑚𝐴 =< 𝜎𝑖
𝐴 >, (2) the quadrupole moment, 𝑞𝐴 =

3 < (𝜎𝑖
𝐴)2 > −2, for A sublattice and (3) The dipole 

moment or average magnetization 𝑚𝐵 =< 𝑆𝑗
𝐵 >,  (4) the 

quadrupole moment, 𝑞𝐵 =< (𝑆𝑗
𝐵)2 > −

5

4
 , and (5) the 

octupole moment,  𝑟𝐵 =
5

3
< (𝑆𝑗

𝐵)
3
>  −

41

12
< 𝑆𝑗

𝐵 >, for 

B sublattice. 
 
Since the formulation is given and discussed in Refs. 

[23, 24] in detail, we will briefly summarize it here. At this 
stage, the set of coupling average dynamic equations for 
order parameters can be obtained by using Eqs. (2)-(7) in 
Ref. [23] as 

 
 
 
 
 
 
 

𝛺
𝑑𝑚𝐴

𝑑𝜉
= {[

1

2
(𝑠𝑖𝑛ℎ( 2𝑏) − 𝑐𝑜𝑠ℎ( 2𝑏))𝑘1 + (𝑠𝑖𝑛ℎ( 𝑎 − 𝑏) − 𝑐𝑜𝑠ℎ( 𝑎 − 𝑏) − 𝑠𝑖𝑛ℎ( 𝑎 + 𝑏) 

−𝑐𝑜𝑠ℎ( 𝑎 + 𝑏))𝑘2 +
1

2
(𝑠𝑖𝑛ℎ( 2𝑏) − 𝑐𝑜𝑠ℎ( 2𝑏))𝑘3]𝑚

𝐴 

+
1

6
[(𝑠𝑖𝑛ℎ( 2𝑏) − 𝑐𝑜𝑠ℎ( 2𝑏) − 2 𝑐𝑜𝑠ℎ( 𝑎 + 𝑏) − 2 𝑠𝑖𝑛ℎ( 𝑎 + 𝑏))𝑘1 + 2(𝑠𝑖𝑛ℎ( 𝑎 + 𝑏) 

+𝑐𝑜𝑠ℎ( 𝑎 + 𝑏) + 𝑠𝑖𝑛ℎ( 𝑎 − 𝑏) − 𝑐𝑜𝑠ℎ( 𝑎 − 𝑏))𝑘2 + (𝑐𝑜𝑠ℎ( 2𝑏) − 𝑠𝑖𝑛ℎ( 2𝑏)     (2) 

+2 𝑐𝑜𝑠ℎ( 𝑎 − 𝑏) − 2 𝑠𝑖𝑛ℎ( 𝑎 − 𝑏))𝑘3]𝑞
𝐴 

+(
1

3
𝑘1 +

2

3
𝑘2) 𝑐𝑜𝑠ℎ( 𝑎 + 𝑏) + (

1

3
𝑘1 +

2

3
𝑘2) 𝑠𝑖𝑛ℎ( 𝑎 + 𝑏) − (

2

3
𝑘2 +

1

3
𝑘3) 𝑐𝑜𝑠ℎ( 𝑎 − 𝑏) 

+(
2

3
𝑘2 +

2

3
𝑘3) 𝑠𝑖𝑛ℎ( 𝑎 − 𝑏) − (

1

3
𝑘1 +

1

3
𝑘3) 𝑐𝑜𝑠ℎ( 2𝑏) + (

1

3
𝑘1 −

1

3
𝑘3) 𝑠𝑖𝑛ℎ( 2𝑏)}/[𝑘𝑒

𝑏(𝑐𝑜𝑠ℎ( 𝑎) + 𝑒−3𝑏)],                                        

 

𝛺
𝑑𝑞𝐴

𝑑𝜉
= {

3

2
[(𝑠𝑖𝑛ℎ( 2𝑏) − 𝑐𝑜𝑠ℎ( 2𝑏))𝑘1 + (𝑐𝑜𝑠ℎ( 2𝑏) − 𝑠𝑖𝑛ℎ( 2𝑏))𝑘3]𝑚

𝐴 

+[
1

2
(𝑠𝑖𝑛ℎ( 2𝑏) − 𝑐𝑜𝑠ℎ( 2𝑏) − 2 𝑐𝑜𝑠ℎ( 𝑎 + 𝑏) − 2 𝑠𝑖𝑛ℎ( 𝑎 + 𝑏))𝑘1 

+(
1

2
(𝑠𝑖𝑛ℎ( 2𝑏) − 𝑐𝑜𝑠ℎ( 2𝑏) − 2 𝑐𝑜𝑠ℎ( 𝑎 − 𝑏) + 2 𝑠𝑖𝑛ℎ( 𝑎 − 𝑏))𝑘3]𝑞

𝐴         (3) 

+𝑘1(𝑐𝑜𝑠ℎ( 𝑎 + 𝑏) + 𝑐𝑜𝑠ℎ( 𝑎 + 𝑏)) + 𝑘3(𝑐𝑜𝑠ℎ( 𝑎 − 𝑏) − 𝑠𝑖𝑛ℎ( 𝑎 − 𝑏) 

+(𝑘1 + 𝑘3) 𝑠𝑖𝑛ℎ( 2𝑏) − (𝑘1 + 𝑘3) 𝑐𝑜𝑠( 2𝑏)}/[𝑘𝑒
𝑏(𝑐𝑜𝑠ℎ( 𝑎) + 𝑒−3𝑏)] 
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and      

 

𝛺
𝑑𝑚𝐵

𝑑𝜉
= {−

1

5
[(2√𝑘1𝑘2 + 9𝑘2 − 𝑘1) 𝑐𝑜𝑠ℎ( 𝑎)𝑒

𝑐 − (6√𝑘1𝑘2 + 𝑘2 + 3𝑘1) 𝑐𝑜𝑠ℎ( 𝑏)𝑒
−𝑐]𝑚𝐵 

+
1

2
[(2√𝑘1𝑘2 − 𝑘2 − 𝑘1) 𝑠𝑖𝑛ℎ( 𝑏)𝑒

−𝑐 − (2√𝑘1𝑘2 − 3𝑘2 + 𝑘1) 𝑠𝑖𝑛ℎ( 𝑎)]𝑒
𝑐]𝑞𝐵        (4) 

+
1

5
[(2√𝑘1𝑘2 − 3𝑘2 + 𝑘1) 𝑐𝑜𝑠ℎ( 𝑏)𝑒

−𝑐 − 3(2√𝑘1𝑘2 − 𝑘2 − 𝑘1) 𝑐𝑜𝑠ℎ( 𝑎)𝑒
𝑐]𝑟𝐵  

+
1

2
[(2√𝑘1𝑘2 + 𝑘2 − 𝑘1) 𝑠𝑖𝑛ℎ( 𝑏)𝑒

−𝑐 + (2√𝑘1𝑘2 + 3𝑘2 + 𝑘1) 𝑠𝑖𝑛ℎ( 𝑎)𝑒
𝑐]}/2𝑘[𝑐𝑜𝑠ℎ( 𝑎)𝑒𝑐 + 𝑐𝑜𝑠ℎ( 𝑏)𝑒−𝑐],                                            

   

𝛺
𝑑𝑞𝐵

𝑑𝜉
= {

1

5
(√𝑘1𝑘2 − 𝑘1)[6 𝑠𝑖𝑛ℎ( 𝑏)𝑒

−𝑐 − 2 𝑠𝑖𝑛ℎ( 𝑎)𝑒𝑐]𝑚𝐵  

−(√𝑘1𝑘2 + 𝑘1)[𝑐𝑜𝑠ℎ( 𝑎)𝑒
𝑐 + 𝑐𝑜𝑠ℎ( 𝑏)𝑒−𝑐]𝑞𝐵         (5) 

+
2

5
(√𝑘1𝑘2 − 𝑘1)[3 𝑠𝑖𝑛ℎ( 𝑎)𝑒

𝑐 + 𝑠𝑖𝑛ℎ( 𝑏)𝑒−𝑐]𝑟𝐵  

+(√𝑘1𝑘2 + 𝑘1)[𝑐𝑜𝑠ℎ( 𝑎)𝑒
𝑐 − 𝑐𝑜𝑠ℎ( 𝑏)𝑒−𝑐]}/2𝑘[𝑐𝑜𝑠ℎ( 𝑎)𝑒𝑐 + 𝑐𝑜𝑠ℎ( 𝑏)𝑒−𝑐],                                                                                           

𝛺
𝑑𝑟𝐵

𝑑𝜉
= {

1

5
[(√𝑘1𝑘2 − 3𝑘2 + 2𝑘1) 𝑐𝑜𝑠ℎ( 𝑎)𝑒

𝑐 + 3(√𝑘1𝑘2 + 𝑘2 − 2𝑘1) 𝑐𝑜𝑠ℎ( 𝑏)𝑒
−𝑐]𝑚𝐵  

+
1

2
[(√𝑘1𝑘2 + 𝑘2 − 2𝑘1) 𝑠𝑖𝑛ℎ( 𝑎)𝑒

𝑐 − (√𝑘1𝑘2 − 3𝑘2 + 2𝑘1) 𝑠𝑖𝑛ℎ( 𝑏)𝑒
−𝑐]𝑞𝐵     (6) 

−
1

5
[(3√𝑘1𝑘2 + 𝑘2 + 6𝑘1) 𝑐𝑜𝑠ℎ( 𝑎)𝑒

𝑐 − (√𝑘1𝑘2 − 9𝑘2 − 2𝑘1) 𝑐𝑜𝑠ℎ( 𝑏)𝑒
−𝑐]𝑟𝐵  

−
1

2
[(√𝑘1𝑘2 − 𝑘2 − 2𝑘1) 𝑠𝑖𝑛ℎ( 𝑎)𝑒

𝑐 + (√𝑘1𝑘2 + 3𝑘2 + 2𝑘1) 𝑠𝑖𝑛ℎ( 𝑏)𝑒
−𝑐]}/2𝑘[𝑐𝑜𝑠ℎ( 𝑎)𝑒𝑐 + 𝑐𝑜𝑠ℎ( 𝑏)𝑒−𝑐], 

 

where ℎ =
𝐻

𝐽𝑧
, 𝑑 =

𝐷

𝐽𝑧
, 𝑇 = (𝛽𝐽𝑧)−1, 𝑘 =

𝑘1

𝑘2
, 𝑘3 = √𝑘1𝑘2, 

𝜉 = 𝜔𝑡, 𝑧 = 4, and 
𝑎=(𝑚𝐵+ℎ0 𝑐𝑜𝑠 𝜉)

𝑇
, 𝑏 =

𝑑

𝑇
in the Eqs. (2, 3), 

and 𝑎 =
3

2
(𝑚𝐴 + ℎ0 𝑐𝑜𝑠 𝜉)/𝑇 , 𝑏 =

1

2
(𝑚𝐴 + ℎ0 𝑐𝑜𝑠 𝜉)/

𝑇and 𝑐 =
𝑑

𝑇
  in the Eqs. (4-6). It is worth remembering here 

that 𝑘1 and 𝑘2 are the rate constants that emerge as an 
advantage of the PPM. In the PPM, the rate constant 𝑘1 
corresponds to spin particle translation, i.e. the insertion 
or removal of particles across the lattices, and 𝑘2 relates 

to spin particle rotation at a given site, and 𝑘3 corresponds 
to spin translation and rotation at the same time. Using 
the geometric mean, 𝑘3can be expressed in terms of 𝑘1 

and 𝑘2 as 𝑘3 = √𝑘1𝑘2. It is expected that two particles 

cannot be inserted, removed, or rotated at the same time. 
These constants for sublattices A and B are given in Table 
I.  In the present paper, we fixed 𝑘1 = 1.0 in all numerical 
calculations. 

 
Table I. The description of rate constants for the A and B sublattices 

 1 0 -1 

A sublattice 1  𝑘1 𝑘2 

0 𝑘1  𝑘1 

-1 𝑘2 𝑘1  

 

   +3/2 +1/2 -1/2 -3/2 

B sublattice +3/2  𝑘1 𝑘3 𝑘2 

+1/2 𝑘1  𝑘2  

-1/2 𝑘3 𝑘2  𝑘1 

-3/2 𝑘2 𝑘3 𝑘1  

 

 

We numerically solved these equations by combining 
the numerical methods of the Romberg integration with 
the Adams-Moulton predictor-corrector, for a given set of 
system parameters and initial values. The obtained results 
and their discussion will be presented in the next section. 
Since 𝑚𝐴and 𝑚𝐵  determine the dynamic magnetic 
properties of the system, we are only interested in the 
behaviors of 𝑚𝐴and 𝑚𝐵. Moreover, the total 

magnetization is defined as 𝑚𝑇 =
(𝑚𝐴+𝑚𝐵)

2
.  

Time Variations in Average Dynamic 
Magnetizations 

To find phases occurring in the system, we examine 
the stationary solutions of average magnetizations 
(𝑚𝐴and 𝑚𝐵), i.e.,  Eqs. (2) and (4). The stationary solutions 
of Eqs. (2) and (4) are periodic functions of 𝜉 with period 
2π, i.e.,  

𝑚𝐴,𝐵(𝜉 + 2𝜋) = 𝑚𝐴,𝐵(𝜉)                                                         
(7) 
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Furthermore, they can be one of two solutions according 
to whether they have or do not have the following 
condition 

 
𝑚𝐴,𝐵(𝜉 + 𝜋) = −𝑚𝐴,𝐵(𝜉)                                                                    (8)   

                                           
It is one of the solutions that satisfies Eq. (8), which is 

called the symmetrical solution and expresses a 
paramagnetic (p) phase. In this case, 𝑚𝐴and 𝑚𝐵  oscillate 
around zero as seen in Fig. 2(a). The other solution does 
not satisfy Eq. (8), which is called the nonsymmetric 
solution, corresponds to a ferrimagnetic (i) phase. For this 
reason, 𝑚𝐴 oscillates around ± 1 and 𝑚𝐵around ±3/2, as 
exhibited in Fig. 2(b). The i and p phases are fundamental 
phases. We found one mixed phase, i.e., p+i where the p 
and i phases coexist, displayed in Fig. 2(c). We also 
investigated the effect of rate constants on stationary 
solutions of 𝑚𝐴and 𝑚𝐵, and we observed the system 
rapidly relaxes to the p phases while 𝑘2 values increase, as 
seen in Fig. 3. We should mention that since most systems 
have a longer relaxation time for a rotation (𝑘2) than for a 
translation (𝑘1), we took 𝑘2 >𝑘1 in numerical  

calculations. Figs. 2 and 3 exhibit the solutions of 
𝑚𝐴and 𝑚𝐵with different initial values, with the same 
color code. If examined carefully, it is seen that the 
solutions given as Fig. 2(a) and Fig. 3 are independent of 
initial values, while the those given as Figs. 2 (b)-(c) are 
dependent on the initial values. If we look at Fig. 2(a) 
carefully, we see that 𝑚𝐴and 𝑚𝐵oscillate around zero, 
which is understood to represent the paramagnetic phase 
(p). In Fig. 2(b), 𝑚𝐴and 𝑚𝐵oscillate exactly around ±1 and 

±
3

2
, that is, they show the ferrimagnetic (i) phase. The 

mixed or hybrid phase (p + i) behavior, that is, 𝑚𝐴and 

𝑚𝐵oscillate exactly ±1, ±
3

2
and also around zero, is clearly 

seen in Fig. 2(c). While the oscillations in the calculations 
found with the mean field approximation for the same 
mixed spin system in Refs. [2, 14] occur around 
approximate values, it is interesting that the oscillations 
obtained with the PPM in the present study occur exactly 

around 0, ±1, ±
3

2
 as expected. Fig. 3(a)-(d) shows the 

effect of the changing rate constant on the paramagnetic 
phase while all system parameters remain the same. It is 
seen that the system reaches the paramagnetic phase 
more quickly as the rate constant parameter 𝑘2 increases. 

 
 

 

Figure 2. (Color online) Time variations of the 
magnetizations (𝑚𝐴and 𝑚𝐵), with 𝑑 = 4.0, 𝑘1 =
1.0and𝑘2 = 1.0. (a) Exhibiting a paramagnetic (p) 
phase for 𝑇 = 1.50, ℎ0 = 0.350; (b) Illustrating a 
ferrimagnetic (i) phase for 𝑇 = 0.10, ℎ0 = 0.60; (c) 
Displaying a mixed or coexistence phase, namely the 
i+p phase for 𝑇 = 0.75, ℎ0 = 0.60. 
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Figure 3. (Color online) Time variations of the 

magnetizations (𝑚𝐴and 𝑚𝐵) for only paramagnetic 
(p) phase for𝑇 = 1.40, 𝑑 = 0.25, ℎ0 = 0.60, 𝑘1 =
1.0and four different values of 𝑘2. (a) 𝑘2 = 2.0,  
(b)𝑘2 = 2.5, (c) 𝑘2 = 3.0 and (d) 

Dynamic Phase Transition Temperatures (DPTs) 

Dynamic phase transition temperatures (DPTs) are 
obtained by investigating the thermal behavior of 
dynamic magnetizations that are given as [31] 

 

𝑀𝐴,𝐵 =
1

2𝜋
∫ 𝑚𝐴,𝐵(𝜉)
2𝜋

0
𝑑𝜉.                                                     (9) 

 
As we mentioned before, since 𝑚𝐴and 𝑚𝐵determine 

the dynamic magnetic properties of the system, we only 
need to examine the behaviors of 𝑀𝐴and 𝑀𝐵. The 
solutions of Eq. (9) give us to whether a first or second 
order phase transition occurs and the temperature values 
of these transitions. Firstly, we numerically solved Eq. (9) 
for𝑑 = 4.0,𝑘1 = 1.0, 𝑘2 = 2.0, and various valuesℎ0, and 
obtained the thermal behavior of dynamic magnetizations 
(|𝑀𝐴|and |𝑀𝐵|) as seen in Fig. 4. Hence, Fig. 4 (a) is 
presented forℎ0 = 0.35. Fig. 4(a) exhibits that 𝑀𝐴,𝐵  
decreases to zero continuously as T increases. Therefore, 
the system undergoes a second-order phase transition at 
𝑇𝐶 = 1.40 and the dynamic transition is from the i phase 
to the p phase, for all initial values of |𝑀𝐴|and |𝑀𝐵|. This 
fact is very clearly seen in Fig. 6 (c) for ℎ0 = 0.35. Fig. 4(b) 
is plotted for ℎ0 = 0.60, and it displays that 𝑀𝐴,𝐵   firstly 
the p phase up to 𝑇𝑡 = 0.075  for the initial values of 
|𝑀𝐴| = 0.0, it exhibiting the i phase for the |𝑀𝐴| = 1.0; 
|𝑀𝐵| = 0.5, 1.5 up to 𝑇𝐶 = 1.16. They are exhibiting two 
successive phase transitions, namely (𝑏1) illustrating a 
first-order phase transition at 𝑇𝑡 = 0.075, and (𝑏2𝑏2) 
displaying a second-order phase transition at 𝑇𝐶 = 1.16. 
Thus, the i+p mixed phase takes place between 𝑇𝑡 and 𝑇𝐶 . 
Fig. 4(c) is constructed for ℎ0 = 0.80;     (𝑐1)-(𝑐4) exhibiting 
four successive phase transitions, namely the first one is 
(𝑐1) at 𝑇t1 = 0.08for initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 0.5 
and 𝑇t2 = 0.355, the second one is (𝑐2)  at 𝑇t1 = 0.08 for 
initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 1.5 and 𝑇t2 = 0.365, 
the third one is (𝑐3) at 𝑇t2 = 0.355 for initial values 
|𝑀𝐴| = 1.0; |𝑀𝐵| = 0.5 and finally the fourth one is (𝑐4) 
at 𝑇𝑡 = 0.600 for initial values |𝑀𝐴| = 1.0; |𝑀𝐵| = 1.5. 
This fact is very clearly seen in Fig. 6 (c) for ℎ0 = 0.80. 
Thus, the i+p mixed phase takes place between 𝑇𝑡 = 0.08 
and 𝑇𝑡 = 0.600. 
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Figure 4. (Color online) The thermal behavior of dynamic magnetizations (|𝑀𝐴|) 𝑇𝑐and 𝑇𝑡are the second-order and 
first-order phase transition temperatures for both |𝑀𝐴|and |𝑀𝐵|, respectively, with 𝑑 = 4.0, 𝑘1 = 1.0, 𝑘2 = 2.0. 
(a) Exhibiting a second-order phase transition from the ferrimagnetic (i) phase for 𝑇𝐶 = 1.40, ℎ0 = 0.35, for all 
initial values of |𝑀𝐴|and |𝑀𝐵| ; (𝑏1) and (𝑏2) were obtained for ℎ0 = 0.60and two different initial values of |𝑀𝐴| =
0.0; |𝑀𝐵| = 0.5, 1.5 and |𝑀𝐴| = 1.0; |𝑀𝐵| = 0.5, 1.5, respectively, and they are exhibiting two successive phase 
transitions, namely (𝑏1) illustrate a first-order phase transition at 𝑇𝑡 = 0.075, and (𝑏2) displaying a second-order 
phase transition at 𝑇𝐶 = 1.16. For ℎ0 = 0.80, (𝑐1)-(𝑐4) exhibiting four successive phase transitions, namely the first 
one is (𝑐1) at 𝑇t1 = 0.08 for initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 0.5 and 𝑇t2 = 0.355, the second one is (𝑐2)  at 𝑇t1 =
0.08 for initial values|𝑀𝐴| = 0.0; |𝑀𝐵| = 1.5 and 𝑇t2 = 0.365, the third one is (𝑐3) at 𝑇t2 = 0.555 for initial values 
|𝑀𝐴| = 1.0 

 
To see the nature of the DPT temperatures for the case 
whereℎ0is fixed but for the crystal-field interaction𝑑is 
varied, we obtained Fig.5 by solving Eq.(9). So that, 
Fig.5(a) exhibits a second-order phase transition from the 
ferrimagnetic (i) phase for 𝑇𝑐 = 0.765, 𝑑 = 0.10, for all 
initial values of |𝑀𝐴|and |𝑀𝐵|.  For 𝑑 = 1.0,  Fig.5 (𝑏1)-
(𝑏3) shows three successive phase transitions, namely the 
first one is (𝑏1) at 𝑇𝑡 = 0.365 for initial values |𝑀𝐴| = 0.0; 
|𝑀𝐵| = 0.5, 1.5, the second one is (𝑏2)  at 𝑇𝑡 = 0.555 for 
initial values |𝑀𝐴| = 1.0; |𝑀𝐵| = 0.5, the third one is (𝑏3) 
at 𝑇𝑡 = 0.595 for initial values |𝑀𝐴| = 1.0; |𝑀𝐵| = 1.5. 
For 𝑑 = 6.0, very similar results were found as presented 

in Fig.4 (𝑐1)-(𝑐4) exhibiting four successive phase 
transitions, namely the first one is (𝑐1) at 𝑇t1 = 0.130 for 
initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 0.5 and 𝑇t2 = 0.355, 
the second one is (𝑐2)  at 𝑇t1 = 0.130 for initial values 
|𝑀𝐴| = 0.0; |𝑀𝐵| = 1.5 and 𝑇t2 = 0.365, the third one is 
(𝑐3) at 𝑇𝑡 = 0.555 for initial values |𝑀𝐴| = 1.0; |𝑀𝐵| =
0.5 and finally  the fourth one is (𝑐4) at 𝑇𝑡 = 0.600 for 
initial values |𝑀𝐴| = 1.0; |𝑀𝐵| = 1.5. Thus, the i+p mixed 
phase takes place between 𝑇t1 = 0.130 and 𝑇𝑡 = 0.600. 

 

Dynamic Phase Diagrams (DPDs) 
In the previous section, it was explained how to 

determine the DPTs, and now we can plot the DPDs in the 
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(ℎ0, 𝑇) and (𝑑, 𝑇) planes for various system parameters, as 
shown in Figures 6 and 7. In the given DPDs, the dashed 
and solid lines represent the first- and second-order DPT 
boundaries, respectively, TCP and B represent the 
dynamic triple critical point and the dynamic double 
critical endpoint [32], respectively. All our calculations 
were made for𝑘1 = 1.0, 𝑘2 = 2.0and various values of 
ℎ0and 𝑑.  
Figure 6(a) obtained for 𝑑 = 0.25 in which at low 
temperature (𝑇) and low values ofℎ0, the DPD exhibits 
ferrimagnetic (i), while at high 𝑇 values displays 
paramagnetic (p) characteristics. The dynamic boundary 
line separating the i and p phases is the second-order 
phase line. There is a region at low 𝑇 and high ℎ0 values 
where the i and p phases coexist, named the mixed phase 
(i+p). The dynamic first-order phase lines separate the i+p 
phase from the i and the p phases.  Moreover, the system 

has a dynamic tricritical point (TCP) where two first-order 
phase transition lines merge and transform into a first-
order to a second-order phase transition. The DPDs with 
similar behavior have been reported in various mixed Ising 
ferrimagnetic systems (see Refs. [27, 33-35] and 
references therein) and mixed (1, 3/2) IFS [14, 36, 37]. Fig. 
6(b) was calculated for 𝑑 = 2.50, which is similar to Fig. 
6(a), but the tricritical line becomes shorter and the mixed 
phase region becomes slightly larger. Additionally, at low 
temperatures, another mixed phase region appears, 
terminating in a double critical end point B.  Fig. 6 (c) and 
(d) were constructed for 𝑑 = 4.0and𝑑 = 6.0, 
respectively. Figures 6 (c) and (d) are quite similar to Fig. 
6(b), except for the broadening of the mixed phase region, 
terminating in a B, that occurs at lower temperatures with 
increasing d. 

  

 

Figure 5.(Color online) The thermal behavior of dynamic magnetizations (|𝑀𝐴|and |𝑀𝐵|) 𝑇𝑐and 𝑇𝑡 are the second-order 
and first-order phase transition temperatures for both |𝑀𝐴|and |𝑀𝐵|, respectively, with 𝑑 = 4.0, 𝑘1 = 1.0, 𝑘2 =
2.0. (a) Exhibiting a second-order phase transition from the ferrimagnetic (i) phase for 𝑇𝐶 = 0.765., 𝑑 = 0.10, for 
all initial values of |𝑀𝐴|and |𝑀𝐵|. For 𝑑 = 1.0, (𝑏1)-(𝑏3) exhibiting three successive phase transitions,  namely the 
first one is (𝑏1) at 𝑇𝑡 = 0.365 for initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 0.5, 1.5, the second one is (𝑏2)  at 𝑇𝑡 = 0.555 
for initial values |𝑀𝐴| = 1.0; |𝑀𝐵| = 0.5, the third one is (𝑏3) at 𝑇𝑡 = 0.595 for initial values |𝑀𝐴| = 1.0; |𝑀𝐵| =
1.5. For 𝑑 = 6.0found the very similar result were found that (𝑐1)-(𝑐4)  exhibiting four successive phase transitions, 
namely the first one is (𝑐1) at 𝑇𝑡1 = 0.130 for initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 0.5 and 𝑇𝑡2 = 0.355, the second 
one is (𝑐2)  at 𝑇𝑡1 = 0.130 for initial values |𝑀𝐴| = 0.0; |𝑀𝐵| = 1.5 and 𝑇𝑡2 = 0.365, the third one is (𝑐3) at 𝑇𝑡 =
0.555 for initial values |𝑀𝐴| = 1.0; |𝑀𝐵| = 0.5and finally  the fourth one is (𝑐4) at 𝑇𝑡 = 0.600 for initial values 
|𝑀𝐴| = 1.0; |𝑀𝐵| = 1.5. 
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Figure 6. (Color online) The DPDs of the system in the (ℎ0, 𝑇) plane, with 𝑘1 = 1.0and𝑘2 = 2.0. The paramagnetic (p), 

ferrimagnetic (i), and the i+p mixed phase are observed. Solid and dashed lines are the second-order and first-order 
phase transitions, respectively. The special dynamic critical points are the dynamic tricritical (TCP) and the dynamic 
double critical end (B) points. (a) 𝑑 = 0.25, (b) 𝑑 = 2.50, (c) 𝑑 = 4.00, (d) 𝑑 = 6.00. 

 

 

Figure 7. (Color online) The DPDs of the system in the (𝑑, 𝑇) plane. It contains TCP but not B. (a) ℎ0 = 0.50, (b) ℎ0 =
0.90 

 
Fig. 7 exhibits the DPDs in the (𝑑, 𝑇) plane for three different 
values ofℎ0.  Fig. 7 (a)-(c) are obtained for ℎ0 = 0.50; 0.80 and 
0.90 respectively.  If one looks carefully at Fig. 7(a), one sees 
that it contains a very narrow i+p mixed phase region that 
starts at low temperatures and small d values, which gradually 
narrows with increasing d values and merges with the second-
order phase transition line at high temperatures and large d 
values, i.e. they converge at TCP tricritical point. In Figure 7(b), 

a third dynamic first-order phase transition line appears 
starting from low temperature and d values and goes towards 
asymptotically high temperature and d values. Furthermore, 
there is also a narrow mixed-phase region, which starts from a 
TCP point at a low d value. In Figure 7(c) obtained for ℎ0 =
0.90, a third dynamic first-order phase line and TCP point seen 
in Figure 7(b) disappear, and the i+p mixed phase region 
widens. 
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Finally, the DPDs we obtained in both the (ℎ0, 𝑇) and the 
(𝑑, 𝑇) plane have a TCP point and a dynamic double critical 
endpoint, and some similar results have been reported in 
pure [27, 33-35] and mixed spin Ising ferrimagnetic 
systems [2, 14, 36, 37]. 

 

Concluding Remarks 
 
We studied the dynamic phase transition 

temperatures and dynamic phase diagrams of the mixed 
spin (1, 3/2) IFS under a sinusoidal magnetic field by using 
the PPM, which contains two rate constants. Thus, the 
dynamic phase behavior of this system was examined for 
the first time according to these two rate constants. The 
following important conclusions were obtained. (1) We 
observed that only the p, i , and i+p phases were present 
in the system when the PPM was used. (2) We found that 
as the values of 𝑘2 rate constant increased, the system 
rapidly relaxed into the p, i , and i+p phases. (3) We 
obsered that the system contains a special dynamic 
critical point, such as a dynamic double critical endpoint. 
(4) When we compared our DPDs with some dynamic 
theoretical studies of different mixed and pure Ising 
ferrimagnetic systems, we observed that they were in 
good agreement. Finally, we hope that our present 
theoretical work sheds light on theoretical condensed 
matter physicists or statistical physicists to continue to 
investigate DPTs and DPDs in different systems within the 
PPM. 
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