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Introduction 
 

Polynomials appear in a wide range of scientific and 
mathematical fields. In more advanced mathematical 
settings, they are basic building blocks for formulating 
algebraic varieties and polynomial rings, which are essential 
concepts in algebra and algebraic geometry. Polynomial 
systems defined over finite fields hold particular significance 
owing to their wide-ranging applications in fields such as 
cryptography, coding theory, and various domains within 
information science and technology. Recursive polynomials 
have been studied in many fields for different purposes. For 
example, Cadilhac et al. [1] studied the expressive power of 
polynomial recursive sequences, a nonlinear extension of the 
well-known class of linear recursive sequences. Fu et al. [2] 
construct two classes of permutation polynomials over 𝐹𝑞2 

with odd characteristic from rational R ́edei functions. With 
the help of a computer, they find that the number of 
permutation polynomials of these types is quite big.  Sidki et 
al.[3] gave three recursive algorithms for computing the 
orthogonal polynomials. Unlike the models mentioned 
above, we obtained polynomial sets using recurrence 
relations. We studied the algebraic structure of these 
polynomial sets and presented some examples of how these 
sets can be used in coding theory in our study. 

In 1948, Claude Shannon’s paper [4] gave rise to 
information theory and coding theory, which aim to improve 
communication regarding convenience, reliability, and 
efficiency. In recent studies on polynomial codes, Ding and 
Ling [5] constructed a new family of cyclic codes using q-
polynomials. Abdullaev and Efanov [6] presented the 
revealed patterns of constructing polynomial codes with 
different detecting characteristics. Chiu [7] proposed an 
alternative expression of polar codes using polynomial 
representations. Wang, Hao, and Qiao [8] used a method to 
construct new 𝑞 −ary linear codes and applied it to the 

construction of generalized 𝑅 − 𝑆 codes over 𝐹𝑞 in order to 

extend the length of the codes. Nalli and Haukkane [9] 
introduced ℎ(𝑥) −Fibonacci polynomials that generalize 
both Catalan’s Fibonacci polynomials and Byrd’s Fibonacci 
polynomials, and also the 𝑘 −Fibonacci numbers, and they 
provide properties for these ℎ(𝑥) −Fibonacci polynomials. 
Prasad [10] defined (ℎ(𝑥), 𝑔(𝑦)) − extension of Fibonacci 
𝑝 −numbers and golden (𝑝, ℎ(𝑥), 𝑔(𝑦)) −proportion. He 
also established a relation among Golden 
(𝑝, ℎ(𝑥), 𝑔(𝑦)) −proportion, Golden 
(𝑝, ℎ(𝑥)) −proportion, and Golden 𝑝 −proportion.  Stakhov 
[11] considered a new approach to coding theory, which is 
based on the 𝑄𝑝-matrices. Kaymak [12] introduced 

ℎ(𝑥) −Fibonacci coding/decoding method for 
ℎ(𝑥) −Fibonacci polynomials. 

This article aims to define a new polynomial set and study 
its algebraic properties and then study some applications in 
coding theory using these polynomial sets. For this, we first 
define a set of polynomials. We then survey on algebraic 
properties of polynomials. Besides, we obtained code sets 
with the created polynomial classes. We studied some 
algebraic properties of these codes. We expressed tools such 
as the generator matrix, the parity check matrix, length, and 
weight. Finally, we conclude the study with suggestions for 
future research. 

Preliminaries 

This section provides some basic notions needed for 
the following sections. Let’s give some well-known basic 
concepts in coding theory [13-16], as follows:  

1.  A linear [𝑛, 𝑘] code 𝐶 of length 𝑛 over 𝐺𝐹(𝑞) is a 
𝑘 −dimensional vector subspace of 𝐺𝐹(𝑞)𝑛. 
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2. The number of non-zero coordinates in a code word, 
which is an element of 𝐶, is its (Hamming) weight. 𝑤𝑡(𝑥) 
is the (Hamming) weight of a codeword 𝑥. A linear code 𝐶 
with a minimum weight is represented as follows: 
𝑤(𝐶):=  𝑚𝑖𝑛{𝑤𝑡(𝑥): 𝑥 ∈  𝐶, 𝑥 ≠ 0}. 

3. The (Hamming) distance between two vectors 𝑥 =
(𝑥1, … , 𝑥𝑛) and 𝑦 = (𝑦1, … , 𝑦𝑛) is the number of places 
where they differ and is denoted by 𝑑(𝑥, 𝑦). A minimum 
distance of a linear code 𝐶 is denoted by 𝑑(𝐶) =
𝑚𝑖𝑛{𝑑(𝑥, 𝑦: 𝑥, 𝑦 ∈ 𝐶}. 

4. An alternative notation for a linear code 𝐶 over 𝐺𝐹(𝑞) 
is a [𝑛, 𝑘, 𝑑] linear code, where 𝑑 is the minimum distance 
of 𝐶. 

5. 𝑥. 𝑦 = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1   is the Euclidean inner product of the 

two vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛 ). 

6. 𝐶⊥ = {𝑥 ∈ 𝐺𝐹(𝑞)𝑛 ∶  𝑥. 𝑦 = 0, ∀𝑦 ∈ 𝐶} is the definition 
of the dual code 𝐶⊥ of 𝐶. 𝐶 is referred to as self-
orthogonal if 𝐶 ⊂ 𝐶⊥ and self-dual if 𝐶 = 𝐶⊥ . Binary code 
is a linear code over 𝐺𝐹(2). 

Definition 2.1. [13] A, 𝑘 × 𝑛 matrix whose rows form 
a basis of a linear [𝑛, 𝑘] −code is called a generator matrix 
of the code. 𝐺 =  [𝐼𝑘 ∶  𝐴] is called the standard form 
generator matrix. 

Definition 2.2. [13] A parity-check matrix 𝐻 for an 
[𝑛, 𝑘] −code 𝐶 is a generator matrix of 𝐶⊥. If 𝐺 = [𝐼𝑘 ∶ 𝐴] 
is the standard form generator matrix of an [𝑛, 𝑘] −code 
𝐶, then a parity-check matrix for 𝐶 is 𝐻 = [−𝐴𝑇: 𝐼𝑛−𝑘].  

 
Polynomial Sets and Algebraic Properties 

In this section, we will define a new polynomial set and 
study some of its algebraic properties. Firstly, we construct 
some polynomial sets. Throughout this paper, 

𝐺𝐹(2)[𝑥]  =  {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · ·  +𝑎𝑛𝑥

𝑛 ∶  𝑎𝑖
∈ 𝐺𝐹(2)  =  {0, 1}} 

is the set of polynomials with coefficients in the field 𝐺𝐹(2) 
and indeterminate 𝑥. 
Definition 3.1. 𝑓𝑟𝑛  =  {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + · · ·
 +𝑎𝑛𝑥

𝑛: 𝑎𝑖 ∈ 𝐺𝐹(2)} is a polynomial set with degree equal 
to or less than 𝑛, and the recursive definition of these 
polynomials is as follows. 

𝑓0𝑛  =  {0, 𝑥
𝑛 + 𝑥𝑛−1 + · · ·  +𝑥 +  1} 

𝑓𝑟𝑛 = (𝑥
𝑛 + 𝑓(𝑟−1)(𝑛−1))  ∪ 𝑓(𝑟−1)(𝑛−1) 

Example 3.2. A polynomial set 𝑓𝑟𝑛 is a set involving sets of 
polynomials. 

𝑓00 = {0, 1} 

𝑓01 = {0, 𝑥 +  1} 

𝑓02 = {0, 𝑥
2 + 𝑥 + 1} 

𝑓11 = (𝑥 + 𝑓00) ∪ 𝑓00 = {0, 1, 𝑥, 1 +  𝑥}  =  𝐺𝐹(2)
1[𝑥] 

𝑓22 = (𝑥
2 + 𝑓11) ∪ 𝑓11 = {0, 1, 𝑥, 1 +  𝑥, 𝑥

2, 𝑥2 + 1, 𝑥2 +

𝑥, 𝑥2 + 𝑥 + 1}  =  𝐺𝐹(2)2[𝑥]  

𝑓𝑛𝑛 = (𝑥
𝑛 + 𝑓(𝑛−1)(𝑛−1)) ∪ 𝑓(𝑛−1)(𝑛−1) = 𝐺𝐹(2)

𝑛[𝑥] 

𝑓12 = (𝑥
2 + 𝑓01) ∪ 𝑓01 = {0, 1 +  𝑥, 𝑥

2, 𝑥2 + 𝑥 + 1} 

𝑓𝑟𝑛 = (𝑥
𝑛 + 𝑓(𝑟−1)(𝑛−1)) ∪ 𝑓(𝑟−1)(𝑛−1) 

Here, 𝑓22 is a polynomial set with degree equal to or less 
than 2. Moreover, logical representations of the polynomial 
sets are provided in Table 1. 
 
Table 1. Logical representations of the polynomial sets 

 𝒇
𝟎𝟎

 𝒇
𝟎𝟏

 𝒇
𝟎𝟐

 𝒇
𝟏𝟏

 𝒇
𝟏𝟐

 𝒇
𝟐𝟐

 

𝟎 1 1 1 1 1 1 
𝟏 1 0 0 1 0 1 
𝒙 0 0 0 1 0 1 

𝟏 + 𝒙 0 1 0 1 1 1 
𝒙𝟐 0 0 0 0 1 1 

𝟏 + 𝒙𝟐 0 0 0 0 0 1 

𝒙 + 𝒙𝟐 0 0 0 0 0 1 

𝟏 + 𝒙 + 𝒙𝟐 0 0 1 0 1 1 
 

Proposition 3.3. 𝑓𝑟𝑛 = (𝑥
𝑛 + 𝑓(𝑟−1)(𝑛−1)) ∪ 𝑓(𝑟−1)(𝑛−1) is 

a 𝑟 +  1 dimensional vector space over field 𝐺𝐹(2) and 

has 2𝑟 + 1 elements. 

Proof. We use induction on 𝑟 for the proof of the 

proposition. Since 𝑓1𝑛 is a set  

𝑓1𝑛 = (𝑥
𝑛 + 𝑓0(𝑛−1)) ∪ 𝑓0(𝑛−1)) = {0, 𝑥

𝑛−1 +· · · +𝑥 +

1, 𝑥𝑛, 𝑥𝑛 + 𝑥𝑛−1 +· · · +𝑥 + 1}  

 and {𝑥𝑛 ,  𝑥𝑛−1 +· · · +𝑥 + 1} is a bases for 𝑓1𝑛, it is a two 
dimensional vector space over 𝐺𝐹(2). Suppose that 
𝑓(𝑟−1)(𝑛−1) is a vector space over 𝐺𝐹(2). Since 𝑓𝑟𝑛  =

 (𝑥𝑛 + 𝑓(𝑟−1)(𝑛−1)) ∪ 𝑓(𝑟−1)(𝑛−1) is a 𝑟 + 1 dimensional 

and (𝑥𝑛 + 𝑓(𝑟−1)(𝑛−1))  ∩  𝑓(𝑟−1)(𝑛−1)  =  ∅, it is easy to 

show that 𝑢 +  𝑣 ∈  𝑓𝑟𝑛 for all 𝑢, 𝑣 ∈ 𝑓𝑟𝑛 and 𝑟𝑢 ∈ 𝑓𝑟𝑛 for 
all 𝑢 ∈ 𝑓𝑟𝑛, 𝑟 ∈  𝐺𝐹(2). Thus 𝑓𝑟𝑛 is a vector space on 

𝐺𝐹(2). The set {𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, . . . ,  𝑥𝑛−(𝑟−1), 𝑥 𝑛−𝑟 +

 𝑥𝑛−(𝑟+1)  + · · ·  + 𝑥 +  1} is a base for 𝑓𝑟𝑛. The number 
of elements of 𝑓(𝑟−1)(𝑛−1) is 2𝑟, so the number of 

elements of 𝑓𝑟𝑛 is 2𝑟 + 1 and of dimension is 𝑟. 

Example 3.4. Using Definition 3.1 and Example 3.2, we 
obtain 𝑓3𝑛  =  {0, 𝑥

𝑛−3 + 𝑥𝑛−4 +· · · +𝑥 +
1,  𝑥𝑛−2, 𝑥𝑛−2 + 𝑥𝑛−3 + · · · +𝑥 + 1,  𝑥𝑛−1,  𝑥𝑛−1 +
𝑥𝑛−3 +· · · +𝑥 + 1, 𝑥𝑛−1 + 𝑥𝑛−2, 𝑥𝑛−1 + 𝑥𝑛−2 +· · ·
+𝑥 + 1, 𝑥𝑛, 𝑥𝑛 + 𝑥𝑛−3 +· · · +𝑥 + 1, 𝑥𝑛 + 𝑥𝑛−2,  𝑥𝑛 +
𝑥𝑛−2 +· · · +𝑥 + 1, 𝑥𝑛 + 𝑥𝑛−1, 𝑥𝑛 + 𝑥𝑛−1 + 𝑥𝑛−3 +· · ·
+𝑥 + 1,  𝑥𝑛 + 𝑥𝑛−1 + 𝑥𝑛−2,  𝑥𝑛 + 𝑥𝑛−1 +· · · +𝑥 + 1}. 
𝑓3𝑛 is a vector space over 𝐺𝐹(2).The set 
{𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, 𝑥𝑛−3 + 𝑥𝑛−4 +· · · +𝑥 + 1} is a base for 
𝑓3𝑛. Therefore, 𝑓3𝑛 is a vector space of 4 dimensional and 
24 elements. 
Proposition 3.5. For 𝑟 + 1 ≤ 𝑛, 𝑓𝑟𝑛 is a subspace of 𝑓(𝑟+1)𝑛. 

Proof. From Proposition 3.3, we know that 𝑓𝑟𝑛 is a vector 

space. The set  

{𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, . . . ,  𝑥𝑛−(𝑟−1), 𝑥𝑛−𝑟 + 𝑥𝑛−(𝑟+1) +· · · +𝑥
+ 1} 

is a base for the vector space 𝑓𝑟𝑛 and 

{𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, . . . ,  𝑥𝑛−(𝑟−1), 𝑥𝑛−𝑟 , 𝑥𝑛−(𝑟+1) +

𝑥𝑛−(𝑟+2) +· · · +𝑥 + 1}  
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is a base for vector space 𝑓(𝑟+1)𝑛. The base of 𝑓𝑟𝑛 is a subset 

of the base of 𝑓(𝑟+1)𝑛. Thus, 𝑓𝑟𝑛 subspace of 𝑓(𝑟+1)𝑛 

 

Polynomial Sets and Codes 

In coding theory, a polynomial code is a type of linear 
code whose set of valid code words consists of polynomials 
divisible by a given fixed polynomial. In this section, we 
construct a new kind of polynomial code. We use polynomial 
sets 𝑓𝑟𝑛 for this. 
 

Definition 4.1. Let 𝑓𝑟𝑛 be a polynomial set and 𝑝(𝑥) be a 
prime polynomial in 𝐺𝐹(2)[𝑥] such that 𝑝(𝑥) has degree 
𝑚 =  2𝑛 − 1 and format 𝑝(𝑥) = 𝑥𝑚 + 𝑥𝑠 + 1. Then, 
recursive definitions of these polynomials, such as; 

𝐹0𝑛 = 𝑝(𝑥)𝑓0𝑛 

𝐹𝑟𝑛 = 𝑝(𝑥)𝑓𝑟𝑛 

𝐹𝑜𝑛 and 𝐹𝑟𝑛 are called generated polynomial sets (GPS) 
from 𝑓𝑜𝑛 and 𝑓𝑟𝑛, respectively. Corresponding to this 
definition, we formulate a polynomial set  

𝐹𝑟𝑛 = ((𝑥
𝑛+𝑚 + 𝑥𝑛+𝑠 + 𝑥𝑛) + 𝑓(𝑟−1)(𝑛−1))  

∪  𝑓(𝑟−1)(𝑛−1). 

GPS 𝐹𝑟𝑛 has polynomials of degree equal to or less than 
𝑛 +  𝑚. 

Example 4.2. Let 𝑓 03 = {0,  𝑥
3 + 𝑥2 + 𝑥 + 1}. Then, 

𝑝(𝑥) = 𝑥7 + 𝑥 + 1 is a prime polynomial of degree 23 − 
1. Thus, 𝐹03 = {0, 𝑥

10  +  𝑥9 + 𝑥8 + 𝑥7 + 𝑥4 + 1}. 
Moreover, let 𝑓23 = {0, 𝑥 + 1, 𝑥

2, 𝑥2 + 𝑥 + 1, 𝑥3, 𝑥3 +
𝑥 + 1, 𝑥3 + 𝑥2,  𝑥3 + 𝑥2 + 𝑥 + 1}. Then, 𝐹23 =
𝑝(𝑥){0, 𝑥 + 1, 𝑥2, 𝑥2 + 𝑥 + 1,  𝑥3,  𝑥3 + 𝑥 + 1,  𝑥3 +
𝑥2, 𝑥3 + 𝑥2 + 𝑥 + 1}  =  {0, 𝑥8 + 𝑥7 + 𝑥2 + 1,  𝑥9 +
𝑥3 + 𝑥2, 𝑥9 + 𝑥8 + 𝑥7 + 𝑥3 + 1, 𝑥10 + 𝑥4 + 𝑥3,  𝑥10 +
𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 𝑥2 + 1,  𝑥10 + 𝑥9 + 𝑥4 + 𝑥2, 𝑥10 +
𝑥9 + 𝑥8 + 𝑥7 + 𝑥4 + 1}. 

 
Theorem 4.3. For 𝑟 ≤  𝑛, 𝐹𝑟𝑛 is a linear space of 
dimension 𝑟 +  1 over 𝐺𝐹(2). 
Proof. Let 𝑝(𝑥) = 𝑥𝑚 + 𝑥𝑠 + 1 be an irreducible 
polynomial of degree 2𝑛 − 1. Then 𝐹0𝑛 = 𝑝(𝑥)𝑓0𝑛 is a 
linear space over 𝐺𝐹(2) and {𝑝(𝑥)(𝑥𝑛 + 𝑥𝑛−1 +⋯ .+1)} 
is a base of 𝐹0𝑛. The polynomial set 𝐹𝑟𝑛 = 𝑝(𝑥)𝑓𝑟𝑛 =
(𝑥𝑛+𝑚 + 𝑥𝑛+𝑠 + 𝑥𝑛) + 𝑓(𝑟−1)(𝑛−1)) ∪ 𝑓(𝑟−1)(𝑛−1) 

generated with the set {𝑥2
𝑛+𝑛−1 + (𝑥𝑠 +

1)𝑥𝑛, 𝑥2
𝑛+𝑛−2 + (𝑥𝑠  +  1)𝑥𝑛−1, . . . ,  𝑥2

𝑛+𝑛−𝑟 + (𝑥𝑠  +

 1)𝑥𝑛−(𝑟−1),  𝑥2
𝑛+𝑛−(𝑟+1) + 𝑝(𝑥)(𝑥𝑛−(𝑟+1) +⋯+

1)𝑥𝑛−𝑟(𝑥𝑠 + 1)}. It is obviously that the set {𝑥2
𝑛+𝑛−1 +

(𝑥𝑠  +  1)𝑥𝑛, 𝑥2
𝑛+𝑛−2 + (𝑥𝑠 + 1)𝑥𝑛−1, . . . , 𝑥2

𝑛+𝑛−𝑟 +

(𝑥𝑠 + 1)𝑥𝑛−(𝑟−1), 𝑥2
𝑛+𝑛−(𝑟+1) + 𝑝(𝑥)(𝑥𝑛−(𝑟+1) +⋯+

1)𝑥𝑛−𝑟(𝑥𝑠  +  1)} is linear independent and it generate 
𝐹𝑟𝑛. Thus, for u(x), v(x) ∈ 𝐹𝑟𝑛, u(x) + v(x)∈𝐹𝑟𝑛. In that case, 
𝐹𝑟𝑛 is a linear space. 

A string of length 𝑛 +  1 can be represented by a 
polynomial, with the bits representing the coefficients of 
a polynomial over a field. The basic similarity between 
codes and polynomials is that codes are an ordered 
sequence of numbers strung together to mean a single 

expression. In the case of polynomials, the digits 
represent the coefficients of each term. The order instead 
represents the bit’s position in the code. We could take 
the first bit to represent the highest power of 𝑥 down to 
the last, meaning the constant term. Or we could consider 
the first bit to be the constant term and proceed up 
through the increasing powers of 𝑥. 
Let 𝐺𝐹(2)𝑛[𝑥] denote the set of all polynomials in 
𝐺𝐹(2)[𝑥] having a degree equal or less to 𝑛. The 
polynomial 𝑞(𝑥) = 𝑎0 + 𝑎1𝑥+. . . +𝑎𝑛−1𝑥

𝑛−1  + 𝑎𝑛𝑥
𝑛 of 

degree at most n over 𝐺𝐹(2) may be regarded in general 
as the word 𝑎0𝑎1. . . 𝑎𝑛−1𝑎𝑛 of length n + 1 in 𝐺𝐹(2)𝑛. Of 
course, each word in 𝐺𝐹(2)𝑛 corresponds to a polynomial 
in 𝐺𝐹(2)𝑛[𝑥]  so we define a one-to-one mapping 
between 𝐺𝐹(2)𝑛  and 𝐺𝐹(2)𝑛[𝑥]. It is easy to check that 
this mapping is an isomorphism 𝐺𝐹𝑛(2) ≅ 𝐺𝐹𝑛(2)[𝑥] as 
linear spaces. Now we define codes corresponding to 
polynomial set 𝐹𝑟𝑛. 
 
Definition 4.4. Let 𝐹𝑟𝑛 be a GPS and 𝐶𝑟𝑛 be a code set 
corresponding to the polynomial set 𝐹𝑟𝑛. Then 𝐶𝑟𝑛 is the 
generated polynomial code (GPC). 
 
Example 4.5. Let 𝐹03 = {0, 𝑥

10 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥4 + 1} 
and 𝐹23 = 𝑝(𝑥){0, 𝑥 + 1, 𝑥

2, 𝑥2 +  𝑥 + 1, 𝑥3,  𝑥3 + 𝑥 +
1, 𝑥3 + 𝑥2, 𝑥3 + 𝑥2 + 𝑥 + 1} = {0,  𝑥8 + 𝑥7 + 𝑥2 +
1,  𝑥9 + 𝑥3 + 𝑥2, 𝑥9 + 𝑥8 + 𝑥 7 + 𝑥3 + 1, 𝑥10 + 𝑥4 +
𝑥3, 𝑥10 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥 3 + 𝑥2 + 1, 𝑥10 + 𝑥9 + 𝑥4 +
𝑥2,  𝑥10 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥4 + 1} be GPS. Then, the 
codes GPC obtained from 𝐹03 and 𝐹23  are 𝐶03 =
{00000000000, 11110010001} and 
𝐶23  = {00000000000, 00110000101, 01000001100,
01110001001, 10000011000,
10110011101, 11000010100, 11110010001 } 
respectively. 

Provide a recursive construction for the 𝐶𝑟𝑛 generator 
matrix, denoted by 𝐺𝑟𝑛. 
Definition 4.6. Let 𝑝(𝑥) = 𝑥𝑚 + 𝑥𝑠 + 1 (𝑚 = 2𝑛 − 1) be 
an irreducible polynomial over 𝐺𝐹(2)[𝑥]. Then for 0 < r < 
n, 

𝐺𝑟𝑛 =

(

 
 
 
 
 

𝑥2
𝑛+𝑛−1 + (𝑥𝑠 +  1)𝑥𝑛

𝑥2
𝑛+𝑛−2 + (𝑥𝑠 + 1)𝑥𝑛−1

𝑥2
𝑛+𝑛−2 + (𝑥𝑠 + 1)𝑥𝑛−1

⋮

𝑥2
𝑛+𝑛−𝑟 + (𝑥𝑠 + 1)𝑥𝑛−(𝑟−1)

𝑥2
𝑛+𝑛−(𝑟+1) + 𝑝(𝑥)(𝑥𝑛−(𝑟+1) +⋯+ 1)

+(𝑥𝑠 +  1)𝑥𝑛−𝑟 )

 
 
 
 
 

        (1) 

is generator matrix of 𝐶𝑟𝑛. From 1, we obtain for r = 0, 

𝐺0𝑛 = (𝑥
2𝑛+𝑛−1 + 𝑝(𝑥)(𝑥𝑛−1 +⋯+ 1) + 𝑥𝑛(𝑥𝑠  +  1)) 

and for r = n 

𝐺𝑛𝑛 =

(

 

𝑥2
𝑛+𝑛−1 + (𝑥𝑠 + 1)𝑥𝑛

𝑥2
𝑛+𝑛−2 + (𝑥𝑠 + 1)𝑥𝑛−1

⋮

𝑥2
𝑛−1 + 𝑥𝑠 + 1 )
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Example 4.7. The generator matrix for 𝐶02, 𝐶22,  and 𝐶12,  

are 𝐺02 = (110001),                    𝐺22 =(
1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1

) 

and 𝐺12 = (
1 0 1 1 0 0
0 1 1 1 0 1

) . 

  
If 𝐺𝑟𝑛 is form in 4.1, then 𝐺𝑟𝑛 is in standard form. If 𝐺𝑟𝑛 is 
not in standard form, then 𝐺𝑟𝑛 can be reduced to standard 
form with elementary operations of rows or columns. 

Theorem 4.8. The binary 𝐶𝑟𝑛 code has a length of 2𝑛 + 𝑛 
and a dimension of 𝑟 +  1. 
Proof. From the definition of 𝐹𝑟𝑛, the largest degree 
polynomial in 𝐹𝑟𝑛 is 2𝑛 − 1 + 𝑛. The length of the code 
words corresponding to this polynomial is 2𝑛 + 𝑛. From 
the definition of generator matrix, 𝐺𝑟𝑛 has 𝑟 +  1 rows 
and 2𝑛 + 𝑛 columns. Rows of  𝐺𝑟𝑛 are a base for code 𝐶𝑟𝑛. 
So, the dimension of  𝐶𝑟𝑛 is 𝑟 +  1. 

Theorem 4.9.  𝐶(𝑟−1)𝑛 is contained in 𝐶𝑟𝑛. 

Proof. For 𝑟 = 1 and 𝑟 = 2, the generator matrix are        

𝐺1𝑛 =(
𝑥2

𝑛+𝑛−1 + (𝑥𝑠 + 1)𝑥𝑛

𝑥2
𝑛+𝑛−2 + 𝑝(𝑥)(𝑥𝑛−2 +⋯+ 1)𝑥𝑛−1(𝑥𝑠 + 1)

) 

 
 and 

𝐺2𝑛= 

(

 
 

𝑥2
𝑛+𝑛−1 + (𝑥𝑠 + 1)𝑥𝑛

𝑥2
𝑛+𝑛−2 + (𝑥𝑠 + 1)𝑥𝑛−1

𝑥2
𝑛+𝑛−3 + (𝑥𝑠 + 1)𝑥𝑛−2

𝑥2
𝑛+𝑛−4 + 𝑝(𝑥)(𝑥𝑛−3 +⋯+ 1)𝑥𝑛−2(𝑥𝑠 + 1))

 
 

 

Since 𝐺1𝑛 is a submatrix of 𝐺2𝑛, we obviously have 𝐶1𝑛  is 
contained in 𝐶2𝑛. In general, since 𝐺(𝑟−1)𝑛 is a submatrix 

of 𝐺𝑟𝑛, it follows that 𝐶𝑟𝑛  is a subcode of 𝐶2𝑛. In Table 2, 
we obtain some results for r and n. 
 

      Table 2. 𝐶𝑟𝑛 codes for r ∈ {1, 2, 3, 4, 5, 6} and n ∈ {2, 3, 4, 5, 6} 

Cod
e 

𝟐𝒏 +
𝒏=Lengt

h 

𝒅= 
distanc

e 

𝒓 + 𝟏 = 
dimensio

n 

p(x)=irreducibl
e polynomial 

𝑪𝟏𝟐 6 3 2 𝑥3 + 𝑥 + 1 
𝑪𝟐𝟐 6 3 3 𝑥3 + 𝑥 + 1 
𝑪𝟏𝟑 11 6 2 𝑥7 + 𝑥 + 1 
𝑪𝟐𝟑 11 4 4 𝑥7 + 𝑥 + 1 
𝑪𝟑𝟑 11 4 4 𝑥7 + 𝑥 + 1 
𝑪𝟏𝟒 20 7 2 𝑥15 + 𝑥 + 1 
𝑪𝟐𝟒 20 4 3 𝑥15 + 𝑥 + 1 
𝑪𝟑𝟒 20 4 4 𝑥15 + 𝑥 + 1 
𝑪𝟒𝟒 20 4 5 𝑥15 + 𝑥 + 1 
𝑪𝟏𝟓 37 12 2 𝑥31 + 𝑥3 + 1 
𝑪𝟐𝟓 37 6 3 𝑥31 + 𝑥3 + 1 
𝑪𝟑𝟓 37 6 4 𝑥31 + 𝑥3 + 1 
𝑪𝟒𝟓 37 4 5 𝑥31 + 𝑥3 + 1 
𝑪𝟓𝟓 37 4 6 𝑥31 + 𝑥3 + 1 
𝑪𝟏𝟔 70 9 2 𝑥63 + 𝑥 + 1 
𝑪𝟐𝟔 70 4 3 𝑥63 + 𝑥 + 1 
𝑪𝟑𝟔 70 4 4 𝑥63 + 𝑥 + 1 
𝑪𝟒𝟔 70 4 5 𝑥63 + 𝑥 + 1 
𝑪𝟓𝟔 70 4 6 𝑥63 + 𝑥 + 1 
𝑪𝟔𝟔 70 4 7 𝑥63 + 𝑥 + 1 

We construct a parity-check matrix using the generator 

matrix 𝐺𝑟𝑛 for code 𝐶𝑟𝑛. The generator matrix given in 

(4.1) is in a standard form. From Definition 2.2 parity-

check matrix is 

𝐻𝑟𝑛 =

(

 
 
 
 

0 (𝑥𝑠  +  1)𝑥𝑛

0 (𝑥𝑠  +  1)𝑥𝑛−1

⋮ ⋮
0 (𝑥𝑠  +  1)𝑥𝑛−(𝑟−1)

𝑝(𝑥)(𝑥𝑛−(𝑟+1) +⋯+ 1) + 𝑥𝑛−𝑟(𝑥𝑠  +  1)
𝐼2𝑛+𝑛−(𝑟+1) )

 
 
 
 

 

If a parity-check matrix in standard form specifies a code 

𝐻𝑟𝑛 =(
𝐵

𝐼2𝑛+𝑛−(𝑟+1)
) or  𝐻𝑟𝑛 =(𝐵: 𝐼2𝑛+𝑛−(𝑟+1)), then a 

generator matrix for the code is 𝐺𝑟𝑛 = [𝐼𝑟+1: −𝐵𝑇]. Many 

codes are most easily defined by specifying a party-heck 

matrix or a set of parity-check equations equivalently. If a 

code is given by a party-check matrix 𝐻𝑟𝑛, which is not in 

standard form, then 𝐻𝑟𝑛 can be reduced to standard form, 

like for a generator matrix. 

Example 4.10. Generator matrix in the standard form of 

the code 𝐶23 is  

𝐺23 = (
1 0 0 0 1 1 0 1 1 0 0 0
0 1 0 0 0 1 1 0 1 1 0 0
0 0 1 1 0 0 1 0 1 1 0 1

) 

We obtain a parity-check matrix of 𝐶23 from the generator 

matrix 𝐺23. Thus, 

𝐻23 =

(

 
 
 
 
 
 
 
 
 

0 1 1
0 0 1
1 0 0

0 1 1
1 0 1
1 0 1

0 0 0
1 0 0
1 0 1

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

1 0 0
0 1 0
0
0
0
0

0
0
0
0

1
0
0
0

0 0 0
0 0 0
0
1
0
0

0
0
1
0

0
0
0
1)

 
 
 
 
 
 
 
 
 

 

Moreover, 𝐻23 is a generator matrix of the dual code 𝐶23
⊥. 

Conclusion and Suggestions 
 
In this paper, we defined a polynomial set 𝑓𝑟𝑛 with 

recursive formulae over 𝐺𝐹(2). 𝑓𝑟𝑛  has polynomials with 
degree equal to or less than 𝑛. We encode elements of 𝑓𝑟𝑛 
using a 𝑝(𝑥) irreducible polynomial with the format 

𝑥2
𝑛−1 + 𝑥𝑠 + 1. We obtained a new polynomial set 𝐹𝑟𝑛 =

𝑝(𝑥)𝑓𝑟𝑛. 𝐶𝑟𝑛 is a code corresponding to 𝐹𝑟𝑛. We give 
coding and decoding algorithms for the code 𝐶𝑟𝑛. This 
study focused on a polynomial set, polynomial code, a 
generator matrix, and a parity-check matrix of 𝐶𝑟𝑛. To 
extend this study, one could study the same topic on finite 
fields 𝐺𝐹(𝑞). 
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