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Abstract: In this study, a brief summary about quaternions and quaternionic curves are
firstly presented. Also, the definition of focal curve is given. The focal curve of a smooth
curve consists of the centers of its osculating hypersphere. By using this definition and the
quaternionic osculating hyperspheres of these curves, the quaternionic focal curves in the
spaces Q and Qν with index ν = {1,2} are discussed. Some relations about spatial semi-
real quaternionic curves and semi-real quaternionic curves are examined by using focal
curvatures and "scalar Frenet equations" between the focal curvatures. Then, the notions:
such as vertex, flattenings, a symmetry point are defined for these curves. Moreover, the
relation between the Frenet apparatus of a quaternionic curve and the Frenet apparatus of
its quaternionic focal curve are presented.

Kuaterniyonik Fokal Eğriler Üzerine

Anahtar Kelimeler
Kuaterniyonlar,
Kuaterniyonik eğriler,
Oskülatör hiperküre,
Fokal eğriler,
Yarı-Öklidyen uzay

Özet: Bu çalışmada, ilk olarak kuaterniyonlar ve kuaterniyonik eğriler hakkında kısa
bir özet sunulmuş, ayrıca fokal eğri tanımı verilmiştir. Düzgün bir eğrinin fokal eğrisi
oskülatör hiperküresinin merkezlerinden oluşur. Bu tanım ve bu eğrilerin kuaterniyonik
oskülatör hiperküreleri kullanılarak, ν = {1,2} olmak üzere Q ve Qν uzaylarında ku-
aterniyonik fokal eğri tanımı ele alınmıştır. Uzaysal yarı-reel kuaterniyonik eğriler ve
yarı-reel kuaterniyonik eğriler hakkında bazı ilişkiler, fokal eğrilikler ve fokal eğriler
arasındaki "skalar Frenet denklemleri" kullanılarak verilmiştir. Ayrıca bu eğriler için tepe
noktası, basıklık ve simetri noktası gibi kavramlar tanımlanmıştır. Bunların yanında bir
kuaterniyonik eğrinin Frenet elemanları ve onun kuaterniyonik fokal eğrisinin Frenet
elemanları arasındaki ilişki sunulmuştur.

1. Introduction

The quaternions were first introduced by William R.
Hamilton in 1843. It is a number system that extend the
complex numbers and there is a strictly correspondence
between the quaternion set and four-dimensional vector
space E4. Addition, multiplication by scalar and quater-
nion multiplication are defined on the set of quaternions.
The addition and scalar multiplication of quaternions are
defined same as in the Euclidean space E4. An effectual
feature of quaternions is that the quaternion multiplication
between two quaternions is noncommutative.

Besides, the product of two elements of the set of quater-
nions necessitates a choice of basis for E4. Every member
of this basis, as usual denoted as e1,e2,e3 and e4 = 1,
can be written uniquely as ae1 + be2 + ce3 + de4, where
a,b,c and d are real numbers. Therefore, quaternions are
usually written ae1 + be2 + ce3 + de4, suppressing the
basis element e4 = 1 [1].

In 1987, the properties of smooth quaternionic curves
in the Euclidean spaces E3 and E4 are examined by [2].
Elements of E4 were identified with quaternions. The
Frenet-Serret formulas, which prove geometric properties
of the curve itself irrespective of any motion, were given
by these researchers for quaternionic curves. After
that, Frenet-Serret formulas are given by Tuna in [3] in
semi-Euclidean space for quaternionic curves. By the
aid of these formulae, remarkable studies of quaternionic
curves are worked in literature [4, 5].

In E3, there exists a unique sphere which contacts a curve
α at the third order at α(0). The intersection of this sphere
with the curves’ osculating plane is a circle which contacts
at the second order at α(0), [6–8]. This notion examined
with regards to real quaternionic curves in E4 by [9]. In
[10], the osculating sphere and the osculating circle of a
curve are obtained in semi-Euclidean spaces E3

1, E4
1 and

E4
2. Additionally, the definition of the osculating spheres
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for semi-real quaternionic curves in E4
2 was presented by

[11].

On the other hand, R. Uribe-Vargas investigated the
concept of the focal geometry and observed the properties
of the focal curves [12]. The notion of the focal curve of a
smooth curve of α consists of the centers of its osculating
sphere. The focal curve is represented by Cα for the main
curve α such that Cα = α +∑ciNi, 1≤ i≤ n, where Ni is
the Frenet-Serret apparatus of α . In these statement, ci is
called focal curvatures of α , [12].

In [12], some definitions, results and theorems were
given with respect to focal curvatures. Also, by using
focal curves’ notations, the the results for the curves
in the Euclidean n-space were examined. Besides, the
focal curvatures of a non-lightlike curve in Minkowski
(m+1)-space which satisfy the “scalar Frenet equations”
were investigated by [13]. By using the focal curvatures,
he gave necessary and sufficient conditions for a point
of a non-lightlike curve to be a vertex. Moreover, the
fundamental results of the focal curves which defined
in En were given by favour of Darboux vector. The
relationships between the focal curves and the concept of
2-planar [14]. H. Şimşek investigated some characteristic
features of focal curves and focal curvatures with regard
to Darboux frame on the timelike and spacelike surfaces
[15]. Singularities of focal surfaces of null Cartan curves
in Minkowski 3-space were studied by Wang and et.al.
[16]. Lightlike hypersurfaces and lightlike focal sets
of null Cartan curves in Lorentz-Minkowski spacetime
were given by Liu and Wang [17]. The focal curves of a
null Cartan curve was examined by [18]. Furthermore,
different applications of focal curves were given in the
studies [19–21].

In this present paper, we will examine the real quaternionic
and semi-real quaternionic focal curves in original sections
3-5 by using the quaternionic osculating hyperspheres and
the Frenet-Serret formulas in the spaces Q and Qν . Then,
we will obtain some characterizations of real quaternionic
focal curves with the aim of focal curvatures.

2. Preliminaries

In this section, the fundamental information about the
quaternions in the spaces E4, E3

1 and E4
2 are briefly pre-

sented, [1].

i) Real Quaternions

In the Euclidean space E4, a real quaternion consists of a
set of four ordered real numbers a,b,c,d with four units
e1,e2,e3 and e4, respectively such that: q = ae1 + be2 +
ce3+de4 or q=Vq+Sq, where the symbols Sq = d (scalar
part of q) and Vq = ae1 +be2 +ce3 (vector part of q). The
three units e1,e2,e3 and e4 have the following properties:{

ei× ei =−e4, (e4 =+1, 1≤ i≤ 3)
ei× e j = ek =−e j× ei, ( 1≤ i, j ≤ 3) .

We symbolize all real quaternions by Q. The multiplication
p = Vp +Sp and q = Vq +Sq is given below:

p×q = SpSq−
〈
Vp,Vq

〉
+SpVq +SqVp +Vp∧Vq, ∀p,q ∈Q,

(1)
where the symbols “〈,〉” and “∧ ” represent the scalar and
cross products in E3. The conjugate of q is denoted by q
and defined as follows:

q = Sq−Vq = de4−ae1−be2− ce3.

This conjugate provides the following bilinear form:

〈 ,〉 : Q×Q → R
(p,q) → h(p,q) = 1

2 (p×q+q× p) for E4.

This bilinear form is called quaternion inner product. The
norm of q is denoted by

‖q‖2 = q×q = q×q = a2 +b2 + c2 +d2, ∀q ∈Q.

ii) Semi-Real Quaternions

In the semi-Euclidean space E4
2, a semi-real quaternion

is written by q = ae1 + be2 + ce3 + de4 or q = Vq + Sq,
where the symbols Sq = d (scalar part of q) and Vq =
ae1 +be2 + ce3 (vector part of q. The units e1,e2,e3 and
e4 have the following properties:

ei× ei = −εei , 1≤ i≤ 3, e4 = 1
ei× e j = εeiεe j ek, 1≤ i, j,k ≤ 3, in E3

1
ei× e j = −εeiεe j ek, 1≤ i, j,k ≤ 3, in E4

2,

where (i jk) is an even permutation of (123) [4]. The
symbol εei means that:

εei =

{
−1, ei timelike
+1, ei spacelike.

We denote all semi-real quaternions by Qν with an index
ν = {1,2} such that

Qν =

{
q| q = ae1 +be2 + ce3 +de4; a,b,c,d ∈ R, ei ∈ E3

1,
hν = (ei,ei) = εei ,1≤ i≤ 3

}
where the hν is the h-inner product. For every p,q ∈Qν ,
the h-inner product hν : Qν ×Qν → R is defined by:

h1(p,q) = 1
2 [εpεq (p×q)+ εqεp (q× p)] for E3

1

and

h2(p,q) =− 1
2 [εpεq (p×q)+ εqεp (q× p)] for E4

2.

The quaternion multiplication of p and q is given below:

p×q = SpSq−
〈
Vp,Vq

〉
+SpVq +SqVp +Vp∧Vq, ∀p,q ∈Qν ,

(2)
where the symbols “〈,〉” and “∧ ” represent the scalar and
cross products in E3

1. The conjugate of q is denoted by q
and defined by q = Sq−Vq = de4−ae1−be2− ce3.
The real number [hν(q,q)]1/2 is called the norm of q and
symbolized by ‖q‖. Thus

‖q‖2 = |hν(q,q)|=
∣∣a2

εe1 +b2
εe2 + c2

εe3 +d2∣∣
for ν = {1,2}, [22]. Furthermore, if h(p,q) = 0, then p
and q are orthogonal. If q+q = 0,q ∈Qν , then q is called
a spatial semi-real quaternion [3]. If ‖q‖ = 1, then q is
called unit semi-real quaternion.
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iii) The Frenet-Serret formulas

The Frenet-Serret formulas for real quaternionic curves in
the Euclidean spaces E3, E4 and for semi-real quaternionic
curves in the semi-Euclidean spaces E3

1, E4
2 are given

namely:

Let
α : [0,1]⊂ R →Q

s → α(s) =
3
∑

i=1
αi(s)ei,

be an unit speed curve with nonzero curvatures {k,r} and
the Frenet frame {t,n1,n2}. Then, Frenet-Serret formulas
for α in E3 are defined by

t′(s) = kn1(s)
n′1(s) =−kt(s)+ rn2(s)
n′2(s) =−rn1(s),

(3)

where k is the principal curvature and r is torsion of α , [2].

Let

β : [0,1]⊂ R →Q

s → β (s) =
4
∑

i=1
αi(s)ei, (e4 = 1),

be an unit speed curve with nonzero curvatures
{K,k,(r−K)} and the Frenet frame {T,N1,N2,N3}.
Then, Frenet-Serret formulas for β in E4 are defined by

T′(s) = KN1(s)
N′1(s) =−KT(s)+ kN2(s)
N′2(s) =−kN1(s)+(r−K)N3(s)
N′3(s) =−(r−K)N2(s),

(4)

where K is the principal curvature, k is torsion and (r−K)
is bitorsion of β , [2].

Let
γ : [0,1]⊂ R →Qν

s → γ(s) =
3
∑

i=1
γi(s)ei,

be an arc-length curve with nonzero curvatures {k,r} and
the Frenet frame {t,n1,n2}. Then, Frenet-Serret formulas
for γ in E3

1 are given by

t
′
(s) = εn1kn1(s)

n
′
1(s) =−εtkt(s)+ εn1rn2(s)

n
′
2(s) =−εn2rn1(s)

(5)

where k is the principal curvature, r is torsion of γ and
〈t,t〉p = εt, 〈n1,n1〉p = εn1 , 〈n2,n2〉p = εn2 , [3].

Similarly, let

θ : [0,1]⊂ R →Qν

s → θ(s) =
4
∑

i=1
γi(s)ei, (e4 = 1),

be an unit speed curve in E4
2 with nonzero curvatures

{K,k,(r−K)} and the Frenet frame {T,N1,N2,N3}. Then,
Frenet-Serret formulas for θ in E4

2 are defined by

T
′
(s) = εN1KN1(s)

N
′
1(s) =−εN1εtKT(s)+ εn1kN2(s)
N
′
2(s) =−εtkN1(s)+ εn1

(
r−KεTεtεN1

)
N3(s)

N
′
3(s) =−εN2

(
r−KεTεtεN1

)
N2(s),

(6)

where 〈T,T〉 = εT,〈N1,N1〉 = εN1 , 〈N2,N2〉 = εN2 and K =

εN1

∥∥∥T′(s)∥∥∥ , [3].

iv) Focal curves

Definition 2.1. The curve which originated of the centres
of the osculating hyperspheres of the fundamental curve is
introduced the focal curve. The focal curve is represented
by Cα for the main curve α .

For the focal curve, the following property can be given:

Cα = α +∑ciNi, 1≤ i≤ n

where ci and Ni are the focal curvatures and the Frenet-
Serret apparatus of α , respectively. Besides, the focal
curvatures of α satisfy the Frenet-Serret equations [12].

Theorem 2.2. Let Cα be the focal curve of α . Then the
focal curvatures are satisfied the following statement

κi =
∑cic′i
ci−1ci

, for i≥ 2

where κ ′i s are the curvatures of α [12].

3. Quaternionic Focal Curves

In this section, we will analyze quaternionic focal curves
of a unit speed real quaternionic curve β in Q.

Definition 3.1. Let us take the quaternionic curve

β : [0,1]⊂ R →Q

s → β (s) =
4
∑

i=1
αi(s)ei, (e4 = 1).

We consider a quaternionic sphere

〈x−M,x−M〉= (RM)2,

where M is origin, R is radius and x = (x1,x2,x3,x4). Let
us write

f (s) = 〈β (s)−M,β (s)−M〉− (RM)2.

If the followings hold

f (0) = 0, f ′(0) = 0, f ′′(0) = 0, f ′′′(0) =, f (4)(0) = 0, f (5) 6= 0,
(7)

then the sphere contacts at fourth order to β at β (0). This
sphere is called quaternionic osculating sphere in E4, [9].
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Theorem 3.2. The quaternionic focal curve of a smooth
real quaternionic curve β : [0,1]⊂ R→Q consists of the
centers its quaternionic osculating hyperspheres. At the
points that β have nonzero curvatures, the centers of the
quaternionic osculating hypersphere of β are well-defined.
In this situation, the quaternionic focal curve Cβ can be
written as

Cβ (s) = (β + c1N1 + c2N2 + c3N3)(s),

where

c1 =
1
K

c2 = − K′
K2k

c3 = −K′′Kk+2(K′)2k+(K′)2K+K2k3

K3k2(r−K)

are smooth functions and {T,N1,N2,N3} is the Frenet
frame of β .

Proof. Let us take a quaternionic sphere from the above
definition, f (s) = 〈β (s)−M,β (s)−M〉 − (RM)2 which
satisfies (7) and contacts at fourth order to β at β (0). From
the Frenet-Serret equations (4), we have

f ′(0) = 0 ⇒ f ′ = 2〈β ′,β −M〉= 0
⇒ 〈T,β −M〉= 0

f ′′(0) = 0 ⇒ f ′′ = 2[〈T′,β −M〉+ 〈T,β ′〉] = 0
⇒ 〈N1,β −M〉=− 1

K
f ′′′(0) = 0 ⇒ f ′′′ = K′〈N1,β −M〉−K2〈T,β −M〉

+Kk〈N2,β −M〉= 0
⇒ 〈N2,β −M〉= K′

K2k

f 4(0) = 0 ⇒ 〈N3,β −M〉= K′′Kk+2(K′)2k+(K′)2K+K2k3

K3k2(r−K)
.

(8)
Then, let us take the function as follows:

β (0)−M = λ1T+λ2N1 +λ3N2 +λ4N3. (9)

By using the equations (8) and (9), we obtained that

λ1 = 0

λ2 = 〈N1,β −M〉=− 1
K

λ3 = 〈N2,β −M〉= K′
K2k

λ4 = 〈N3,β −M〉= K′′Kk+2(K′)2k+K′k′K+K2k3

K3k2(r−K)
.

From the definition (3.1), β (s) can be written as follows:

Cβ (s) = (β + c1N1 + c2N2 + c3N3)(s),

where ci =−λi+1 for 1≤ i≤ 3.

Definition 3.3. Let β : [0,1]→ Q be a real quaternionic
curve and Cβ (s) = (β + c1N1 + c2N2 + c3N3)(s) be its
quaternionic focal curve. Then, ci are called ith quater-
nionic focal curvatures of β (1≤ i≤ 3).

Lemma 3.4. Let us take β in Q with nonzero curva-
tures {K,k,(r−K)} at any point and with Frenet frame
{T,N1,N2,N3}. The velocity vector C′

β
(s) of a quater-

nionic focal curve of β is proportional to the N3 vector of
β at the point s.

Proof. Let us consider

F : E4×R → R
(C,s) → FC(s) = 1

2 ||C−β (s)||2,

where the caustic family of F is given by the set:{
C ∈ E4 : ∃s ∈ R : F ′C(s) = 0 and F ′′C (s) = 0

}
.

Then we can write

−F =−
〈Cβ ,Cβ 〉

2
+ 〈C,β 〉−σ ,

where σ = 〈β ,β 〉
2 . Therefore, the following equation system

defines the focal curve Cβ (s) as below:

〈β ′,Cβ 〉−σ ′ = 0
〈β ′′,Cβ 〉−σ ′′ = 0
〈β ′′′,Cβ 〉−σ ′′′ = 0
〈β 4,Cβ 〉−σ4 = 0.

(10)

By differentiating each equation with respect to s, we have

〈β ′,C′
β
〉+ 〈β ′′,Cβ 〉−σ ′′ = 0

〈β ′′,C′
β
〉+ 〈β ′′′,Cβ 〉−σ ′′′ = 0

〈β ′′′,C′
β
〉+ 〈β (4),Cβ 〉−σ (4) = 0

〈β (4),C′
β
〉+ 〈β (5),Cβ 〉−σ (5) = 0.

(11)

By combining the equations (11) and (10) together, we
calculate

〈β ′,C′
β
〉= 0

〈β ′′,C′
β
〉= 0

〈β ′′′,C′
β
〉= 0.

(12)

Hence, C′
β
(s) is perpendicular to the osculating hyperplane

of β , i.e., C′
β
(s) and N3 are linearly dependent.

Theorem 3.5. The focal curvatures of a unit speed real
quaternionic curve β : [0,1]→Q, fulfill the below relation: 1

c′1
c′2

c′3−
((RM )2)′

2c3

=

[ 0 K 0 0
−K 0 k 0
0 −k 0 (r−K)
0 0 −(r−K) 0

][ 0
c1
c2
c3

]

for c3 6= 0. The above relation is called "scalar Frenet
equations".

Proof. Let Cβ (s) = (β + c1N1 + c2N2 + c3N3)(s) be a
quaternionic focal curve of β . By differentiating Cβ with
respect to arc-length of β and considering the equations
(4), we have

C′
β
= β ′+ c′1N1 + c′2N2 + c′3N3 + c1N′1 + c2N′2

+c3N′3

and we get

C′
β
= (1− c1K)T+(c′1− c2k)N1

+(c′2 + c1k− c3(r−K))N2 +(c′3 +(r−K)c2)N3.
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From the statement of Lemma (3.4), C′
β
(s) is proportional

to the vector N3 and the components of the vectors T,N1
and N2 are zero. Hence, we get

1 = c1K
c′1 = c2k
c′2 = −c1k+ c3(r−K).

(13)

So, we have C′
β
= (c′3 + (r−K)c2)N3. Due to the fact

that, RM satisfies the equation (RM)2 = ‖Cβ −β‖2.

Accordingly, we get the equation as follows:

((RM)2)′ = 2c3(c′3 +(r−K)c2).

Since c3 6= 0, we obtain that

c′3−
((RM)2)′

2c3
=−(r−K)c2.

The above equation together with the equation (13) proves
the theorem.

Definition 3.6. A vertex of a real quaternionic curve of β

in Q is a point at least 6-point contact with its quaternionic
osculating hypersphere.

Definition 3.7. If a point contact osculating hyperplane
of β in Q at least 5, the point is called flattening of β .
For these points K 6= 0,k 6= 0,(r−K) = 0 and (r−K)′ 6=
0. These exists 4-point contact between flattenings and
ordinary points.

Definition 3.8. The point where the center of the osculat-
ing hypersphere lies in the osculating hyperplane is called
symmetry point of a real quaternionic curve in Q, namely
c3 = 0.

Lemma 3.9. A non-flattening point β (s) of β in Q is a
vertex of⇔C′

β
= 0 at that point.

Proof. Let β (s) be a vertex of β , then moreover equation
system (10), we have the equation as follows:

〈β (5),Cβ 〉−g(5) = 0. (14)

By substituting (14) with the system (11), we obtain the
equation as below:

〈β (4),C′
β
〉= 0.

The above equation together with (14) implicates that for
a non flat vertex β (s) of β , C′

β
(s) is zero.

To the contrary, if β (s0) is non-vertex, then the correspond-
ing point Cβ satisfies:

〈β (5)(s0),Cβ (s0)〉−g(5)(s0) 6= 0. (15)

The equation (15) and the equation (12) imply that C′
β
(s) 6=

0 for s = s0.

Theorem 3.10. A non-flattening of β in Q , is a vertex⇔
c′3 +(r−K)c2 = 0.

Proof. With reference to Lemma (3.9), we get C′
β
= (c′3 +

(r−K)c2)N3 = 0. Hence, c′3 +(r−K)c2 = 0.

Corollary 3.11. β is spherical if and only if

c′3 +(r−K)c2 = 0.

Theorem 3.12. The curvatures of unit speed curve β in
Q, can be obtained in the sense of the quaternionic focal
curvatures as follows:

K = 1
c1

k =
c1c′1
c1c2

r−K =
c2c′2+c1c′1

c2c3
.

Proof. It is apparent from the Theorem 3.2.

Theorem 3.13. Let β (s) ∈Q be a real quaternionic curve
without flattenings. Let {T,N1,N2,N3} be its Frenet frame
and {K,k,(r−K)} be its quaternionic curvatures. Besides,
let {Tc,N1

c,N2
c,N3

c} and {Kc,kc,(r−K)c} be Frenet
frame and curvatures of Cβ , respectively. For all non-
vertex β (s) of β , let ε(s) be the sign of (c′3 +(r−K)c2)(s)
and δn(s) be the sign of ((−1)nε(r−K))(s),1 ≤ n ≤ 3.
For any non-vertex of β , the above statements hold:

i) The Frenet frame
{

Tc,Nc
1,N

c
2,N

c
3
}

of Cβ at Cβ (s) is
given by

Tc = εN3
Nc

1 = δ1N2
Nc

2 = δ2N1
Nc

3 = ±T,

where we write ±T so as to have a positive basis.

ii) There is a relation between the curvatures
{Kc,kc,(r − K)c} of Cβ (s) and the curvatures
{K,k,(r−K)} of β such as

Kc

(r−K)
=

kc

k
=

(r−K)c

K
=

1
c′3 +(r−K)c2

,

where the sign of (r−K)c is equal to δ3 times the
sign chosen in ±T. Thus, the Frenet matrix of Cβ at
Cβ (s) is

1
c′3 +(r−K)c2


0 (r−K) 0 0

−(r−K) 0 k 0
0 −k 0 ±δ3K
0 0 ±δ3K 0

 .
Proof. Let t be arc-length parameter of Cβ at Cβ (s). Sup-
pose that the orientations of the unit speed Cβ (s) and Cβ (t)
coincide. It is obvious that C′

β
6= 0 for any vertex of β .

Hence, we can write the unit tangent vector of Cβ such that

Tc =
C′

β

‖C′
β
‖
= εN3, (16)
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where ε =
c′3+(r−K)c2
|c′3+(r−K)c2|

.

Besides, for any non-vertex

ds
dt

=
1

c′3 +(r−K)c2
. (17)

If we derive the equation (16) with respect to t and perform
the equations (4) considering that the curvatures {K,k,(r−
K)} are always positive, we have

Nc
1 = δ1N2

and

Kc =
(r−K)

c′3 +(r−K)c2
.

Moreover, we use equation (17) to obtain Nc
2 = δ2N1 and

kc = k
c′3+(r−K)c2

.

4. Spatial Semi-Real Quaternionic Focal Curves

In this section, we will examine spatial semi-real quater-
nionic focal curves of a unit speed spatial semi-real quater-
nionic curve in Qν .

Definition 4.1. Let us take the spatial semi-real quater-
nionic curve

γ : [0,1]⊂ R →Qν

s → γ(s) =
3
∑

i=1
γi(s)ei,

where {q ∈ Qν |q+ q = 0}. Let us take a spatial semi-
real quaternionic sphere 〈y−m,y−m〉p = r2

m, where m
is origin, r is radius and y = (y1,y2,y3). Let us define
h(s) = 〈γ(s)−m,γ(s)−m〉p− r2

m. If the undermentioned
relations hold

h(0) = h′ (0) = h′′ (0) = h
′′′
(0) = 0, h(4) 6= 0, (18)

then the sphere contacts at third order to γ at γ (0). This
sphere is called spatial semi-real quaternionic osculating
sphere for spatial real quaternionic curves in E3

1 [11].

Theorem 4.2. The spatial semi-real quaternionic focal
curve of γ : [0,1] ⊂ R→ Qν consists of the centers its
semi-real quaternionic osculating hyperspheres. If all the
curvatures of γ are nonzero, then the centers of this hy-
persphere are well-defined and in this manner, the spatial
semi-real quaternionic focal curve Cγ can be written as
follows:

Cγ(s) = (γ + c1n1 + c2n2)(s),

where c1,c2 are smooth functions and {t,n1,n2} is Frenet
frame of γ . And c1,c2 are defined by

c1 = εt
εn1 k

c2 = − εtk′

k2r .
(19)

Proof. From the above mentioned definition (4.1), we can
take the function h(s) = 〈γ(s)−m,γ(s)−m〉− r2

m which
satisfies (18). By using the equations (18), we obtain that

h′(0) = 0 ⇒ h′ = 2〈γ ′,γ−m〉= 0⇒ 〈t,γ−m〉= 0
h′′(0) = 0 ⇒ h′′ = 2[〈t′,γ−m〉+ 〈t,γ ′〉] = 0

⇒ 〈n1,γ−m〉=− εt
εn1 k

h′′′(0) = 0 ⇒ h′′′ = εn1k′〈n1,γ−m〉
+εn1k〈−εtkt+ εn1rn2,γ−m〉= 0
⇒ 〈n2,γ−m〉= εtk′

k2r .
(20)

Then, let us take the function as follows:

γ(0)−m = λ1t+λ2n1 +λ3n2. (21)

By taking into account the equations (20) and (21), we
have

λ1 = 0
λ2 = − εt

εn1 k

λ3 = εtk′

k2r .

From the definition (4.1), Cγ(s) can be written namely:

Cγ(s) = (γ + c1n1 + c2n2)(s),

where ci =−λi+1 for 1≤ i≤ 2.

Definition 4.3. Let Cγ(s)= (γ+c1n1+c2n2)(s) be spatial
semi-real quaternionic focal curve of γ . Then, c1 and c2
are called spatial semi-real quaternionic focal curvatures
of γ .

Lemma 4.4. Let

γ : [0,1] →Qν

s → γ(s) =
3
∑

i=1
γi(s)ei

be a spatial semi-real quaternionic curve with nonzero
curvatures {k,r} and Frenet frame {t,n1,n2}. At the point
s, the velocity vector C′γ(s) and n2 vector of a spatial semi-
real quaternionic focal curve of γ are linearly dependent.

Proof. Let us take into consideration

F : E3
1×R → R
(C,s) → FC(s) = 1

2 ||C− γ(s)||2,

where the caustic family of F is given by the set{
C ∈ E3

1 : ∃s ∈ R : F ′C(s) = 0 and F ′′C (s) = 0
}
.

Then we can write

−F =−
〈Cγ ,Cγ〉

2
+ 〈Cγ ,γ〉−ρ,

where ρ = 〈γ,γ〉
2 . Then, the following equation system

defines the focal curve Cγ(s) as below:

〈γ ′,Cγ〉−ρ ′ = 0
〈γ ′′,Cγ〉−ρ ′′ = 0
〈γ ′′′,Cγ〉−ρ ′′′ = 0.

(22)
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By differentiating each equation with respect to s, we ob-
tain that

〈γ ′,C′γ〉+ 〈γ ′′,Cγ〉−ρ ′′ = 0
〈γ ′′,C′γ〉+ 〈γ ′′′,Cγ〉−ρ ′′′ = 0
〈γ ′′′,C′γ〉+ 〈γ(4),Cγ〉−ρ(4) = 0.

(23)

By combining the equation (23) and (22) together, we get

〈γ ′,C′γ〉= 0
〈γ ′′,C′γ〉= 0. (24)

So, the velocity vector C′γ(s) is perpendicular to the os-
culating hyperplane of γ , i.e., C′γ(s) and n2 are linearly
dependent.

Theorem 4.5. The focal curvatures of γ : [0,1]→Qν , sat-
isfy the below equations called "scalar Frenet equations": εt

εn2c′1
c′2
εn1
− ((rm)

2)′

2εn1 εn2 c2

=

 0 k 0
−k 0 r
0 −r 0

 0
c1
c2

 (25)

for c2 6= 0.

Proof. Let Cγ(s) = (γ + c1n1 + c2n2)(s) be a spatial semi-
real quaternionic focal curve. By differentiating Cγ with
respect to s and considering the equations (5), we have

C′γ = (1− εtkc1)t+(c′1− εn2rc2)n1 +(c′2 + εn1rc1)n2.

The statement of the Lemma (4.4) C′γ(s) is proportional to
the vector n2 and the components of the vectors t and n1
are zero. Therefore, the following equations are calculated:

1 = εtkc1
c′1 = εn2rc2
C′γ = (c′2 + εn1rc1)n2.

(26)

Owing to the fact that, (rm)
2 = ‖Cγ − γ‖2, we get

((rm)
2)′ = 2εn2c2(c′2 + εn1rc1).

Finally, we have

c′2 =
((rm)

2)′

2εn2c2
− εn1rc1

for c2 6= 0. The last equation together with (26) proves the
theorem.

Definition 4.6. Let γ ∈Qν . Then,

i) A vertex of a γ is a point at least 5-point contact with
its spatial semi-real quaternionic osculating hyper-
sphere.

ii) If a point of γ has at least 4-point contact with osculat-
ing hyperplane of γ is called flattening of γ . For these
points k 6= 0,r = 0 and r′ 6= 0. These exists 3-point
contact between flattenings and ordinary points.

iii) The point where the center of the semi-real quater-
nionic osculating hypersphere lies in the osculating
hyperplane is called symmetry point of γ . For these
points c2 = 0.

Lemma 4.7. A non-flattening point of γ in Qν is a vertex
⇔C′γ(s) = 0.

Proof. Let γ(s) be a vertex of γ , so we have

〈γ(4),Cγ(s)〉−h(4) = 0. (27)

By using (27) in the system (23), we obtain the equation
as below:

〈γ(3),C′γ(s)〉= 0.

Furthermore, the last equation and the equation (24) state
that for a non flat vertex γ(s) of γ , the vector C′γ(s) is zero.

The sufficiency condition, if γ(s0) is non-vertex then the
corresponding point of Cγ has the following relation:

〈γ(4)(s0),Cγ(s0)〉−h(4)(s0) 6= 0. (28)

The equation (28) and (26) means that C′γ(s) 6= 0 for s =
s0.

Theorem 4.8. A non-flattening of γ in Qν , is a vertex⇔
c′2 + εn1rc1 = 0.

Proof. According to the Lemma (4.7), we get C′γ = (c′2 +
εn1rc1)n2 = 0. In this way, c′2 + εn1rc1 = 0.

Corollary 4.9. γ in Qν is spherical if and only if c′2 +
εn1rc1 = 0.

Theorem 4.10. The curvatures of γ in Qν can be calcu-
lated with regards to semi-real quaternionic focal curva-
tures of γ , by the formulae:

k = εt
εn1 c1

r = − εt c′1
c2

1c2
.

Proof. It is clear from the Theorem 4.2.

Theorem 4.11. Let γ(s) ∈ Qν be a spatial semi-real
quaternionic curve without flattenings. Let {t,n1,n2}
be its Frenet frame and {k,r} be its semi-real quater-
nionic curvatures. Additionally, let

{
tc,nc

1,n
c
2
}

and
{Kc,kc,(r−K)c} be Frenet frame and curvatures of Cγ ,
respectively. For all non-vertex γ(s) of γ , let ε(s) be
the sign of ((c′2 + εn1rc1)n2)(s) and δn(s) be the sign of
((−1)nεr)(s),n = 1,2. For any non-vertex γ(s), the fol-
lowings hold:

i) The Frenet frame
{
tc,nc

1,n
c
2
}

Cγ at Cγ(s) is given as
below:

tc = εn2
nc

1 = δ1n1
nc

2 = ±t,

where we write ±t so as to have a positive basis.

ii) There exists the following relation between kc and rc

such that:

kc

r
=

rc

k
=

1
c′2 + εn1rc1

.
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The sign of r is equal to δ2 times the sign chosen in
±t. So, the Frenet matrix of Cγ at Cγ(s) given as
below:

1
c′2 + εn1rc1

 0 r 0
−r 0 ±δ2k
0 ±δ2k 0

 .
Proof. Let t be arc-length parameter of Cγ at Cγ(s). We
suppose that Cγ(s) and Cγ(t) coincide. For any non-vertex
γ(s), we know that C′γ 6= 0. So we can write the unit tangent
vector of Cγ(s) such that

tc =
C′γ
‖C′γ‖

= εn2, (29)

where ε =
c′2+εn1 rc1
|c′2+εn1 rc1|

. Additionally, for any non-vertex

ds
dt

=
1

c′2 + εn1rc1
. (30)

By deriving the equation (29) with respect to t and per-
form the equations (5) with taking into account that the
curvatures {k,r} are always positive, we get

nc
1 = δ1n1

and

kc =
r

c′2 + εn1rc1
.

In this way, we use (30) equation to obtain nc
2 = ±t and

rc = r
c′2+εn1 rc1

.

5. Semi-Real Quaternionic Focal Curves

In this section, we will investigate semi-real quaternionic
focal curves of a unit speed semi-real quaternionic curve
in Qν . All of the proofs belongs to lemmas and theorems
can be easily calculated similarly by the same way of the
section 4.

Definition 5.1. Let us take the semi-real quaternionic
curve

θ : [0,1]⊂ R →Qν

s → θ(s) =
4
∑

i=0
γi(s)ei.

Let us take a semi-real quaternionic sphere
〈X−M ,X−M 〉 = R2

M , where M is origin,
R is radius, and X = (X1,X2,X3,X4). Let take
g(s) = 〈θ(s)−M ,θ(s)−M 〉 − R2

M . If the below
relations hold:

g(0) = g′ (0) = g′′ (0) = g
′′′
(0) = g4(0) = 0,g(5) 6= 0,

(31)
then the sphere contacts at fourth order to θ at θ (0). The
sphere is called semi-real quaternionic osculating sphere
for semi-real quaternionic curves in E4

2 [11].

Theorem 5.2. Let θ be a smooth curve in Qν . Then, its
semi-real quaternionic focal curve is defined by its semi-
real quaternionic osculating hyperspheres where all its
curvatures different from zero. Based upon these state-
ments, the semi-real quaternionic focal curve Cθ can be
written as

Cθ (s) = (θ + c1N1 + c2N2 + c3N3)(s),

where ci,1≤ i≤ 3 are smooth functions and {T,N1,N2,N3}
is Frenet frame of θ . c1,c2,c3 are defined as follows:

c1 = εT
εN1 K

c2 = − εTK′

εN1 εn1 K2k

c3 =
εT[K′′+K′k′+εn1 εtK3]

εN1 K2k[r−KεTεtεN1 ]
.

Definition 5.3. Let θ ∈Qν and Cθ (s) = θ +c1N1+c2N2+
c3N3, be its semi-real quaternionic focal curve. Then,
ci,1 ≤ i ≤ 3 are called ith semi-real quaternionic focal
curvatures of θ .

Lemma 5.4. Let θ ∈ Qν with nonzero curvatures
{K,k,(r − K)} at any point and Frenet frame
{T,N1,N2,N3}. C′

θ
(s) and N3 are linearly dependent

at the point s.

Theorem 5.5. The focal curvatures of θ : [0,1]→ Qν ,
satisfy the above "scalar Frenet equations":


1
c′1
c′2

c′3−
((RM )2)′

2εN3 c3

=


0 εN1 εtK 0 0
0 0 εtk 0
0 εn1 k 0 −εn2 (r−KεTεtεN1 )
0 0 −εn1 (r−KεTεtεN1 ) 0


 0

c1
c2
c3



for c3 6= 0.

Definition 5.6. Let θ be a semi-real quaternionic curve in
Qν . Then,

a) A vertex of θ is a point at least 6-point contact with
its semi-real quaternionic osculating hypersphere.

b) If a point of θ has at least 5-point contact with osculat-
ing hyperplane of θ is called flattening of θ . For these
points K 6= 0,k 6= 0,(r−K) = 0 and (r−K)′ 6= 0.
These exists 4-point contact between flattenings and
ordinary points.

c) A symmetry point of θ is a point at which the center
of the osculating hypersphere lies in the osculating
hyperplane, in other words c3 = 0.

Lemma 5.7. A non-flattening point of θ(s) ∈Qν is a ver-
tex if and only C′

θ
= 0.

Theorem 5.8. A non-flattening point of θ in Qν is a vertex
⇔ c′3 + εn1(r−KεTεtεN1)c2 = 0

Corollary 5.9. θ in Qν is spherical if and only if c′3 +
εn1(r−KεTεtεN1)c2 = 0.

364



N. (Bayrak) Gürses et al. / On the Quaternionic Focal Curves

Theorem 5.10. The curvatures of θ in Qν , can be ob-
tained with respect to the semi-real quaternionic focal
curvatures of θ given as follows:

K = −εT
εN1 c1

k =
c′1
εN1

r−K =
c2c′2+c1c′1

c2c3
.

Theorem 5.11. Let θ(s) ∈ Qν be a semi-real quater-
nionic curve without flattenings. Let {T,N1,N2,N3} be its
a Frenet frame and {K,k,(r−K)} be semi-real quater-
nionic curvatures of θ . Similarly, let

{
Tc,Nc

1,N
c
2,N

c
3
}

and
Kc,kc,(r−K)c be Frenet frame and curvatures of Cθ , re-
spectively. For each non-vertex θ(s) of θ , let ε(s) be the
sign of (c′3+εn1(r−KεTεtεN1)c2)(s) and δn(s) be the sign
of ((−1)nε(r−K))(s),n = 1,2,3. For any non-vertex θ(s)
the followings hold:

i) The Frenet frame of Cθ at Cθ (s) written such that

Tc = εN3
Nc

1 = δ1N2
Nc

2 = δ2N1
Nc

3 = ±T,

where we write ±T so as to have a positive basis.

ii) There is a relation between the curvatures
{Kc,kc,(r − K)c} of Cθ (s) and the curvatures
{K,k,(r−K)} of θ such as

Kc

(r−K)
=

kc

k
=

(r−K)c

K
1

c′3 + εn1(r−KεT εtεN1)c2
,

where the sign of (r−K)c is equal to δ3 times the
sign chosen in ±T. That’s why, the Frenet matrix of
Cθ at Cθ (s) is

1
c′3 + εn1 (r−KεT εt εN1 )c2


0 (−r−K) 0 0

−(r−K) 0 k 0
0 −k 0 ±δ3K
0 0 ±δ3K 0

 .

Example 1. Let us take the following spatial unit speed
semi-real quaternionic curve

γ : [0,1]⊂ R →Qν

s → γ(s) = γ1(s)e1 + γ2(s)e2 + γ3(s)e3,

with nonzero curvatures {k,r} and the Frenet frame
{t,n1,n2} where {q ∈ Qν |q+ q = 0}. Let assume that
εe1 =−1,εe2 = εe3 = 1. Then γ is a timelike curve. Let us
show that the scalar Frenet equations (25) are satisfied by γ .

We can compute the Frenet invariants of γ such that ([23])

t= (γ1
′,γ2
′,γ3
′) ,

n1 =
1√

−γ ′′1
2+γ ′′2

2+γ ′′3
2
(γ1
′′,γ2

′′,γ3
′′) ,

n2 =
(−γ3

′γ ′′2 +γ2
′γ ′′3 , −γ3

′γ ′′1 +γ1
′γ ′′3 , γ2

′γ ′′1−γ1
′γ ′′2 )√

−γ1 ′
2+γ2 ′

2+γ3 ′
2 ,

k =
√
−γ1′′

2 + γ2′′
2 + γ3′′

2,

r = γ ′1(−γ ′′3 γ
(3)
2 +γ ′′2 γ

(3)
3 )+γ ′2(γ

′′
3 γ

(3)
1 −γ ′′1 γ

(3)
3 )+γ ′3(−γ ′′2 γ

(3)
1 +γ ′′1 γ

(3)
2 )

γ ′′1
2−γ ′′2

2−γ ′′3
2 .

By using the equations (19), we can compute the focal
curvatures of γ as follows:

c1 = − 1√
−γ1 ′′

2+γ2 ′′
2+γ3 ′′

2 ,

c2 =
γ1
′′γ1

(3)−γ2
′′γ2

(3)−γ3
′′γ3

(3)

√
−γ1 ′′

2+γ2 ′′
2+γ3 ′′

2
(

γ ′1(−γ ′′3 γ
(3)
2 + γ ′′2 γ

(3)
3 )+ γ ′2(γ

′′
3 γ

(3)
1 − γ ′′1 γ

(3)
3 )

+γ ′3(−γ ′′2 γ
(3)
1 + γ ′′1 γ

(3)
2 ).

)

Then, we have

εn2c′1 = −γ1
′′γ1

(3)+γ2
′′γ2

(3)+γ3
′′γ3

(3)

(−γ1 ′′
2+γ2 ′′

2+γ3 ′′
2)

3/2

c′2
εn1
− ((rm)

2)′

2εn1 εn2 c2
= −

γ ′1(−γ ′′3 γ
(3)
2 + γ ′′2 γ

(3)
3 )+ γ ′2(γ

′′
3 γ

(3)
1 − γ ′′1 γ

(3)
3 )

+γ ′3(−γ ′′2 γ
(3)
1 + γ ′′1 γ

(3)
2 )

(−γ1 ′′
2+γ2 ′′

2+γ3 ′′
2)

3/2 .

It is obvious that εt = kc1 =−1. Also, if we calculate rc2
and −rc1, we can see that εn2 c′1 = rc2 and

c′2
εn1

− ((rm)
2)′

2εn1εn2c2
=−rc1.

It means that the scalar Frenet equations (25) are satisfied
by γ .

6. Discussion and Conclusion

In this study, the real quaternionic and semi-real quater-
nionic focal curves, consists of the centers of its osculating
hypersphere, in the spaces Q and Qν with index ν = {1,2}
have been considered. As a set, the space Q coincides
with the space E4. Similarly, Qν coincides with E3

1 and
E4

2, where ν = 1 and 2, respectively. By taking this fact
account, we have investigated some characterizations of
defined focal curves by using focal curvatures and "scalar
Frenet equations" between the focal curvatures. The no-
tions: such as vertex, flattenings, a symmetry point, have
been defined. Moreover, the relation between the Frenet
apparatus of a quaternionic curve and the Frenet apparatus
of its quaternionic focal curve has been presented.
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