
663 

  

Cumhuriyet Science Journal 

Cumhuriyet Sci. J., 45(4) (2024) 663-667 
DOI: https://doi.org/10.17776/csj.1511642 

 

 

│  csj.cumhuriyet.edu.tr  │ Founded: 2002 ISSN: 2587-2680    e-ISSN: 2587-246X Publisher: Sivas Cumhuriyet University 

 

A Comparative study of DNA Alignment Algorithms and Boosting Performance 
Using Different Compilation Strategies  

Osman Doluca 1,a,* 
1 Department of Biomedical Engineering, Izmir University of Economics, Türkiye 

*Corresponding author  

Research Article ABSTRACT 
 

History 
Received: 06/06/2024 
Accepted: 03/12/2024 
 
 

 
This article is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 
International License (CC BY-NC 4.0) 

With the development of next generation sequencing technologies, the requirement of higher performance 
from DNA and Protein sequence alignment algorithms has become even greater. This work is a systematic 
comparison of different compilation strategies for two common DNA or Protein sequence alignment algorithms, 
Needleman-Wunsch and Smith-Waterman, using Python programming language. It aims to investigate the 
performance benefits of already widely used Biopython’s pairwise alignment module versus different 
compilation approaches of an in-house software. It is shown that using Numba just-in-time compiler provide 
greater performance overall in comparison to PyPy and Cython compilers or the Biopython module. This work 
may increase the efficiency of software prototyping where large-scale sequence alignment is necessary. 
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Introduction 
 

With the development of next generation sequencing 
(NGS) the amount of available biological data, in terms of 
genome or exome sequences, has been dramatically 
increasing. The alignment methods have been becoming 
more and more relevant as the necessity to process the 
raw NGS data or to investigate the similarities between 
sequences for the discovery of their functional properties 
has been increasing. As the current NGS sequencing 
technologies are producing relatively short fragments of 
sequence information, ranging between 50 to 1000 bp, 
their alignment is quite computation exhausting process 
since a single stretch of continuous DNA sequence may be 
up to hundreds of millions bp long. [1] While the NGS 
technologies improve the count of the fragments read, 
the reading length tend to get even shorter, relying even 
more to the computation for their alignment to produce 
the genome [2] with the exception of nanopore 
sequencing which is yet to become applicable. [3] 

Any solution to this problem has one of two 
approaches. One being, increasing the computational 
power, has long been market-driven endeavor. 
Unfortunately, as the Moore’s law is approaching its limits 
and a stagnation in the increase of the processing power 
of chips is imminent, any hardware-based solution is 
shifting towards multi-core chips instead of faster chips. 
[4] The other solution is implementing alternative 
algorithms to the alignment problem. The two most 
commonly used algorithms, Needleman Wunsch (global) 
[5] and Smith Waterman (local) [6], and their variations [7] 
are known to provide the best alignment, but also the 
slowest as their implementations make use of multiple 2D 
matrices. New heuristic approaches are also developed 

however these approaches does not match the sensitivity 
of these two algorithms or their variations. [8-10] 

New approaches for processing biological data often 
requires software prototyping and testing, and the 
majority of the data scientists rely on high-level 
programming languages such as Python. The less time 
spent coding and high readability of such high-level 
languages is the foremost reason behind this preference. 
[11] In comparison, while the low-level programming 
languages such as C provide better the execution speed, 
the high complexity deters the scientists from using it. 
However, especially when it comes to NGS data analysis, 
speed may be more of an issue than many other factors 
due to sheer size of alignments required. The solution is 
often sought in accelerating the alignment algorithms. 
[12–14] Speed improvement is possible at the interpreter 
level, either through using modules that exploit pre-
compiled libraries or compilation of the code on the go, 
also known as just-in-time compilation. [15] There has 
been a number of approaches for improving the 
performance of SW algorithm, mostly through parallelism 
by performing calculations on FPGAs or GPU. [16-18] 
However, these are not available as modules for 
mainstream programming languages.  

Here we implement the global and local alignment 
algorithms including the affine gap extension developed 
by Gotoh et al. [5–7] We compare the performance 
improvements when rewritten using Numpy module, or 
compiled using Cython, Numba or PyPy. The performance 
improvements were also compared with pairwise2 
module of Biopython library. The code is made available 
online at http://github.com/odoluca/Fast-NW-and-SW-
Pairwise-alignment-using-numba-JIT/ 
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Method 
 
The affine gap penalty [7] variation of original global 

[5] and local [6] alignment algorithms was written using 
python 3.6+. For each local and global algorithms two 
other variations were written, one of which uses single 
scores for matches and mismatches or a substitution 
matrix. Substitution matrix is especially necessary for 
protein alignments as transition between amino acids do 
not have equal probabilities. Each of the four methods 
were rewritten in two forms; one for discovery of only the 
highest score while the other uses backtracking to reports 
the best (or one of the best) alignment(s). Together these 
variations yielded eight different methods. (Table 1) 

Each method was interpreted or compiled using 
different approaches. 1) Pure python approach uses only 
python 3.6+ syntax and built-in types. No external module 
was used. 2) Numpy approach incorporates ndarrays from 
Numpy module (1.14.2) for all matrices. 3) Cython 
(v0.29.12) was used to compile pure python or Numpy-
using code using cythonize method and “build_ext” 
argument to build all extensions. 4) Just-In-Time 
compilation using Numba module (v0.44.1) was used with 
both pure python or with Numpy. Because the Numba 
does not accept strings in “nopython” mode, all methods 
were written to accept two lists of integers as sequences 
to be aligned instead of lists of characters, as in strings, 
where each character indicates nucleotide or amino acid 
residues. An additional method is written to convert any 
protein, DNA or RNA sequence into a list of integers. All 
numba methods were compiled just-in-time in 
“nopython” and “cached” modes for optimum 
performance using “@jit(nopython=True, cached=True)” 
decoration. 5) finally, a 32-bit pypy compiler (v7.1.1) was 
used with pure python code to compare. All algorithms 
were written in two variations, “score only” and 
“backtrack”. The first one is where only scores are 
calculated, and the latter is where the best alignment is 
constructed by tracing back the path. Backtracking 
requires three additional matrices to keep track of the 
path. Additionally, Biopython’s pairwise2 alignment was 
used for comparison to view the performance 
improvements. Biopython was also tested in “score only” 
mode as well as “alignment” mode for equivalent 
comparison. 

Performance was measured using timeit module, 
aligning sequences with varying percentages of similarity 
and varying sizes of sequences. For each pairwise 
alignment, a sequence was generated randomly at first. 
The other sequence was obtained by introducing a 
number of mutations until a given percent similarity is 
obtained. Each mutation was introduced with 80% chance 
for the substitution, 10% for the insertions and deletions 
each. The percent similarity was calculated as a ratio of 
global alignment score of the alignment of the two 
sequences to the alignment of max possible sequence of 
any two sequence with the same lengths. The global 
alignment was performed using +1 for matches, -1 for 
mismatches and gaps. For each category a thousand 

sequence pairs were aligned and total processing times 
were found as summation. All tests were performed using 
timeit module with garbage collection off to increase 
accuracy. All module imports or any preprocessing is left 
out of performance testing and measurements were done 
only during sequence alignments. Every performance test 
was repeated five times and the best of five was reported. 
All tests were performed at AMD 1950X machine 
equipped with 128 GB ECC RAM with ECC-mode on and 
locked to the same core. All algorithms were previously 
run using random sequences and compared with 
Biopython’s pairwise2 module to confirm that the same 
results were produced before performance testing. 
 

Results and Discussion 
 
With varying features included in the algorithm eight 

different methods were written and tested in this work. 
The list of these methods and their features are listed in 
Table 1. Briefly substitution matrix feature enables 
different penalties for substitution between different 
residues. This is preferred especially if the mutations 
between particular residues is more common or expected 
than others. Another feature is called “backtracking” 
which enables production of a final alignment of the two 
sequences. Alternative, “score only” mode reports only 
the score of the best alignment which may be used as a 
measure of sequence similarity. This is often useful for 
construction of phylogenetic trees. Backtracking requires 
keeping of three additional matrices with a size of (n x m) 
with n and m being the lengths of the two sequences. 

 
Table 1. Methods used in this work and their 

abbreviations. 
algorithm substitution 

matrix 
backtracking method 

abbreviation 

global No No globalms 

local No No localms 

global Yes No globalds 

local Yes No localds 

global No Yes globalms 

local No Yes localms 

global Yes Yes globalds 

local Yes Yes localds 

 
The methods were written and executed with varying 

modules and compilers. Not all compilers were 
compatible, as a result, we have tested seven 
combinations of modules and compilers/interpreters. 
(Table 2., Figure 1.) As Cython or standard Python 
interpreter proved to be much slower in all cases, their 
performance evaluation is omitted, focusing on 
Biopython, PyPy and Numba. 

The effect of sequence length. The biggest impact on 
the performance was observed to be the sequence length. 
In all the cases there was an exponential increase, close to 
the order of two as the size of the matrices (n x m) also 
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increases in the order of two. This was independent of the 
algorithm or modules that were used. Interestingly only 
with Numba the order of the power was close to 1.5 which 

indicates that the matrix processing is not a bottleneck for 
Numba. 

 

 

Figure 1. The computation times in milliseconds (ms) versus sequence length for globalms (A), localms (B), globalds (C) 
and localds (D) alignment methods without backtracking, using various compilation methods, Biopython using 
standard Python (dashed), In-house method with Numba compiler (light gray) and In-house method with PyPy 
compiler (dotted). 

 
The effect of sequence similarity. On the other hand 

sequence similarities ranging from 20% to 80% did not 
seem to have an effect on the computation time. (Data 
not shown) In most cases the differences were too small 
to consider significant. Although some difference was 
expected between methods using backtrack to produce 
an alignment since the final alignments would be longer 
when there is low similarity due to increased amounts of 
gap. 
“Score only” versus “backtracking” modes. When a 
comparison between “score only” and “backtracking” 
modes, there has been small variations in the 
computation time in spite of the choice of the 
compiler/interpreter since backtracking requires three 
additional matrices to be constructed. Between 
“score_only” modes and “backtracking” modes of 
Biopython there is a huge impact on the performance. 
This impact drops down for larger sequences for all 
methods with Biopython. On the other hand, with Numba 
and PyPy the impact is significantly less and ranging only 
between 1.5 and 2. The difference is mostly related to the 
way the Biopython’s pairwise2 module is executed rather 
than the choice of the compiler/interpreter.Local vs 
global. No significant difference was observed between 
local and global algorithms. The only exception was 
Biopython methods where the difference varies between 
1.3 to 10 times. In case of Numpy or PyPy no significant 
difference was apparent. 

Substitution matrix choice. Oddly, Numpy exploiting 
methods when compiled with Cython proved to be even 
slower when using methods that include a substitution 
matrix. Considering that these methods are generally less 
efficient than Cython compiled pure Python code, an 
overall Cython Numpy uncomplimentary was apparent. 

Between the methods a dramatic difference was 
observed when Biopython module was used. Only for 
Biopython, while globalms method was fastest, localds 
and localds with backtracking were significantly slower 
than their counterparts.  

Using standard Python interpreter, Biopython showed 
greater overall performance in comparison to Numpy 
module or pure Python. However, with the introduction 
of an alternative compiler performance dramatically 
improves. When overall performance is considered, 
Numba assisted just-in-time compilation proves to be 
optimal in almost all cases. On average, Numba provided 
15 times faster computation time in “score only” mode 
and 18 times faster computation time in “backtracking” 
mode than Biopython. Biopython showed better 
performance only for globalms method when aligning 
sequences shorter than ~200 base pairs. At the same time, 
PyPy achieved greater performance only for localms 
method and for sequences of a length of ~50 bp. 
Comparison of PyPy and BioPython showed that PyPy was 
around 3.5 times faster on average in “score only” mode 
while comparable in “backtracking” mode.
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Table 2. Computation times in milliseconds of various sequence alignment methods, globalms, localms, globalds and 
localds, with and without backtracking, using different compilation strategies. All methods were tested with varying 
sequence lengths and 20% sequence similarity. Best performances of each series of sequence lengths are reported 
in bold. 

  

  method: globalms without backtracking 
 sequence length: 50 100 200 400 600 800 1000 
module interpreter/compiler               
Biopython standard Python 3.6+ 0.009 0.026 0.087 0.470 1.212 2.048 3.225 
numpy Numba 0.022 0.046 0.096 0.433 0.795 1.363 2.159 
- PyPy 0.029 0.108 0.449 1.433 2.918 4.887 7.194 
numpy Cython 0.139 0.553 2.236 10.120       
- Cython 0.631 2.475 9.878 40.824       
numpy standard Python 3.6+ 1.001 3.916 15.898         
- standard Python 3.6+ 0.475 1.980 7.548         
  method: localms without backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 0.065 0.248 1.019 4.583 11.708 22.448 36.291 
numpy Numba 0.022 0.047 0.098 0.465 0.793 1.383 2.125 
- PyPy 0.024 0.090 0.367 1.396 3.102 5.203 7.766 
numpy Cython 0.145 0.569 2.258 10.025       
- Cython 0.748 2.883 11.559 47.241       
numpy standard Python 3.6+ 1.149 4.614 17.805         
- standard Python 3.6+ 0.494 1.958 7.694         
  method: globalds without backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 0.100 0.381 1.501 6.082 13.618 24.038 37.705 
numpy Numba 0.021 0.047 0.100 0.445 0.827 1.318 1.949 
- PyPy 0.025 0.114 0.466 1.715 3.757 6.488 9.768 
numpy Cython 0.459 1.825 7.354 30.445       
- Cython 0.602 2.362 9.399 38.945       
numpy standard Python 3.6+ 0.998 3.967 15.507         
- standard Python 3.6+ 0.879 3.314 13.300         
  method: localds without backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 0.157 0.588 2.481 10.386 24.193 44.655 70.487 
numpy Numba 0.023 0.048 0.107 0.466 0.865 1.475 2.205 
- PyPy 0.029 0.124 0.511 1.928 4.086 7.518 11.400 
numpy Cython 0.520 2.089 8.506 35.492       
- Cython 0.735 2.853 11.417 46.367       
numpy standard Python 3.6+ 1.172 4.542 18.131         
- standard Python 3.6+ 0.962 3.784 14.622         
  method: globalms with backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 1.761 2.190 4.022 7.949 9.164 18.490 20.475 
numpy Numba 0.023 0.050 0.177 0.681 1.573 2.667 4.226 
- PyPy 0.058 0.214 0.840 3.495 7.218 12.612 18.929 
numpy Cython 0.317 1.253 4.951 22.217       
- Cython 1.622 6.361 25.222 103.363       
numpy standard Python 3.6+ 2.308 9.126 36.224         
- standard Python 3.6+ 0.969 3.581 14.521         
  method: localms with backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 0.169 0.616 2.496 10.177 24.115 43.812 69.278 
numpy Numba 0.023 0.049 0.126 0.684 1.612 2.799 4.327 
- PyPy 0.050 0.190 0.728 3.042 6.380 11.616 17.473 
numpy Cython 0.293 1.148 4.554 20.728       
- Cython 1.653 6.310 25.439 102.680       
numpy standard Python 3.6+ 2.366 9.056 36.411         
- standard Python 3.6+ 0.903 3.558 13.804         
  method: globalds with backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 1.399 2.377 3.429 8.613 16.305 27.459 41.009 
numpy Numba 0.026 0.058 0.158 0.867 1.850 3.252 4.909 
- PyPy               
numpy Cython 0.962 3.837 15.267 63.191       
- Cython 1.522 5.965 23.866 96.943       
numpy standard Python 3.6+ 2.329 8.859 35.338         
- standard Python 3.6+ 1.640 6.794 26.157         
  method: localds with backtracking 
module interpreter/compiler 50 100 200 400 600 800 1000 
Biopython standard Python 3.6+ 1.444 3.545 6.627 18.518 38.599 68.369 105.336 
numpy Numba 0.027 0.064 0.180 0.945 2.028 3.541 5.458 
- PyPy               
numpy Cython 1.018 3.999 16.154 68.273       
- Cython 1.679 6.457 25.711         
numpy standard Python 3.6+ 2.392 9.485 37.360         
- standard Python 3.6+ 1.670 6.669 27.091         
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Conclusion 
 
While Python provide a versatile development 

environment for prototyping new ideas for data scientists, 
it remains to be one of slower executed programming 
languages. With the development of next generation 
sequencing technology and the increase in the amount 
data to be processed, massive alignment problems such 
as de novo genome construction or multiple sequence 
alignments (MSA) arise and bioinformaticians find 
themselves needing faster solutions for testing their ideas 
that require sequence alignments. Here, in order to boost 
the performance of these alignment algorithms, the two 
most commonly used alignment algorithms were written 
using Python language and tested for various compilation 
strategies. Our findings show that the choice of compiler 
may have significant impact on the speed of execution. 
The overall optimal approach was found to be using just-
in-time Numba compiler while followed by PyPy just-in-
time compiler. Biopython also proved to be a decent 
option, considering certain methods at certain sequence 
lengths it may give equivalent performance. In conclusion, 
it is important to consider compilers, no matter the choice 
of the compiler is, as they would give up to 200 times 
higher performance than standard Python interpreter.   

On the other hand, further improvements may still be 
possible if compilation strategy is combined with 
parallelism. However, the overhead cost of setting up 
parallelism needs to be considered depending on the 
number and length of the query sequences and the 
available hardware, such as GPUs. [16-18] For that reason, 
parallelism might not be a feasible solution to improve the 
performance in all situations. None the less, the 
compilation strategy ensures better performance in any 
Python environment given that necessary modules are 
installed and independent of the hardware setting. 
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