
663

Cumhuriyet Science Journal

Cumhuriyet Sci. J., 45(4) (2024) 663-667
DOI: https://doi.org/10.17776/csj.1511642

│ csj.cumhuriyet.edu.tr │ Founded: 2002 ISSN: 2587-2680 e-ISSN: 2587-246X Publisher: Sivas Cumhuriyet University

A Comparative study of DNA Alignment Algorithms and Boosting Performance
Using Different Compilation Strategies

Osman Doluca 1,a,*
1 Department of Biomedical Engineering, Izmir University of Economics, Türkiye

*Corresponding author

Research Article ABSTRACT

History
Received: 06/06/2024
Accepted: 03/12/2024

This article is licensed under a Creative
Commons Attribution-NonCommercial 4.0
International License (CC BY-NC 4.0)

With the development of next generation sequencing technologies, the requirement of higher performance
from DNA and Protein sequence alignment algorithms has become even greater. This work is a systematic
comparison of different compilation strategies for two common DNA or Protein sequence alignment algorithms,
Needleman-Wunsch and Smith-Waterman, using Python programming language. It aims to investigate the
performance benefits of already widely used Biopython’s pairwise alignment module versus different
compilation approaches of an in-house software. It is shown that using Numba just-in-time compiler provide
greater performance overall in comparison to PyPy and Cython compilers or the Biopython module. This work
may increase the efficiency of software prototyping where large-scale sequence alignment is necessary.

Keywords: DNA/Protein sequence alignment, Python, Just-in-time compilers.

a osman.doluca@ieu.edu.tr https://orcid.org/0000-0003-0412-6148

Introduction

With the development of next generation sequencing
(NGS) the amount of available biological data, in terms of
genome or exome sequences, has been dramatically
increasing. The alignment methods have been becoming
more and more relevant as the necessity to process the
raw NGS data or to investigate the similarities between
sequences for the discovery of their functional properties
has been increasing. As the current NGS sequencing
technologies are producing relatively short fragments of
sequence information, ranging between 50 to 1000 bp,
their alignment is quite computation exhausting process
since a single stretch of continuous DNA sequence may be
up to hundreds of millions bp long. [1] While the NGS
technologies improve the count of the fragments read,
the reading length tend to get even shorter, relying even
more to the computation for their alignment to produce
the genome [2] with the exception of nanopore
sequencing which is yet to become applicable. [3]

Any solution to this problem has one of two
approaches. One being, increasing the computational
power, has long been market-driven endeavor.
Unfortunately, as the Moore’s law is approaching its limits
and a stagnation in the increase of the processing power
of chips is imminent, any hardware-based solution is
shifting towards multi-core chips instead of faster chips.
[4] The other solution is implementing alternative
algorithms to the alignment problem. The two most
commonly used algorithms, Needleman Wunsch (global)
[5] and Smith Waterman (local) [6], and their variations [7]
are known to provide the best alignment, but also the
slowest as their implementations make use of multiple 2D
matrices. New heuristic approaches are also developed

however these approaches does not match the sensitivity
of these two algorithms or their variations. [8-10]

New approaches for processing biological data often
requires software prototyping and testing, and the
majority of the data scientists rely on high-level
programming languages such as Python. The less time
spent coding and high readability of such high-level
languages is the foremost reason behind this preference.
[11] In comparison, while the low-level programming
languages such as C provide better the execution speed,
the high complexity deters the scientists from using it.
However, especially when it comes to NGS data analysis,
speed may be more of an issue than many other factors
due to sheer size of alignments required. The solution is
often sought in accelerating the alignment algorithms.
[12–14] Speed improvement is possible at the interpreter
level, either through using modules that exploit pre-
compiled libraries or compilation of the code on the go,
also known as just-in-time compilation. [15] There has
been a number of approaches for improving the
performance of SW algorithm, mostly through parallelism
by performing calculations on FPGAs or GPU. [16-18]
However, these are not available as modules for
mainstream programming languages.

Here we implement the global and local alignment
algorithms including the affine gap extension developed
by Gotoh et al. [5–7] We compare the performance
improvements when rewritten using Numpy module, or
compiled using Cython, Numba or PyPy. The performance
improvements were also compared with pairwise2
module of Biopython library. The code is made available
online at http://github.com/odoluca/Fast-NW-and-SW-
Pairwise-alignment-using-numba-JIT/

http://csj.cumhuriyet.edu.tr/tr/
https://orcid.org/0000-0003-0412-6148

Cumhuriyet Sci. J., 45(4) (2024) 663-667

664

Method

The affine gap penalty [7] variation of original global

[5] and local [6] alignment algorithms was written using
python 3.6+. For each local and global algorithms two
other variations were written, one of which uses single
scores for matches and mismatches or a substitution
matrix. Substitution matrix is especially necessary for
protein alignments as transition between amino acids do
not have equal probabilities. Each of the four methods
were rewritten in two forms; one for discovery of only the
highest score while the other uses backtracking to reports
the best (or one of the best) alignment(s). Together these
variations yielded eight different methods. (Table 1)

Each method was interpreted or compiled using
different approaches. 1) Pure python approach uses only
python 3.6+ syntax and built-in types. No external module
was used. 2) Numpy approach incorporates ndarrays from
Numpy module (1.14.2) for all matrices. 3) Cython
(v0.29.12) was used to compile pure python or Numpy-
using code using cythonize method and “build_ext”
argument to build all extensions. 4) Just-In-Time
compilation using Numba module (v0.44.1) was used with
both pure python or with Numpy. Because the Numba
does not accept strings in “nopython” mode, all methods
were written to accept two lists of integers as sequences
to be aligned instead of lists of characters, as in strings,
where each character indicates nucleotide or amino acid
residues. An additional method is written to convert any
protein, DNA or RNA sequence into a list of integers. All
numba methods were compiled just-in-time in
“nopython” and “cached” modes for optimum
performance using “@jit(nopython=True, cached=True)”
decoration. 5) finally, a 32-bit pypy compiler (v7.1.1) was
used with pure python code to compare. All algorithms
were written in two variations, “score only” and
“backtrack”. The first one is where only scores are
calculated, and the latter is where the best alignment is
constructed by tracing back the path. Backtracking
requires three additional matrices to keep track of the
path. Additionally, Biopython’s pairwise2 alignment was
used for comparison to view the performance
improvements. Biopython was also tested in “score only”
mode as well as “alignment” mode for equivalent
comparison.

Performance was measured using timeit module,
aligning sequences with varying percentages of similarity
and varying sizes of sequences. For each pairwise
alignment, a sequence was generated randomly at first.
The other sequence was obtained by introducing a
number of mutations until a given percent similarity is
obtained. Each mutation was introduced with 80% chance
for the substitution, 10% for the insertions and deletions
each. The percent similarity was calculated as a ratio of
global alignment score of the alignment of the two
sequences to the alignment of max possible sequence of
any two sequence with the same lengths. The global
alignment was performed using +1 for matches, -1 for
mismatches and gaps. For each category a thousand

sequence pairs were aligned and total processing times
were found as summation. All tests were performed using
timeit module with garbage collection off to increase
accuracy. All module imports or any preprocessing is left
out of performance testing and measurements were done
only during sequence alignments. Every performance test
was repeated five times and the best of five was reported.
All tests were performed at AMD 1950X machine
equipped with 128 GB ECC RAM with ECC-mode on and
locked to the same core. All algorithms were previously
run using random sequences and compared with
Biopython’s pairwise2 module to confirm that the same
results were produced before performance testing.

Results and Discussion

With varying features included in the algorithm eight

different methods were written and tested in this work.
The list of these methods and their features are listed in
Table 1. Briefly substitution matrix feature enables
different penalties for substitution between different
residues. This is preferred especially if the mutations
between particular residues is more common or expected
than others. Another feature is called “backtracking”
which enables production of a final alignment of the two
sequences. Alternative, “score only” mode reports only
the score of the best alignment which may be used as a
measure of sequence similarity. This is often useful for
construction of phylogenetic trees. Backtracking requires
keeping of three additional matrices with a size of (n x m)
with n and m being the lengths of the two sequences.

Table 1. Methods used in this work and their

abbreviations.
algorithm substitution

matrix
backtracking method

abbreviation

global No No globalms

local No No localms

global Yes No globalds

local Yes No localds

global No Yes globalms

local No Yes localms

global Yes Yes globalds

local Yes Yes localds

The methods were written and executed with varying

modules and compilers. Not all compilers were
compatible, as a result, we have tested seven
combinations of modules and compilers/interpreters.
(Table 2., Figure 1.) As Cython or standard Python
interpreter proved to be much slower in all cases, their
performance evaluation is omitted, focusing on
Biopython, PyPy and Numba.

The effect of sequence length. The biggest impact on
the performance was observed to be the sequence length.
In all the cases there was an exponential increase, close to
the order of two as the size of the matrices (n x m) also

Cumhuriyet Sci. J., 45(4) (2024) 663-667

665

increases in the order of two. This was independent of the
algorithm or modules that were used. Interestingly only
with Numba the order of the power was close to 1.5 which

indicates that the matrix processing is not a bottleneck for
Numba.

Figure 1. The computation times in milliseconds (ms) versus sequence length for globalms (A), localms (B), globalds (C)
and localds (D) alignment methods without backtracking, using various compilation methods, Biopython using
standard Python (dashed), In-house method with Numba compiler (light gray) and In-house method with PyPy
compiler (dotted).

The effect of sequence similarity. On the other hand

sequence similarities ranging from 20% to 80% did not
seem to have an effect on the computation time. (Data
not shown) In most cases the differences were too small
to consider significant. Although some difference was
expected between methods using backtrack to produce
an alignment since the final alignments would be longer
when there is low similarity due to increased amounts of
gap.
“Score only” versus “backtracking” modes. When a
comparison between “score only” and “backtracking”
modes, there has been small variations in the
computation time in spite of the choice of the
compiler/interpreter since backtracking requires three
additional matrices to be constructed. Between
“score_only” modes and “backtracking” modes of
Biopython there is a huge impact on the performance.
This impact drops down for larger sequences for all
methods with Biopython. On the other hand, with Numba
and PyPy the impact is significantly less and ranging only
between 1.5 and 2. The difference is mostly related to the
way the Biopython’s pairwise2 module is executed rather
than the choice of the compiler/interpreter.Local vs
global. No significant difference was observed between
local and global algorithms. The only exception was
Biopython methods where the difference varies between
1.3 to 10 times. In case of Numpy or PyPy no significant
difference was apparent.

Substitution matrix choice. Oddly, Numpy exploiting
methods when compiled with Cython proved to be even
slower when using methods that include a substitution
matrix. Considering that these methods are generally less
efficient than Cython compiled pure Python code, an
overall Cython Numpy uncomplimentary was apparent.

Between the methods a dramatic difference was
observed when Biopython module was used. Only for
Biopython, while globalms method was fastest, localds
and localds with backtracking were significantly slower
than their counterparts.

Using standard Python interpreter, Biopython showed
greater overall performance in comparison to Numpy
module or pure Python. However, with the introduction
of an alternative compiler performance dramatically
improves. When overall performance is considered,
Numba assisted just-in-time compilation proves to be
optimal in almost all cases. On average, Numba provided
15 times faster computation time in “score only” mode
and 18 times faster computation time in “backtracking”
mode than Biopython. Biopython showed better
performance only for globalms method when aligning
sequences shorter than ~200 base pairs. At the same time,
PyPy achieved greater performance only for localms
method and for sequences of a length of ~50 bp.
Comparison of PyPy and BioPython showed that PyPy was
around 3.5 times faster on average in “score only” mode
while comparable in “backtracking” mode.

Cumhuriyet Sci. J., 45(4) (2024) 663-667

666

Table 2. Computation times in milliseconds of various sequence alignment methods, globalms, localms, globalds and
localds, with and without backtracking, using different compilation strategies. All methods were tested with varying
sequence lengths and 20% sequence similarity. Best performances of each series of sequence lengths are reported
in bold.

 method: globalms without backtracking
 sequence length: 50 100 200 400 600 800 1000
module interpreter/compiler
Biopython standard Python 3.6+ 0.009 0.026 0.087 0.470 1.212 2.048 3.225
numpy Numba 0.022 0.046 0.096 0.433 0.795 1.363 2.159
- PyPy 0.029 0.108 0.449 1.433 2.918 4.887 7.194
numpy Cython 0.139 0.553 2.236 10.120
- Cython 0.631 2.475 9.878 40.824
numpy standard Python 3.6+ 1.001 3.916 15.898
- standard Python 3.6+ 0.475 1.980 7.548
 method: localms without backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 0.065 0.248 1.019 4.583 11.708 22.448 36.291
numpy Numba 0.022 0.047 0.098 0.465 0.793 1.383 2.125
- PyPy 0.024 0.090 0.367 1.396 3.102 5.203 7.766
numpy Cython 0.145 0.569 2.258 10.025
- Cython 0.748 2.883 11.559 47.241
numpy standard Python 3.6+ 1.149 4.614 17.805
- standard Python 3.6+ 0.494 1.958 7.694
 method: globalds without backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 0.100 0.381 1.501 6.082 13.618 24.038 37.705
numpy Numba 0.021 0.047 0.100 0.445 0.827 1.318 1.949
- PyPy 0.025 0.114 0.466 1.715 3.757 6.488 9.768
numpy Cython 0.459 1.825 7.354 30.445
- Cython 0.602 2.362 9.399 38.945
numpy standard Python 3.6+ 0.998 3.967 15.507
- standard Python 3.6+ 0.879 3.314 13.300
 method: localds without backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 0.157 0.588 2.481 10.386 24.193 44.655 70.487
numpy Numba 0.023 0.048 0.107 0.466 0.865 1.475 2.205
- PyPy 0.029 0.124 0.511 1.928 4.086 7.518 11.400
numpy Cython 0.520 2.089 8.506 35.492
- Cython 0.735 2.853 11.417 46.367
numpy standard Python 3.6+ 1.172 4.542 18.131
- standard Python 3.6+ 0.962 3.784 14.622
 method: globalms with backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 1.761 2.190 4.022 7.949 9.164 18.490 20.475
numpy Numba 0.023 0.050 0.177 0.681 1.573 2.667 4.226
- PyPy 0.058 0.214 0.840 3.495 7.218 12.612 18.929
numpy Cython 0.317 1.253 4.951 22.217
- Cython 1.622 6.361 25.222 103.363
numpy standard Python 3.6+ 2.308 9.126 36.224
- standard Python 3.6+ 0.969 3.581 14.521
 method: localms with backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 0.169 0.616 2.496 10.177 24.115 43.812 69.278
numpy Numba 0.023 0.049 0.126 0.684 1.612 2.799 4.327
- PyPy 0.050 0.190 0.728 3.042 6.380 11.616 17.473
numpy Cython 0.293 1.148 4.554 20.728
- Cython 1.653 6.310 25.439 102.680
numpy standard Python 3.6+ 2.366 9.056 36.411
- standard Python 3.6+ 0.903 3.558 13.804
 method: globalds with backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 1.399 2.377 3.429 8.613 16.305 27.459 41.009
numpy Numba 0.026 0.058 0.158 0.867 1.850 3.252 4.909
- PyPy
numpy Cython 0.962 3.837 15.267 63.191
- Cython 1.522 5.965 23.866 96.943
numpy standard Python 3.6+ 2.329 8.859 35.338
- standard Python 3.6+ 1.640 6.794 26.157
 method: localds with backtracking
module interpreter/compiler 50 100 200 400 600 800 1000
Biopython standard Python 3.6+ 1.444 3.545 6.627 18.518 38.599 68.369 105.336
numpy Numba 0.027 0.064 0.180 0.945 2.028 3.541 5.458
- PyPy
numpy Cython 1.018 3.999 16.154 68.273
- Cython 1.679 6.457 25.711
numpy standard Python 3.6+ 2.392 9.485 37.360
- standard Python 3.6+ 1.670 6.669 27.091

Cumhuriyet Sci. J., 45(4) (2024) 663-667

667

Conclusion

While Python provide a versatile development

environment for prototyping new ideas for data scientists,
it remains to be one of slower executed programming
languages. With the development of next generation
sequencing technology and the increase in the amount
data to be processed, massive alignment problems such
as de novo genome construction or multiple sequence
alignments (MSA) arise and bioinformaticians find
themselves needing faster solutions for testing their ideas
that require sequence alignments. Here, in order to boost
the performance of these alignment algorithms, the two
most commonly used alignment algorithms were written
using Python language and tested for various compilation
strategies. Our findings show that the choice of compiler
may have significant impact on the speed of execution.
The overall optimal approach was found to be using just-
in-time Numba compiler while followed by PyPy just-in-
time compiler. Biopython also proved to be a decent
option, considering certain methods at certain sequence
lengths it may give equivalent performance. In conclusion,
it is important to consider compilers, no matter the choice
of the compiler is, as they would give up to 200 times
higher performance than standard Python interpreter.

On the other hand, further improvements may still be
possible if compilation strategy is combined with
parallelism. However, the overhead cost of setting up
parallelism needs to be considered depending on the
number and length of the query sequences and the
available hardware, such as GPUs. [16-18] For that reason,
parallelism might not be a feasible solution to improve the
performance in all situations. None the less, the
compilation strategy ensures better performance in any
Python environment given that necessary modules are
installed and independent of the hardware setting.

Conflicts of interest

There are no conflicts of interest in this work.

Acknowledgment

This work was funded by TÜBİTAK project no 118Z226.

References

[1] Zhang J., Chiodini R., Badr A., Zhang G., The impact of next-
generation sequencing on genomics, Journal of Genetics
and Genomics, 38 (2011) 95-109.

[2] McPherson J.D., Next-generation gap, Nature Methods, 6
(2019) S2-S5.

[3] Branton D., Deamer D. The Development of Nanopore
Sequencing, Nanopore Sequencing, (2019) 1-16

[4] Theis T.N., Wong P.H.S., The End of Moore’s Law: A New
Beginning for Information Technology, Computing in
Science & Engineering, 19 (2017) 41-50.

[5] Needleman S.B., Wunsch C.D., A general method
applicable to the search for similarities in the amino acid
sequence of two proteins, Journal of Molecular Biology, 48
(1970) 443-453.

[6] Smith T.F., Waterman M.S., Identification of common
molecular subsequences, Journal of Molecular Biology,
147 (1981) 195-197.

[7] Gotoh O., An improved algorithm for matching biological
sequences, Journal of Molecular Biology, 162 (1982) 705-
708.

[8] Marco-Sola, S., Moure, J. C., Moreto, M., Espinosa, A., Fast
Gap-Affine Pairwise Alignment Using the Wavefront
Algorithm, Bioinformatics, 37 (2020) 456–463.

[9] Song Y.-J., Ji D. J., Seo H., Han G.-B., Cho D.-H., Pairwise
Heuristic Sequence Alignment Algorithm Based on Deep
Reinforcement Learning, IEEE Open Journal of Engineering
in Medicine and Biology, 2 (2021) 36–43.

[10] Rashed A. E. E.-D., Amer H. M., El-Seddek M., Moustafa H.
E.-D., Sequence Alignment Using Machine Learning-Based
Needleman–Wunsch Algorithm, IEEE Access, 9 (2021)
109522–109535.

[11] Nagpal A., Gabrani G., Python for Data Analytics, Scientific
and Technical Applications, 2019 Amity International
Conference on Artificial Intelligence (AICAI), Dubai, (2019).

[12] Mondal S., Khatua S., Accelerating Pairwise Sequence
Alignment Algorithm by MapReduce Technique for Next-
Generation Sequencing (NGS) Data Analysis, Advances in
Intelligent Systems and Computing, (2019) 213-220.

[13] Marçais G., Delcher A.L., Phillippy A.M., Coston R., Salzberg
S.L., Zimin A., MUMmer4: A fast and versatile genome
alignment system, PLoS Computational Biology, 14 (2018)
e1005944.

[14] Tarasov A., Vilella A.J., Cuppen E., Nijman I.J., Prins P.,
Sambamba: fast processing of NGS alignment formats,
Bioinformatics, 31 (2015) 2032-2034.

[15] Marowka A., Python accelerators for high-performance
computing, The Journal of Supercomputing, 74 (2018)
1449-1460.

[16] Haghi A., Marco-Sola S., Alvarez L., Diamantopoulos D.,
Hagleitner C., Moreto M., An FPGA Accelerator of the
Wavefront Algorithm for Genomics Pairwise Alignment,
31st International Conference on Field-Programmable
Logic and Applications (FPL), Dresden, (2021).

[17] Rognes, T., Faster Smith-Waterman database searches
with inter-sequence SIMD parallelization, BMC
Bioinformatics, 12 (2011) 1.

[18] Liu Y., Maskell D. L., Schmidt, B., CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-
enabled graphics processing units. BMC Research Notes, 2,
1 (2009) 73.

