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We studied the evolution of an initial surface which was sinusoidal mound shaped for Diffusion Limited (DL) 
regime. We supposed that there were two dimensional concentric circular steps on initial surface and 
attractive/repulsive interactions between these monoatomic steps. While following the surface's evolution, the 
equation of motion related to each step radius's change and diffusion equation have been solved. We obtained 
bunching and no bunching regions of studied initial surfaces in a parameter space with their scaling 
characteristics. Our results in this examination can be summarized as; bunching (no bunching) region expands 
(shrinks) with increasing of wavelength or amplitude of the initial surface. The curves separating bunching/no 
bunching regions scale with each other. In the case of the amplitude (wavelength) is changed, the scaling factor 

is (𝐴0 𝐴0
′⁄ )1/6 ((𝜆 𝜆′⁄ )1/2). When both the wavelength and amplitude of the surface are changed at the same 

time, the scaling factor is equal to (𝐴0 𝐴0
′⁄ )1/6 × (𝜆 𝜆′⁄ )1/2. 
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Introduction 
 

Studies on crystal morphology, which provides 
information about the structural properties and growth 
mechanisms of various materials, have long been an 
interesting field in material science. Crystal morphology is 
also important for understanding the complex dynamics 
of mass transfer, surface structure and surface processes. 
Vicinal surfaces are characterized by a conscious deviation 
from the crystallographic orientation and they play an 
important role in understanding surface dynamics with 
growth kinetics [1-7]. This deviation causes the formation 
of step bunches that affects the surface roughness and 
morphology. Vicinal surfaces consist of steps and terraces 
under their roughening temperature. We have to know 
the interaction type between these steps to understand 
surface dynamics. There are repulsive and attractive 
interactions between steps on the surface [8-12]. The 
repulsive interaction which arises from the elastic [13-15] 
or entropic [16] interactions varies inversely with the 
square of the average step separation. It has been 
demonstrated through experimental studies that the 
attractive interaction is inversely proportional to the step 
separation [17-21]. This type of interaction appears from 
dipole–dipole interactions [22,23] or indirect electronic 
interactions [24,25]. Step bunching that occurs in 
semiconductor materials is significant because of its 
effects on device performance and fabrication [4,26-30]. 
Discovering the dynamics of step bunching and mound 
formation finds out the interplays between surface 
diffusion and adatom kinetics. The crystals can growth 
under different regimes like Diffusion-Limited (DL) and 
Attachment-Detachment-Limited (ADL) regimes. In DL 
regime, the growth rate is determined by the mass 

transport rate. On the other hand, atoms' 
attachment/detachment at/from the surface direct the 
growth kinetics in the ADL regime. Particularly, DL regime 
governs the evolutions of step bunches and the 
semiconductor mounds. A lot of works have been done on 
the step bunching phenomenon from past to present. 
Some of the studies carried out in recent years are as 
follows; Siewierska and Tonchev [31] studied on the 
scaling of the minimum distance between consecutive 
two steps in the bunch. Sato [32] examined that how the 
surface diffusion field affects the growth law of the bunch 
size in the step bunching induced by immobile impurities. 
In the model they created Popova et al. [33] investigated 
step bunches on the surface of growing and sublimating 
crystals and showed that the overall picture of the 
bunching process changes entirely when steps cannot 
overlap, thus forming macrosteps. In another study 
Popova [34] studied the effect of step−step exclusion on 
growing vicinal surfaces destabilized by a step-up (SU) or 
step-down (SD) driving force in Diffusion-Limited (DL) and 
Kinetics Limited (KL) growth regimes. In the presence of 
repulsive and attractive interactions between steps, 
Tüzemen et al. [35] searched a surface which consists of 
two dimensional concentric circular monoatomic steps in 
DL regime. They obtained a phase diagram separating the 
step bunching and no step bunching regions for the 
surface they examined. In addition, Tüzemen [36] 
investigated the bunching - no bunching regions for 
different initial surfaces consist of concentric circular 
monoatomic steps in a parameter space. He found out the 
scaling characteristics of these bunching/no bunching 
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regions under the effects of attractive and repulsive 
interactions between steps. 

In this investigation, we studied a sinusoidal mound 
shaped initial surface in two dimensions for Diffusion 
Limited (DL) regime. We assumed that this surface had 
concentric circular steps with attractive and repulsive 
interactions between them. We determined bunching and 
no bunching regions of examined initial surfaces in a 
parameter space with their scaling features. To achieve 
our goals, we solved the diffusion equation and obtained 
an equation of motion regarding the change of radius of 
each circular step. After that we achieved the solution of 
these coupled equations numerically 
 

Theory 
 
We investigate that how an initial surface whose edge 

structure coincide with a sinusoidal function in the form 
of 𝐴0 sin(2𝜋𝑥 𝜆⁄ ) reaches to equilibrium situation in course 
of time in this study. The wavelength and amplitude 
variables that define sinusoidal surface structure are 
identified by 𝜆 and 𝐴0 respectively. The working surface 
has monoatomic and concentric circular steps in two 
dimensions. There are flat terraces between consecutive 
two steps. Figure 1 shows the general structure and side 
view of the initial surface. The radii of the each circular 
steps are defined as 𝑟1, 𝑟2, 𝑟3…. etc. in Figure 1. The 
movements of steps on the surface under roughening 
temperature provide the surface evolving. The 
mechanism that controls these movements is by the 
attachment and/or detachment of particles to/from step 
edges. In the absence of bulk diffusion or 
evaporation/condensation processes, local mass transfer 
takes place with surface diffusion. The borders belonging 
to 𝑖𝑡ℎ  terrace are specified by 𝑖 (from above) and 𝑖 + 1 
(from below). In the case where we assume that there is 
no flux to the surface, we can write the general diffusion 

and steady state diffusion equations for 𝑖𝑡ℎ terrace atom 
concentration in polar coordinates as follows respectively 
[37], 

𝐷𝑠∇2𝐶𝑖(𝑟) =
𝜕𝐶𝑖(𝑟)

𝜕𝑡
             (1) 

and  
𝜕2𝐶𝑖(𝑟)

𝜕𝑟2 +
1

𝑟

𝐶𝑖(𝑟)

𝜕𝑟
= 0              (2) 

𝐷𝑠  is the surface diffusion constant. The solution of Eqn. 
(2) is given by 𝐶𝑖(𝑟) = 𝐴𝑖 ln 𝑟 +  𝐵𝑖 . We calculate the 
constant 𝐴𝑖  in expression by doing mathematical solution 
details of which are given in Ref. [35]. 

𝐴𝑖 =
𝐶𝑖

𝑒𝑞
−𝐶𝑖+1

𝑒𝑞

𝑙𝑛
𝑟𝑖

𝑟𝑖+1
−

𝐷𝑠
𝑘

(
1

𝑟𝑖
+

1

𝑟𝑖+1
)
        (3) 

𝐶𝑖
𝑒𝑞

 defines the equilibrium concentration of atoms on the 

adjacent terrace to the 𝑖𝑡ℎ step. The value of 𝐶𝑖
𝑒𝑞

 

(according to the Gibbs-Thompson relation) is given as,  

𝐶𝑖
𝑒𝑞

= 𝐶̅𝑒𝑞𝑒𝑥𝑝 (
𝜇𝑖

𝑇
) ≈ 𝐶̅𝑒𝑞 (1 +

𝜇𝑖

𝑇
)                                   (4) 

The value of Boltzman’s constant is taken as 1 due to the 
used units in the calculations. 𝜇𝑖  indicates the step 
chemical potential written depending on the line tension, 
repulsive and attractive interactions between the nearest 
neighbor steps.  

For ease of mathematical calculation we can write the 
equations of motion related with the change of radiis of 
circular steps in dimensionless form. To do this we make 
the following definitions respectively [21,35,37] 

𝜎�̇� =
𝑑𝜎𝑖

𝑑𝜏
=

𝐴𝑖
′−𝐴𝑖−1

′

𝜎𝑖
        (5) 

Here 𝜎 and 𝜏 are the dimensionless radius and time. 𝐴𝑖
′  

corresponds the dimensionless form of arbitrary constant 
𝐴𝑖  given in Eqn. (3). The expressions of 𝜎, 𝜏 and 𝐴𝑖

′  can be 
written as, 

 𝜎𝑖 =
𝑇

ΩΓ
𝑟𝑖          (6) 
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𝐴𝑖
′ =

𝜇𝑖
′−𝜇𝑖+1

′

(1−𝑞)𝑙𝑛
𝜎𝑖

𝜎𝑖+1
−𝑞(

1

𝜎𝑖
+

1

𝜎𝑖+1
)
       (8) 

where 𝑇, Ω, and  Γ express the absolute temperature 
value, the area owned of a diffusing particle and the steps' 
line tension respectively. The equilibrium value of particle 

concentration at the step edge is shown by 𝐶̅𝑒𝑞 . 
𝑘 charactizes the step attachment/detachment 
coefficient. The 𝑞 parameter in Eqn. (8) identifies in which 
regime the surface will evolve. When 𝑞 = 0, the surface 
evolves in the DL regime. If 𝑞 = 1, surface evolution 
regime is ADL. The value of chemical potential 𝜇𝑖

′ obtained 
with dimensionless radii can be written as 
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1
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(9) 

 

The first term is the line tension, the second and the third 
terms are repulsive and attractive interactions between 
the nearest neighbor steps respectively. Dimensionless 
coefficients are 𝛾 = (𝑇2𝛾′ Ω2⁄ Γ3) and 𝛽 =
(ΩΓ 𝑇⁄ )(𝛽′ 𝛾′⁄ ). 𝛾′ and 𝛽′ indicates the repulsive and 
attractive interaction strengths respectively. 
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Results and Discussion 

For Diffusion Limited (DL) regime, we discussed initial 
surfaces which have sinusoidal shaped and its edge 
structures fit 𝐴0 sin(2𝜋𝑥 𝜆⁄ ) function in two dimensions. 
Initial surfaces have circular and concentric monoatomic 
steps. Surface evolution takes place by disappearing some 
top steps on the surface because of transfering particles 
on it to other terraces and steps. We investigated 
bunching/no bunching regions of different initial surface 
structures as a function of the repulsive and attractive 
interaction parameters 𝛾 and 𝛽 by following the step 
bunchings formed throughout the surface evolution. We 
changed the values of the repulsive interaction parameter 
𝛾 from 5 × 10−7 to 1× 10−3 in all examinations.  

 

 

 
 

Figure 1. (a) The initial surface with monoatomic circular 
steps with radii 𝑟1, 𝑟2, 𝑟3, … … . 𝑟𝑛. The extrapolated 
height of initial surface is given by ℎ(0). The sinusoidal 
function coincided with the edge structure is shown 
with dashed lines, (b) side view of the initial surface.  

 

 

Figure 2. (a)The initial surfaces with different values of 
amplitudes (𝐴0 = 20, 30, 40, 50) and the same 
wavelength (𝜆 = 5000), (b) the bunching/no bunching 
regions of the surfaces given in Fig. 2a as a function of 𝛽 
and 𝛾. The inset shows the scaling behavior of obtained 

curves.  

 

 

Figure 3. (a) The initial surfaces which have different 
wavelengths (𝜆 = 3000, 4000, 5000, 6000) and the same 
amplitude value (𝐴0 = 40), (b) the bunching/no bunching 
regions of the surfaces given in Fig. 3a as a function of 𝛽 
and 𝛾. The inset gives the scaling behavior of obtained 
curves. 
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We studied the initial surfaces with the same wavelength 
for the first part of our work (Figure 2a). While we took the 
wavelength’s value as 5000, we altered the amplitudes of the 
surfaces by increasing by 10 from 20 to 50. In other words, we 
kept fixed the point where the rightmost parts of the initial 
surfaces intersect the x-axis and changed the steps’ numbers 
owned by these surfaces. We numerically obtained the 
bunching/no bunching regions of the step interaction 
parameters 𝛾 and 𝛽 by revealing the 𝛽 value corresponding to 
each 𝛾 value mentioned above [35,36]. The results are given in 
Figure 2b. The regions above and below obtained curves 
indicate the bunching and no bunching regions, respectively. 
The relations between the line tension of a step and 
repulsive/attractive interactions between nearest neighbor 
circular steps ensure the determining these two regions. If 
Figure 2b is analyzed carefully, it can be seen that the bunching 
region of the surface expands with increasing the surface’s 
amplitude (number of the steps on initial surface). Besides we 
found that the bunching/no bunching regions were scaled as 
(𝐴0 𝐴0

′⁄ )1/6 for initial surfaces which had different amplitudes 
as 𝐴0 and 𝐴0

′  respectively. The inset in Figure 2b shows the 
scaled case of the curves. All curves have been scaled 
according to the curve with 𝐴0 = 20. The scaling factors are 
(5 2⁄ )1/6, (4 2⁄ )1/6, (3 2⁄ )1/6 and 1 for the amplitude’s 
value of the initial surfaces 𝐴0 = 50, 40, 30 and 20. 

In the second part of the study, we examined the effect of 
altering the wavelength belonging to the initial surface on the 
surface's evolution in time and the areas of the bunching/no 
bunching regions.  While doing this, we assumed the value of 
amplitude as constant while changing the wavelength values. 
Figure 3a indicates the initial surfaces with the same amplitude 
(𝐴0 = 40) and different wavelengths (𝜆 =
3000, 4000, 5000, 6000).  
In these conditions, the behaviors of obtained bunching/no 
bunching regions relating to given surfaces in Fig. 3a are 
presented in Figure 3b. We found that when we increase the 
surface’s wavelength, the bunching region expands. In 
addition to this result, we identified that the curves (which 
separates the bunching/no bunching regions) scaled as 
(𝜆 𝜆′⁄ )1/2 for initial surfaces which have different wavelength 
values as 𝜆 and 𝜆′ respectively. The inset gives the scaled 
behavior of the curves. The curves have been scaled according 

to the curve with 𝜆 = 3000. The scaling factors are (6 3⁄ )1/2, 
(5 3⁄ )1/2, (4 3⁄ )1/2, 1 for 𝜆 = 6000, 5000, 4000, 3000 
respectively. 

As last part, we changed both of the amplitudes and the 
wavelengths of the all initial surfaces. While we took the values 
of amplitudes as 20, 30, 40 and 50, we used the values from 
3000 to 6000 in increments of 1000 for the wavelength 
respectively. The initial surfaces studied here are given in 
Figure 4a. When we analyzed the curves obtained as a function 
of 𝛽 and 𝛾 in Figure 4b, we found that when both the 
amplitude and wavelength were increased, the bunching 
region expanded and these curves were scaled among 
themselves. The scaling coefficient here was appeared as the 
product of the scaling coefficients we found before 

((𝐴0 𝐴0
′⁄ )1/6 (𝜆 𝜆′⁄ )1/2). All curves have been scaled 

according to the curve with 𝐴0 = 20 and 𝜆 = 3000. The 

scaling factors are (5 2⁄ )1/6 (6 3⁄ )1/2, (4 2⁄ )1/6 (5 3⁄ )1/2, 
(3 2⁄ )1/6 (4 3⁄ )1/2 and 1 

. 

Conclusions 
 
In this study, we investigated the evolution of a two 

dimensional initial surface which is sinusoidal mound 
shaped for Diffusion Limited (DL) regime. We supposed 
that there were concentric circular steps on initial surface 
and attractive/repulsive interactions between steps. We 
obtained the equation of motion regarding the change of 
radius of each circular step together with the solution of 
the diffusion equation to follow surface's evolution. We 
examined bunching and no bunching regions of studied 
initial surfaces in a parameter space with their scaling 
properties. We can summarize our results as follows: 
while the wavelength 𝜆 (amplitude 𝐴0) of the initial 
surface under consideration is constant, increasing its 
amplitude (wavelength) causes the bunching area of the 
surface to grow. In both cases, the resulting curves scale 
with each other. In case where the amplitude 
(wavelength) is changed and the wavelength (amplitude) 

is constant, the scaling factor is (𝐴0 𝐴0
′⁄ )1/6 ((𝜆 𝜆′⁄ )1/2). In 

the condition that both the wavelength and amplitude of 
the surface are changed, the scaling factor is equal to the 

product of the expressions obtained above ((𝐴0 𝐴0
′⁄ )1/6 

(𝜆 𝜆′⁄ )1/2). 

 

Figure 4. (a) The initial surfaces which have different 
amplitudes (𝐴0 = 20, 30, 40, 50) and the wavelengths 
(𝜆 = 3000, 4000, 5000, 6000), (b) the bunching/no 
bunching regions of the given surfaces as a function of 𝛽 
and 𝛾. The scaling behavior of obtained curves is given in 
inset.  
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