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In this study, modified variational iteration method (MVIM), modified variational iteration Laplace transform 
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the analytical solutions. Moreover, it illustrates the effect of wave parameter on the approximate solutions. The 
exact solutions and semi-analytical solutions of the DSW system are compared with each other. Tables give 
maximum errors of semi-analytical solutions for various iteration values. The comparison of relative errors for 
various iteration values and the effect of change of wave constant is visualized by figures. Also, it commented 
on the effectiveness and usefulness of the methods when applied to the DSW system. 
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Introduction 
 

It is applied nonlinear systems of partial differential 
equations in scientific fields such as plasma physics, plasma 
waves, solid state physics, fluid mechanics, chemical physics. 
The purpose of this study is to analyze as semi-analytical the 
solutions of the Drinfeld-Sokolov-Wilson (DSW) System, 
which is one of the nonlinear partial differential equation 
systems. Drinfeld and Sokolov [1], Wilson [2], Drinfeld and 
Sokolov [3] were introduced firstly the DSW model having an 
important role in fluid dynamics. A generalized form of the 
DSW system is given by: 

{
𝑢𝑡 + 𝛼𝑣𝑣𝑥 = 0

𝑣𝑡 + 𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣 = 0.
                                          (1) 

Here 𝛼, 𝛽, 𝛾 and 𝜀 are real parameters. The coupled of 
DSW is a system that modeling of dispersive water waves and 
it is used a model the translation of shallow water waves. 
Recently, many studies have been conducted on the DSW 
model. Gao et al. [4] used q-Homotopy analysis transform 
method, Saifullah et al. [5] used the Laplace transform 
combined with Adomian decomposition method, Arora and 
Kumar [6] used Homotopy analysis method, Azizi and 
Pourgholi [7] used Sine-Cosine wavelets method, Salim et al. 
[8] used modified Adomian decomposition method, 
Eskandari and Taghizadeh [9] used the exp-function method 
and the rational (G'/G)-expansion method, Ali et al. [10] used 
new iteration method, Taghizadeh and Neirameh [11] 
investigated the new complex solutions, Raslan and Entesar 
[12] used Banach contraction method, Lindeberg et al. [13] 
used finite difference method, Zhang and Zhao [14] used Lie 
symmetry analysis and Lie-bäcklund symmetries, Singh et al. 

[15] used homotopy perturbation transform method, Al-
Rozbayani and Ali [16] used Sumudu transform with 
Adomian decomposition method, Alam et al. [17] used 𝑆(𝜉)-
expansion method, Usman et al. [18] examined Jacobi elliptic 
solutions, Shahzad et al. [19] used 𝛷6-model expansion 
method, Iqbal et al. [20] examined  multiple solitary wave 
solutions, Younis et al. [21] used improved finite difference 
technique via Adominian polynomial, Aydemir [22] used 
generalized unified method, Hakkaev [23] examined spectral 
stability of periodic waves. 

MVIM is a method that uses variational principles by 
transforming nonlinear terms into power series [24-26]. 
Respectively, MVILTM and MVISTM are methods obtained 
by hybridizing the MVIM with Laplace and Sumudu 
transform. Laplace and Sumudu transform methods are well-
known and useful in many problems in which applied 
mathematics, physics, science and engineering. Also, these 
methods are suitable to hybrid the variational methods. 

In this study, modified variational iteration method, 
modified variational iteration Laplace transform method and 
modified variational iteration Sumudu transform method are 
used to solve semi-analytically the Drinfeld-Sokolov-Wilson 
system and compare the results. The maximum and relative 
errors of proposed methods are evaluated and the results 
are interpreted. The effect of the wave parameter that 
emerged in the solution of the DSW system for different 
iteration values in an example is examined with the help of 
tables and figures. 
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Material and Method 

In this section, the basic idea of modified variational 
iteration method (MVIM), modified variational iteration 
Laplace transform method (MVILTM), modified 
variational iteration Sumudu transform method (MVISTM) 
will be introduced. Drinfeld-Sokolov-Wilson (DSW) system 
can be written to explain the basics of MVIM, MVILTM and 
MVISTM in the following operator form. 

{
𝐿𝑡𝑢 + 𝑁𝑢 = 0

𝐿𝑡𝑣 + 𝑅𝑥𝑣 + 𝑁𝑣 = 0,
                                          (2) 

where 𝐿𝑡 =
𝜕

𝜕𝑡
 , 𝑅𝑥 = 𝛽

𝜕3

𝜕𝑥3
 represent linear differential 

operators and the notation,  𝑁𝑢 = 𝛼𝑣𝑣𝑥 ,  𝑁𝑣 = 𝛾𝑢𝑣𝑥 +
𝜀𝑢𝑥𝑣  represent nonlinear differential operator.  

 

Modified Variational Iteration Method 
The correction functional for Eq. (2) is given by: 

{
𝑢𝑛+1(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∫ 𝜆[𝑁𝑢𝑛(𝑥, 𝑠)]

𝑡

0
𝑑𝑠

𝑣𝑛+1(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + ∫ 𝜆[𝑅𝑥𝑣𝑛(𝑥, 𝑠) + 𝑁𝑣𝑛(𝑥, 𝑠)]
𝑡

0
𝑑𝑠.

                                                                          (3) 

Here 𝜆 is a Lagrange multiplier. For 𝐿𝑡 =
𝜕𝑚

𝜕𝑡𝑚
 , the Lagrange multiplier is given by [27]: 

𝜆(𝑥, 𝑡) =
(−1)𝑚

(𝑚−1)!
(𝑡 − 𝑥)𝑚−1, 𝑚 ≥ 1.                                                                          (4) 

Initial approximate functions 𝑢0, 𝑣0 be taken as 𝑢(𝑥, 0) and 𝑣(𝑥, 0) respectively. To avoid computational overhead and 
unnecessary terms, system in Eq. (3) is rearranged in the form: 

{
𝑢𝑛+1 = 𝑢0 + ∫ 𝜆[𝐺𝑛−1]

𝑡

0
𝑑𝑠 + ∫ 𝜆[𝐺𝑛 − 𝐺𝑛−1]

𝑡

0
𝑑𝑠

𝑣𝑛+1 = 𝑣0 + ∫ 𝜆[𝑅𝑥𝑣𝑛−1 + 𝐽𝑛−1]
𝑡

0
𝑑𝑠 + ∫ 𝜆[𝑅𝑥(𝑣𝑛 − 𝑣𝑛−1) + 𝐽𝑛 − 𝐽𝑛−1]

𝑡

0
𝑑𝑠.
                                                 (5) 

By further simplifying and taking 𝜆(𝑥, 𝑡) = −1, system in Eq. (5) is rearranged in the form: 

{
𝑢𝑛+1 = 𝑢𝑛 − ∫ [𝐺𝑛 − 𝐺𝑛−1]

𝑡

0
𝑑𝑠  

𝑣𝑛+1 = 𝑣𝑛 − ∫ [𝑅𝑥(𝑣𝑛 − 𝑣𝑛−1) + 𝐽𝑛 − 𝐽𝑛−1]
𝑡

0
𝑑𝑠.  

                                                                  (6) 

Here 𝐺𝑛 and 𝐽𝑛 can be obtained from the following series expansion of nonlinear terms and are convergent functions. 
So, 
𝑁𝑢𝑛 = 𝐺𝑛 + o(𝑡

𝑛+1), 𝑁𝑣𝑛 = 𝐽𝑛 + o(𝑡
𝑛+1) ,  𝑛 = 0,1, … , 𝐺−1 = 𝐽−1 = 0.  

System in Eq. (6) is called the modified correction functional. Consequently, the components 𝑢0,𝑢1, 𝑢2, 𝑢3, … and 
𝑣0,𝑣1, 𝑣2, 𝑣3, … are identified and the semi-analytical solutions of the DSW system are determined entirely. The 
convergence occurs without any conditions. That is, lim

𝑛→∞ 
𝑢𝑛 =𝑢(𝑥, 𝑡) and lim

𝑛→∞ 
𝑣𝑛 = 𝑣(𝑥, 𝑡). 

 Modified Variational Iteration Laplace Transform Method 
Definition 1.  For ∀𝑡 ≥ 0, the Laplace transform of the function 𝑓(𝑡) defined is given by [28]: 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡
∞

0
𝑓(𝑡)𝑑𝑡.                                                                             (7) 

Taking the Laplace transform of both sides of the system in Eq. (2) and using the derivative properties of the Laplace 

transform, the system is rewritten as: 

{
ℒ𝑡{𝑢𝑡} + ℒ𝑡{𝛼𝑣𝑣𝑥} = 0

ℒ𝑡{𝑣𝑡} + ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣} = 0
                                                                     (8)       

⇒ {
𝑠𝑈(𝑥, 𝑠) − 𝑢(𝑥, 0) + ℒ𝑡{𝛼𝑣𝑣𝑥} = 0

𝑠𝑉(𝑥, 𝑠) − 𝑣(𝑥, 0) + ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣} = 0.
                                                           (9) 

By rearranging system in Eq. (9), it can be written as: 

{
𝑈(𝑥, 𝑠) =

1

𝑠
𝑢(𝑥, 0) −

1

𝑠
ℒ𝑡{𝛼𝑣𝑣𝑥}

𝑉(𝑥, 𝑠) =
1

𝑠
𝑣(𝑥, 0) −

1

𝑠
ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}.

                                                 (10) 

Taking the inverse Laplace transform of both sides of the Eq. (10), it can be rewritten: 



Cumhuriyet Sci. J., 46(1) (2025) 98-108 

100 

{
ℒ𝑡
−1{𝑈(𝑥, 𝑠)} = ℒ𝑡

−1 {
1

𝑠
𝑢(𝑥, 0)} − ℒ𝑡

−1 {
1

𝑠
ℒ𝑡{𝛼𝑣𝑣𝑥}}

ℒ𝑡
−1{𝑉(𝑥, 𝑠)} = ℒ𝑡

−1 {
1

𝑠
𝑣(𝑥, 0)} − ℒ𝑡

−1 {
1

𝑠
ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}} .

                                     (11) 

By rearranging system in Eq. (11), it can be written as follows: 

{
𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) − ℒ𝑡

−1 {
1

𝑠
ℒ𝑡{𝛼𝑣𝑣𝑥}}

𝑣(𝑥, 𝑡) = 𝑣(𝑥, 0) − ℒ𝑡
−1 {

1

𝑠
ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}} .

                                         (12) 

Taking first derivative of both sides of the system in Eq. (12) with respect to 𝑡, it can be as follows: 

{
𝑢𝑡 +

𝜕

𝜕𝑡
ℒ𝑡
−1 {

1

𝑠
ℒ𝑡{𝛼𝑣𝑣𝑥}} = 0

𝑣𝑡 +
𝜕

𝜕𝑡
ℒ𝑡
−1 {

1

𝑠
ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}} = 0.

                                                        (13) 

The modified correction functional of system in Eq. (13) is given by 

{
𝑢𝑛+1 = 𝑢𝑛 − ∫ [𝐺𝑛 − 𝐺𝑛−1]

𝑡

0
𝑑𝑠

𝑣𝑛+1 = 𝑣𝑛 − ∫ [𝐽𝑛 − 𝐽𝑛−1]
𝑡

0
𝑑𝑠.

                                                                                (14) 

 𝐺𝑛 and 𝐽𝑛 can always be obtained from the series expansion of nonlinear terms and are convergent functions. That is, 

{
 
 

 
 

𝜕

𝜕𝑡
ℒ𝑡
−1 {

1

𝑠
ℒ𝑡{𝛼𝑣𝑣𝑥}} = 𝐺𝑛 + o(𝑡

𝑛+1)

𝜕

𝜕𝑡
ℒ𝑡
−1 {

1

𝑠
ℒ𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}} = 𝐽𝑛 + o(𝑡

𝑛+1)

𝑢0 = 𝑢(𝑥, 0), 𝑣0 = 𝑣(𝑥, 0), 𝑛 = 0,1, … , 𝐺−1 = 𝐽−1 = 0.

                                             (15) 

By continuing the iteration process, convergence to the exact solution of the DSW system via modified variational 

iteration Laplace transform method (MVILTM) occurs without any conditions. That is, lim
𝑛→∞ 

𝑢𝑛 = 𝑢(𝑥, 𝑡) and lim
𝑛→∞ 

𝑣𝑛 =

𝑣(𝑥, 𝑡). 

Modified Variational Iteration Sumudu Transform Method 
 

Definition 2. For set 𝐴 = {𝑓(𝑡): ∃𝐾, 𝑡1, 𝑡2 > 0, |𝑓(𝑡)| ≤ 𝐾𝑒
|𝑡|

𝑡𝑛, 𝑖𝑓 𝑡 ∈ {(−1)𝑛𝑥[0,∞]}}, Sumudu transform of the 

function 𝑓(𝑡) is given by [29]: 

𝒮{𝑓(𝑡)} = 𝐹(𝜖) = ∫ 𝑒−𝑡
∞

0
𝑓(𝜖𝑡)𝑑𝑡.                                                                    (16) 

Taking the Sumudu transform of both sides of the system in Eq. (2) and using the derivative properties of the Sumudu 

transform, the system is rewritten as follows: 

{
𝒮𝑡{𝑢𝑡} + 𝒮𝑡{𝛼𝑣𝑣𝑥} = 0

𝒮𝑡{𝑣𝑡} + 𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣} = 0
                                                               (17)       

⇒ {

1

𝜖
𝑈(𝑥, 𝜖) −

1

𝜖
𝑢(𝑥, 0) + 𝒮𝑡{𝛼𝑣𝑣𝑥} = 0

1

𝜖
𝑉(𝑥, 𝜖) −

1

𝜖
𝑣(𝑥, 0) + 𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣} = 0.

                                      (18) 

By rearranging system in Eq. (18), it can be written as follows: 

{
𝑈(𝑥, 𝜖) = 𝑢(𝑥, 0) − 𝜖𝒮𝑡{𝛼𝑣𝑣𝑥}

𝑉(𝑥, 𝜖) = 𝑣(𝑥, 0) − 𝜖𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}.
                                                (19) 

Taking the inverse Sumudu transform of both sides of the system in Eq. (19), it can be rewritten. 

{
𝒮𝑡
−1{𝑈(𝑥, 𝜖)} = 𝒮𝑡

−1{𝑢(𝑥, 0)} − 𝒮𝑡
−1{𝜖𝒮𝑡{𝛼𝑣𝑣𝑥}}

𝒮𝑡
−1{𝑉(𝑥, 𝜖)} = 𝒮𝑡

−1{𝑣(𝑥, 0)} − 𝒮𝑡
−1{𝜖𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}}.

                                 (20) 
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By rearranging system in Eq. (20), it can be written as follows: 

{
𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) − 𝒮𝑡

−1{𝜖𝒮𝑡{𝛼𝑣𝑣𝑥}}

𝑣(𝑥, 𝑡) = 𝑣(𝑥, 0) − 𝒮𝑡
−1{𝜖𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}}.

                                     (21) 

Taking first derivative of both sides of the system in Eq. (21) with respect to 𝑡, it can be as follows: 

{
𝑢𝑡 +

𝜕

𝜕𝑡
𝒮𝑡
−1{𝜖𝒮𝑡{𝛼𝑣𝑣𝑥}} = 0

𝑣𝑡 +
𝜕

𝜕𝑡
𝒮𝑡
−1{𝜖𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}} = 0.

                                                   (22) 

The modified correction functional of system in Eq. (22) is given by 

{
𝑢𝑛+1 = 𝑢𝑛 − ∫ [𝐺𝑛 − 𝐺𝑛−1]

𝑡

0
𝑑𝑠

𝑣𝑛+1 = 𝑣𝑛 − ∫ [𝐽𝑛 − 𝐽𝑛−1]
𝑡

0
𝑑𝑠.

                                                                             (23) 

𝐺𝑛 and 𝐽𝑛 can be found from the following convergent series expansion 

{
 

 
𝜕

𝜕𝑡
𝒮𝑡
−1{𝜖𝒮𝑡{𝛼𝑣𝑣𝑥}} = 𝐺𝑛 + o(𝑡

𝑛+1)

𝜕

𝜕𝑡
𝒮𝑡
−1{𝜖𝒮𝑡{𝛽𝑣𝑥𝑥𝑥 + 𝛾𝑢𝑣𝑥 + 𝜀𝑢𝑥𝑣}} = 𝐽𝑛 + o(𝑡

𝑛+1)

𝑢0 = 𝑢(𝑥, 0), 𝑣0 = 𝑣(𝑥, 0), 𝑛 = 0,1, … , 𝐺−1 = 𝐽−1 = 0.

                                                   (24) 

By continuing the iteration process, convergence to the exact solution of the DSW system via modified variational 

iteration Sumudu transform method (MVISTM) occurs without any conditions. That is, lim
𝑛→∞ 

𝑢𝑛 = 𝑢(𝑥, 𝑡) and lim
𝑛→∞ 

𝑣𝑛 =

𝑣(𝑥, 𝑡) 

Numerical Experiments and Simulations 

In this section, we will examine the following initial value problem for the specific parameters of the Drinfeld-
Sokolov-Wilson system in Eq.(1) and get semi-analytical solutions and errors of DSW system with MVIM, MVILTM and 
MVISTM. Considering the different values of the c wave parameter, the relative errors of the proposed methods for 
various iteration values will be given with the help of figures. 
Example 1. The DSW system with initial value problem for 𝛼 = 3, 𝛽 = 𝛾 = 2, 𝜀 = 1 in the system in Eq. (1) is given by 

{

𝑢𝑡 + 3𝑣𝑣𝑥 = 0
𝑣𝑡 + 2𝑣𝑥𝑥𝑥 + 2𝑢𝑣𝑥 + 𝑢𝑥𝑣 = 0

𝑢(𝑥, 0) = 0.3sech 2(√0.1𝑥), 𝑣(𝑥, 0) = 0.2sech (√0.1𝑥).  

                                           (25) 

For 𝑐 = 0.2, exact solutions of the DSW system given with initial value problem are            

𝑢(𝑥, 𝑡) =
3𝑐

2
𝑠𝑒𝑐ℎ2 (√

𝑐

2
(𝑥 − 𝑐𝑡)) , 𝑣(𝑥, 𝑡) = 𝑐sech (√

𝑐

2
(𝑥 − 𝑐𝑡)).   [30] 

Semi-analytical solutions founded by MVIM for Eq. (25) can be written as follows. 

𝑢0 =
0.3000000000

cosh (0.3162277660𝑥)2
 

𝑢1 =
0.3000000000

cosh (0.3162277660𝑥)2
+
0.03794733192sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)3
 

𝑢2 =
0.3000000000

cosh (0.3162277660𝑥)2
+
0.03794733192sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)3
+

0.002400000000𝑡2

cosh (0.3162277660𝑥)2

−
0.003600000000𝑡2

cosh (0.3162277660𝑥)4
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𝑣0 =
0.2000000000

cosh (0.3162277660𝑥)
 

𝑣1 =
0.2000000000

cosh (0.3162277660𝑥)
+
0.01264911064sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)2
 

𝑣2 =
0.2000000000

cosh (0.3162277660𝑥)
+
0.01264911064sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)2
+

0.0003999999990𝑡2

cosh (0.3162277660𝑥)

−
0.0008000000000𝑡2

cosh (0.3162277660𝑥)3
 

Semi-analytical solutions founded by MVILTM for Eq. (25) can be written as follows. 

𝑢0 =
0.3000000000

cosh (0.3162277660𝑥)2
 

𝑢1 =
0.3000000000

cosh (0.3162277660𝑥)2
+
0.03794733192sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)3
 

𝑢2 =
0.3000000000

cosh (0.3162277660𝑥)2
+
0.03794733192sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)3
+

0.002400000000𝑡2

cosh (0.3162277660𝑥)2

−
0.003600000000𝑡2

cosh (0.3162277660𝑥)4
 

𝑣0 =
0.2000000000

cosh (0.3162277660𝑥)
 

𝑣1 =
0.2000000000

cosh (0.3162277660𝑥)
+
0.01264911064sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)2
 

𝑣2 =
0.2000000000

cosh (0.3162277660𝑥)
+
0.01264911064sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)2
+

0.0003999999981𝑡2

cosh (0.3162277660𝑥)

−
0.0008000000000𝑡2

cosh(0.3162277660𝑥)3
+

6.83372784010−13𝑡2

cosh (0.3162277660𝑥)5
 

Semi-analytical solutions founded by MVISTM for Eq. (25) can be written as follows. 

𝑢0 =
0.3000000000

cosh (0.3162277660𝑥)2
 

𝑢1 =
0.3000000000

cosh (0.3162277660𝑥)2
+
0.03794733192sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)3
 

𝑢2 =
0.3000000000

cosh (0.3162277660𝑥)2
+
0.03794733192sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)3
+

0.002400000000𝑡2

cosh (0.3162277660𝑥)2

−
0.003600000000𝑡2

cosh (0.3162277660𝑥)4
 

𝑣0 =
0.2000000000

cosh (0.3162277660𝑥)
 

𝑣1 =
0.2000000000

cosh (0.3162277660𝑥)
+
0.01264911064sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)2
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𝑣2 =
0.2000000000

cosh (0.3162277660𝑥)
+
0.01264911064sinh (0.3162277660𝑥)𝑡

cosh (0.3162277660𝑥)2
+

0.0003999999981𝑡2

cosh (0.3162277660𝑥)

−
0.0008000000000𝑡2

cosh(0.3162277660𝑥)3
+

6.83372784010−13𝑡2

cosh (0.3162277660𝑥)5
 

Comparison of errors found by MVIM, MVILTM and MVISTM for various iteration values in Eq. (25) are shown in Table 

1-6. 

Table 1. Comparison of errors for various iteration values in Eq. (25) 

MVIM for 𝒖(𝒙, 𝒕), 𝒕 = 𝟏 

𝑥 𝑁 = 2 𝑁 = 3 𝑁 = 5 𝑁 = 8 
-6 6.06160 10−6 1.13633 10−7 1.42303 10−10 4.61369 10−12 
-3 1.10281 10−5 1.21407 10−6 7.27618 10−10 1.02636 10−11 
0 3.19280 10−6 3.19280 10−6 7.20005 10−10 1.31765 10−12 
3 1.35199 10−5 1.27770 10−6 8.70581 10−10 1.00499 10−11 
6 6.28720 10−6 1.11959 10−6 1.64544 10−10 5.41594 10−12 

 

Table 2. Comparison of maximum errors for various iteration values in Eq. (25) 

MVIM for 𝒗(𝒙, 𝒕), 𝒕 = 𝟏 

𝑥 𝑁 = 2 𝑁 = 3 𝑁 = 5 𝑁 = 8 

-6 1.16369 10−6 1.97458 10−8 5.08659 10−11 5.27795 10−12 

-3 6.94779 10−6 2.79873 10−7 2.71933 10−10 6.50994 10−12 

0 6.65584 10−7 6.65584 10−7 1.081690 10−9 6.99534 10−11 

3 7.51008 10−6 2.82411 10−7 2.96165 10−10 5.43343 10−12 

6 1.12110 10−6 2.28447 10−8 5.27115 10−11 5.49109 10−12 

 

Table 3. Comparison of maximum errors for various iteration values in Eq. (25) 

MVILTM for 𝒖(𝒙, 𝒕), 𝒕 = 𝟏 

𝑥 𝑁 = 2 𝑁 = 3 𝑁 = 5 𝑁 = 8 

-6 6.06161 10−6 1.13625 10−7 1.43203 10−10 6.26648 10−12 

-3 1.10280 10−5 1.21412 10−6 6.58228 10−10 2.01605 10−11 

0 3.19276 10−6 3.19276 10−6 7.242262 10−9 7.61305 10−11 

3 1.35199 10−5 1.27770 10−6 8.20719 10−10 4.33366 10−12 

6 6.28720 10−6 1.11964 10−7 1.55581 10−10 3.83181 10−12 

 

Table 4. Comparison of maximum errors for various iteration values in Eq. (25) 

MVILTM for 𝒗(𝒙, 𝒕), 𝒕 = 𝟏 

𝑥 𝑁 = 2 𝑁 = 3 𝑁 = 5 𝑁 = 8 

-6 1.16369 10−6 1.97432 10−8 5.5985010−11 1.41204 10−11 

-3 6.94779 10−6 2.79868 10−7 2.63163 10−10 1.72886 10−10 

0 6.65585 10−7 6.65585 10−7 1.079563 10−9 4.736751 10−9 

3 7.51008 10−6 2.82416 10−7 3.05784 10−10 1.39612 10−10 

6 1.12110 10−6 2.28477 10−8 4.64987 10−11 2.48959 10−12 

 

Table 5. Comparison of maximum errors for various iteration values in Eq. (25) 

MVISTM for 𝒖(𝒙, 𝒕), 𝒕 = 𝟏 

𝑥 𝑁 = 2 𝑁 = 3 𝑁 = 5 𝑁 = 8 

-6 6.06161 10−6 1.13625 10−7 1.43203 10−10 6.26648 10−12 

-3 1.10280 10−5 1.21412 10−6 6.58228 10−10 2.01605 10−11 

0 3.19276 10−6 3.19276 10−6 7.242262 10−9 7.61305 10−11 

3 1.35199 10−5 1.27770 10−6 8.20719 10−10 4.33366 10−12 

6 6.28720 10−6 1.11964 10−7 1.55581 10−10 3.83181 10−12 
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Table 6. Comparison of maximum errors for various iteration values in Eq. (25) 

MVISTM for 𝒗(𝒙, 𝒕), 𝒕 = 𝟏 

𝑥 𝑁 = 2 𝑁 = 3 𝑁 = 5 𝑁 = 8 

-6 1.16369 10−6 1.97432 10−8 5.5985010−11 1.41204 10−11 

-3 6.94779 10−6 2.79868 10−7 2.63163 10−10 1.72886 10−10 

0 6.65585 10−7 6.65585 10−7 1.079563 10−9 4.736751 10−9 

3 7.51008 10−6 2.82416 10−7 3.05784 10−10 1.39612 10−10 

6 1.12110 10−6 2.28477 10−8 4.64987 10−11 2.48959 10−12 

Comparison of relative errors found by MVIM, MVILTM and MVISTM for various iteration values and wave constant 
𝑐 values in Eq. (25) are shown in Figure 1-6. 
 

  

a) MVIM for u(x,t). b) MVILTM for u(x,t). 

 
c) MVISTM for 𝑢(𝑥, 𝑡) 

Figure 1. Comparison of relative errors for various iteration values and c=0.2, t=1 in Eq. (25) 
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                                    a) MVIM for v(x,t). 

 
                                   b) MVILTM for v(x,t). 

 
                               c) MVISTM for v(𝑥, 𝑡) 

Figure 2. Comparison of relative errors for various 
iteration values and c=0.2, t=1 in Eq. (25) 

 

 

 
 
 

 
                                    a) MVIM for u(x,t). 

 
                                   b) MVILTM for u(x,t). 

 
                               c) MVISTM for u(𝑥, 𝑡) 

Figure 3. Comparison of relative errors for various  
iteration values and c=0.5, t=1 in Eq. (25) 
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                                    a) MVIM for v(x,t). 

 
                                   b) MVILTM for v(x,t). 

 
                               c) MVISTM for v(𝑥, 𝑡) 

Figure 4. Comparison of relative errors for various 
iteration values and c=0.5, t=1 in Eq. (25) 

 

 

 
                                    a) MVIM for u(x,t). 

 
                                   b) MVILTM for u(x,t). 

 
                               c) MVISTM for u(𝑥, 𝑡) 

Figure 5. Comparison of relative errors for various  
iteration values and c=1, t=1 in Eq. (25) 



Cumhuriyet Sci. J., 46(1) (2025) 98-108 

107 

Conclusion 
 
In this study, MVIM, MVILTM and MVISTM are used 

to utilize the Drinfeld-Sokolov-Wilson system semi-
analytically. Semi-analytical solutions of the DSW system 
via MVIM, MVILTM and MVISTM are determined. The 
comparison of maximum errors of MVIM for various 
iteration values is given in Table 1-6. Also, the c value is a 
parameter that occurs in the solution of the DSW system 
and is called the wave parameter r. The comparison of 
relative errors for various iteration values and wave 
parameters (c values) are visualized in Figure 1-6. 

 Via MVIM, MVILTM and MVISTM used to solve the 
DSW system, the semi-analytical results of proposed 
methods are obtained in a short time and using less 
memory. It has been observed that MVIM, MVILTM, 
MVSTM proposed for the DSW system not only eliminate 
the complexity and intense processing load of the exact 
solution but also provide practicality, time saving and 
effectiveness. Therefore, they are very useful methods in 
terms of both time and computational cost. It is highly 
recommended as an alternative to exact solution 
methods. MVILTM and MVISTM are highly effective, fast, 
more practical and reliable methods to solve the DSW 
system as an alternative to MVIM. Also, the maximum 
errors of proposed methods for c=0.2 in the DSW system 
are around 10−9 − 10−11. It has been observed that the 
maximum and relative errors increase as the value of the 
c parameter increases. Therefore, it has been determined 
that the c parameter affects convergence. As a result, it 
has been signed that MVILTM and MVISTM used to solve 
the DSW system are equivalent methods and have the 
same effectiveness. It has been shown that MVIM gives 
more accurate results than MVILTM and MVISTM in 
solving the DSW problem. 

Consequently, proposed semi-analytical solutions 
can be used instead of exact solutions of the DSW system 
that models the translation of shallow water waves and 
the dispersive water waves. These obtained semi-
analytical solutions can be more useful and functional in 
explaining the physical aspects of various models that 
originated from engineering and science. The parameters 
in the Drinfeld-Sokolov-Wilson system can be also 
examined according to spatial. Finally, this study can be 
taken further by bringing the DSW system to fractional 
form with the help of fractional derivative definitions. 

This study was partially presented orally at “The 8th 
International Conference on Computational Mathematics 
and Engineering Sciences / 17 – 19 May. 2024, Sanlıurfa – 
Turkiye”. 
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                                    a) MVIM for v(x,t). 

 
                                   b) MVILTM for v(x,t). 

 
                               c) MVILTM for v(𝒙, 𝒕) 

Figure 6. Comparison of relative errors for 
various iteration values and c=1, t=1 in Eq. (25) 
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