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This paper introduces the unit-transmuted Lindley (unit-TL) distribution. The statistical properties of the 

unit-TL distribution defined between (0,1) are discussed in detail. Several estimation techniques are 

used to estimate the parameters of the unit-TL distribution. An analysis through simulation is carried 

out to evaluate the efficacy of the suggested model. Furthermore, a unique regression model is 

developed for bounded response variables based on the unit-TL distribution. To illustrate the 

importance of the suggested model in precisely describing restricted datasets, two distinct datasets are 

examined. 
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Introduction 
 

A lot of real-world scenarios require data (such 
percentages and proportions) that are restricted to a 
particular range. This is especially true in economic 
environments where nondurable consumption is given a 
percentage of income and industry market shares [1]. 
Such datasets require the use of flexible distributions to 
correctly represent them. Despite being widely utilized in 
many scientific studies, the Beta distribution has certain 
drawbacks, most notably the inability to describe its 
functions in an explicit form. Compared to the Beta 
distribution, the Topp-Leone distribution is simpler and 
has become more well-known. It was first presented by 
[2]. Similar to this, the Kumaraswamy distribution was 
used by many scientist, which was first presented by [3] 
and made widespread by [4]. 

Researchers used some mathematical transformations 
to propose distributions on (0,1) interval. These are 

  1Y X X  and   expY X . Using these 

transformations, researchers introduced several 
distributions such as unit-BS by [5], log-XG by[6], log-
exponential power by [7], log-Bilal [8], log-WE by [9], a 
new kind of unit-Lindley by[10], unit-Chen by [11], 
continuous Bernoulli by [12], unit generalized half-normal 
by [13] and unit Gompertz by [14].  

This study aims to introduce an innovative distribution 
with closed and accessible statistical features, defined on 
the unit interval. Compared to popular distributions like 
Beta, Kumaraswamy, and Topp-Leone, this one has a 
number of advantages. A closed form of the probability 
density function (pdf) and moments are among the 
statistical characteristics of the unit-TL distribution that 
may be determined. It allows for the introduction of a 

regression model of the proposed distribution and shows 
a better fit than other widely recognized distributions 
constructed on the unit interval. 

The paper is divided as follows: A thorough summary 
of the mathematical characteristics connected to the 
suggested distribution is given in Section 2. The methods 
for estimating parameters, such as weighted least 
squares, least squares, and maximum likelihood, are 
covered in Section 3. The simulation study that evaluates 
the effectiveness of the parameter estimation techniques 
in finite samples are shown in Section 4. In Section 5, an 
innovative regression model that uses the generalized 
linear model approach is introduced as a complement to 
the Beta regression model. To demonstrate the 
adaptability of the unit-TL distribution in comparison to 
popular distributions in (0,1) interval, two real datasets 
are investigated in Section 6. The paper gets to its 
conclusion in Section 7. 

 

The Unit-Transmuted Lindley Distribution 
The pdf of the Lindley distribution is 

 

𝑓(𝑥; 𝜃) =
𝜃2

1 + 𝜃
(1 + 𝑥) 𝑒𝑥𝑝(−𝜃𝑥) , 𝑥 > 0. (1) 

 
where  0  is scale parameter. It is possible to 

represent the pdf provided in (1) as a combination of 
gamma and exponential distributions.  The cumulative 
distribution function (cdf) is 
 

𝐹(𝑥) = 1 −
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒𝑥𝑝(−𝜃𝑥) , 𝑥 ≥ 0. (2) 
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Several authors have examined the Lindley 
distribution and its statistical characteristics were 
deduced by [15]. There are several Lindley distribution 
generalizations in the statistical literature. [16] presented 

a novel Lindley distribution, known as the transmuted 
Lindley (TL) distribution, with the following pdf using the 
transmutation idea. 

 

𝑓(𝑥; 𝜃, 𝜆) =
𝜃2

𝜃 + 1
(1 + 𝑥) 𝑒𝑥𝑝(−𝜃𝑥) (1 − 𝜆 + 2𝜆

1 + 𝜃 + 𝜃𝑥

𝜃 + 1
𝑒𝑥𝑝(−𝜃𝑥)) , 𝑥 > 0. (3) 

 

Here, the parameter 1   is the transmutation parameter. The cdf of (3) is 

𝐹(𝑥; 𝜃, 𝜆) = (1 −
1 + 𝜃 + 𝜃𝑥

𝜃 + 1
𝑒𝑥𝑝(−𝜃𝑥)) (1 + 𝜆

1 + 𝜃 + 𝜃𝑥

𝜃 + 1
𝑒𝑥𝑝(−𝜃𝑥)) , 𝑥 ≥ 0. (4) 

 

Now, using  1Y X X   transformation in (3), we have 

𝑓(𝑦; 𝜃, 𝜆) =
𝜃2

𝜃 + 1
(1 − 𝑦)−3 𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
) (1 − 𝜆 + 2𝜆

1 + 𝜃 +
𝜃𝑦

1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
)) , 0 < 𝑦 < 1. (5) 

 
The Equation (5) is symbolized by Y ∼ unit-TL( , λ). Its cdf is 

𝐹(𝑦; 𝜃, 𝜆) = (1 −
1 + 𝜃 +

𝜃𝑦
1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
))(1 + 𝜆

1 + 𝜃 +
𝜃𝑦

1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
)). (6) 

 
Figure 1 shows the pdf plots of the unit-TL distribution for various values of the parameters. Both a left- and a right-

skewed unit-TL distribution are possible. 
 

 

Figure 1. The pdf plots of the model. 

 
The survival function is obtained as 𝑆(𝑦) = 1 − 𝐹(𝑦), and given by 

𝑆(𝑦; 𝜃, 𝜆) = 1 − (1 −
1 + 𝜃 +

𝜃𝑦
1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
))(1 + 𝜆

1 + 𝜃 +
𝜃𝑦

1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
)) , 0 ≤ 𝑦 ≤ 1. (7) 

 
Using the pdf and cdf, the hazard rate function (hrf) is 

𝐻(𝑦; 𝜃, 𝜆) =
𝜃2

𝜃 + 1
(1 − 𝑦)−3 𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
)(1 − 𝜆 + 2𝜆

1 + 𝜃 +
𝜃𝑦

1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
)) 

× [1 − (1 −
1 + 𝜃 +

𝜃𝑦
1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
))(1 + 𝜆

1 + 𝜃 +
𝜃𝑦

1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
))]

−1

. 

(8) 
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The hrf forms of the unit-TL model is illustrated (see, 
Figure 2). The unit-TL has only an increasing form of the 
hrf. 
 

 

Figure 2. The hazard plots of unit-TL. 

 
Generating random variables from the unit-TL 

distribution can be done using the properties of the 
Lindley and transmuted distributions. The cdf of the 
transmuted distribution is  
 

𝐹(𝑥) = (1 + 𝜆)𝐺(𝑥) − 𝜆𝐺2(𝑥) (9) 

 
where |𝑢| ≤ 1 and 𝐺(𝑥) is the cdf of the Lindley 

distribution for the transmuted-Lindley distribution. The 
quantile function of the transmuted distribution can be 
obtained for the general class of these distributions, as 
follows 
 

𝑄𝐺 = (
𝜆 − √2𝜆 − 4𝜆𝑢 + 𝜆2 + 1 + 1

2𝜆
) (10) 

 

where  GQ   is the quantile function of the Lindley 

distribution for transmuted-Lindley distribution. The 
qlindley function defined in the LindleyR package of the R 
software can be used for that purpose. The below 
algorithm can be easily implemented in R software to 
generate random variables from the unit-TL distribution.  

 

1. Define    and   parameters. 
2. Generate random variables from standard uniform 
distribution, 𝑢 ∼ 𝑈(0,1). 

3. Calculate 𝑥𝑢 =
𝜆−√2𝜆−4𝜆𝑢+𝜆2+1+1

2𝜆
   

4. Using the quantile function of the Lindley distribution, 
calculate 𝑥 = qlindley(𝑥𝑢 , 𝜃) 

5. Apply the following transformation 𝑦 =
𝑥

(𝑥+1)
  

6. Repeat steps 2-5 n  times.

 
 
The integration in (11) may be solved to obtain the moments of the unit-TL distribution. 

𝐸(𝑌𝑘) =
𝜃2

𝜃 + 1
∫ 𝑦𝑘

1

0

(1 − 𝑦)−3 𝑒𝑥𝑝 (−
𝜃𝑦

1 − 𝑦
)(1 − 𝜆 + 2𝜆

1 + 𝜃 +
𝜃𝑦

1 − 𝑦

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦

1 − 𝑦
))𝑑𝑦. (11) 

(11) cannot have an analytical solution. For a given value of k, however, the integration in (11) can be solved. We have 

the mean of the unit-TL distribution for k = 1. 

𝐸(𝑌) =
𝜃 (1 −

𝜆
2
) + 1

(𝜃 + 1)2
 (12) 

 

Estimation 
 

In this section, three parameter estimation methods are described for the unit-TL distribution. 

Maximum likelihood estimation 

Assume that the unit-TL distribution is the distribution of the random samples 1 2 3,  ,  ,..., ny y y y . The   ,  

function is provided by 

ℓ(𝜃, 𝜆) = 𝑛 𝑙𝑜𝑔 (
𝜃2

𝜃 + 1
) − 3∑𝑙𝑜𝑔(1 − 𝑦𝑖)

𝑛

𝑖=1

− 𝜃 ∑
𝑦𝑖

1 − 𝑦𝑖

𝑛

𝑖=1

 

+∑𝑙𝑜𝑔

(

 
 

(1 − 𝜆 + 2𝜆
1 + 𝜃 +

𝜃𝑦𝑖

1 − 𝑦𝑖

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦𝑖

1 − 𝑦𝑖

))

)

 
 

𝑛

𝑖=1

 

(13) 

We obtain the normal equations by calculating partial derivatives of (13) with regard to   and λ. 
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
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
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1
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1

1

2 exp 1 1 1

2 exp 1 1

2 exp 1 1
2

1
1 1 1 2 1 exp 1

2exp 1 1 1
.

1 2 exp

,

1 1

i i i i

i i

i i

i

i i i

i i

i i

y z z y

z z

z z
n z

y z z

z z

z z

 

   

Where  1i i iz y y   and(�̂�, �̂�) are the maximum likelihood estimates (MLEs) of the following equations when 

they are solved simultaneously. These equations incorporate complex functions, which makes the solution impossible 
to get the MLEs in an explicit form. As such, the solution requires the application of numerical methods. Using the 
statistical software R, one may determine the MLEs of the parameters. 

 
Least Squares (LS) and Weighted LS (WLS) Estimations 

Let 
 iY  for 1,2,3,...,i n  be the random variable denotes the ordered samples from the unit-TL distribution. To 

obtain the LSEs estimations, the function given in (14) is minimized.  

∑

[
 
 
 

(

 1 −

1 + 𝜃 +
𝜃𝑦(𝑖)

1 − 𝑦(𝑖)

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦(𝑖)

1 − 𝑦(𝑖)
)

)

 

(

 1 + 𝜆

1 + 𝜃 +
𝜃𝑦(𝑖)

1 − 𝑦(𝑖)

𝜃 + 1
𝑒𝑥𝑝 (−

𝜃𝑦(𝑖)

1 − 𝑦(𝑖)
)

)

 −
𝑖

𝑛 + 1
]
 
 
 
2

𝑛

𝑖=1

. (14) 

 

Also, the equation (15) is minimized to get WLSEs of the model parameters. 

∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[(1 −

1+𝜃+𝜃𝑧(𝑖)

𝜃+1
𝑒𝑥𝑝(−𝜃𝑧(𝑖))) (1 + 𝜆

1+𝜃+𝜃𝑧(𝑖)

𝜃+1
𝑒𝑥𝑝(−𝜃𝑧(𝑖))) −

𝑖

𝑛+1
]
2

𝑛
𝑖=1 .  

 
(15) 

Simulation 
 
Using the estimation methods mentioned in previous 

section, bias, mean squared error (MSE) and mean relative 
error (MRE) are calculated. The anticipation is to observe 
that when the sample size increases, the bias and MSE 
should be near the zero value and MRE should be near the 
one value. The parameters of the unit-TL distribution are 
defined as   = 2, λ = 0.5. The size of the sample is raised 

from 50 to 500 by 5 units.  

Figures 3-5 present a graphical summary of the 
simulation findings. Large sample sizes are associated with 
biases and MSEs that are, as predicted, close to zero in 
estimating methods. 

The MREs are also close to the one. Nevertheless, 
compared to other estimate techniques, the MLE 
method’s biases and MSE values approach the required 
values more quickly. Furthermore, when the sample size 
is small, the bias and MSE of the MLE approach are lower 
than other methods. Therefore, we advise estimating the 
unit-TL distribution’s parameters using the MLE approach.

 

 

Figure 3. Estimated biases. 
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Figure 4. Estimated MREs. 

 

 

Figure 5. Estimated MSEs. 

 

The Unit-Transmuted Lindley Regression Model 
We present an alternative regression model that offers a new approach to modeling of bounded dependent variable 

with covariates. Let 𝜃 = (2𝜇)−1 [(1 −
𝜆

2
− 2𝜇) + √4𝜇 + (1 −

𝜆

2
)

2

− 4𝜇 (1 −
𝜆

2
)], the pdf is 

 

𝑓(𝑦; 𝜇, 𝜆) =
𝛾(𝜇,𝜆)2

𝛾(𝜇,𝜆)+1
(1 − 𝑦)−3 𝑒𝑥𝑝 (−

𝛾(𝜇,𝜆)𝑦

1−𝑦
) × (1 − 𝜆 + 2𝜆

1+𝛾(𝜇,𝜆)+
𝛾(𝜇,𝜆)𝑦

1−𝑦

𝛾(𝜇,𝜆)+1
𝑒𝑥𝑝 (−

𝛾(𝜇,𝜆)𝑦

1−𝑦
)),  (16) 

 
Where 

 

𝛾(𝜇, 𝜆) = (2𝜇)−1 [(1 −
𝜆

2
− 2𝜇) + √4𝜇 + (1 −

𝜆

2
)

2

− 4𝜇 (1 −
𝜆

2
)]. (17) 

 
In the re-parametrization, we have 𝐸(𝑌) = 𝜇. As in the beta regression method, the independent variables are 

connected to the dependent variable via link function. Since the dependent variable is defined on (0,1) interval, we use 
the logit-link function 
 

𝜇𝑖 =
𝑒𝑥𝑝(𝑥𝑖

𝑇β)

1 + 𝑒𝑥𝑝(𝑥𝑖
𝑇β)

, 𝑖 = 1, . . . , 𝑛. (18) 
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Substituting (18) in (16), the log-likelihood function is 
 

ℓ(β, 𝜆) = ∑ 𝑙𝑛 (
𝛾(𝜇𝑖, 𝜆)2

𝛾(𝜇𝑖 , 𝜆) + 1
)

𝑛

𝑖=1

− 3∑𝑙𝑛(1 − 𝑦𝑖)

𝑛

𝑖=1

− ∑𝛾(𝜇𝑖, 𝜆)
𝑦𝑖

1 − 𝑦𝑖

𝑛

𝑖=1

 

+∑𝑙𝑛 (1 − 𝜆 + 2𝜆
1 + 𝛾(𝜇𝑖, 𝜆) +

𝛾(𝜇𝑖 , 𝜆)𝑦𝑖

1 − 𝑦𝑖

𝛾(𝜇𝑖 , 𝜆) + 1
𝑒𝑥𝑝 (−

𝛾(𝜇𝑖 , 𝜆)𝑦𝑖

1 − 𝑦𝑖

))

𝑛

𝑖=1

 

(19) 

 

where i  is as in (18). The maximization of the log-

likelihood function described in Equation (19) is achieved 
through the optim function in the R software. The 
asymptotic standard errors are then calculated by help of 
the inverse of the observed information matrix. 

The residuals, as defined by [17] are employed to 
assess deviations from the assumption of error. These 
residuals are defined as: 

 

�̂�𝑖 = − 𝑙𝑛[1 − 𝐹(𝑦𝑖)] , 𝑖 = 1,2, . . . , 𝑛, (20) 

 

where  iF y  is the estimated cdf. 

 

Applications 
 

Water Capacity Data 
This section employs a real data application to 

compare the unit-TL model with Beta, Kumaraswamy, and 
Topp-Leone distributions. Table 1 presents the MLEs, A, 
W, AIC and BIC. Here, A and W represent the Anderson-
Darling and Cramer-von Mises, respectively. Also, KS 
represents the Kolmogorov-Smirnov test statistic value.  

The dataset consists of monthly water capacity data 
from the Shasta reservoir in California, USA, spanning 
from February 1991 to 2010. The reservoir has a 
maximum capacity of 4552000 AF, and the data was 
normalized to the interval [0,1] using a normalization 
equation. [18] previously analyzed this dataset. 

The hazard shape information can assist in selecting an 
appropriate model. [19] developed a useful tool for this 
purpose, called as TTT plot. A straight diagonal shape in 
the TTT plot indicates a constant hazard, while a convex 
shape suggests decreasing hazards and a concave shape 

indicates increasing hazards. A bathtub shape in the 
hazard occurs when it transitions from convex to concave. 
Examination of Figure 6 reveals that the hrf shape of the 
data is increasing. Therefore, utilizing a unit-TL 
distribution appears to be an effective choice for modeling 
this dataset. 
 

 

Figure 6. TTT plot of the dataset. 

 
Table 1 displays the estimated parameters, standard 

errors, and other statistics for the monthly water capacity 
dataset. The values in Table 1 clearly show that the 
goodness-of-fit statistics for the unit-TL distribution are at 
their lowest values. For the monthly water capacity 
dataset, the proposed distribution may thus be thought to 
be the best fit model. 

 

Table 1. Estimated parameters of the fitted models. 
Distributions Parameters  −𝓵 AIC BIC A W K-S p 

Beta 

7.3154 2.9098 -12.5619 -21.1239 -19.1324 1.6192 0.2796 0.2359 0.1834 

2.3180 0.8754        

Kumaraswamy 

6.3476 4.4893 -13.4747 -22.9494 -20.9580 1.4245 0.2407 0.2209 0.2447 

1.5575 2.0409        

Topp-Leone 

8.6664  -11.5876 -21.1753 -20.1795 1.7864 0.3134 0.2549 0.1241 

1.9379         

unit-TL 

0.6764 0.9990 -16.0715 -28.1431 -26.1516 0.9005 0.1394 0.1795 0.4847 

0.1120 0.3937        
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Figure 7 displays the fitted functions of the model on the dataset. As can be seen from the right panel of Figure 7, 
out of all the models, the unit-TL distribution provides the best match to the monthly water capacity dataset. 

 

 

Figure 7: Comparison of the fitted densities (left-panel) and pdf, sf, hrf and PP plot of the unit-TL (right-panel). 

 

Application of regression 
In this part, the unit-TL regression model is checked 

against the beta regression model using the OECD Better 
Life Index (BLI) dataset. We use the R software’s betareg 
package to obtain the parameters of the beta regression 
model. 

The purpose of this application is to determine how 
the variables of water quality (x1), air pollution (x2) and 

murder rate (x3) relate to self-reported health (y). One 
may get the dataset that was utilized in this study at the 
website of the OECD.  

The logit link function is used in both regression 
models. As a result, the following represents the 
regression structure for µi. 

logit(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 (20) 

 

Table 2: Results of the fitted regression models. 
Parameters Beta unit-TL 

Estimate SE p Estimate SE p 

𝛽0 0.9068 1.1491 0.4300 0.9844 1.3438 0.4638 
𝛽1 0.5049 1.1506 0.6608 0.3943 1.3481 0.7699 
𝛽2 -0.0424 0.0188 0.0237 -0.0450 0.0221 0.0416 
𝛽3 -0.6673 1.9246 0.7288 -0.9082 2.1119 0.6672 
𝜙 14.4130 3.2140 <0.001 - - - 
𝜆  - - - -0.9990 0.7302 0.1709 
−ℓ -28.0600 -30.1429 
AIC -46.1200 -50.2858 
BIC -37.9321 -42.0979 

 

Table 2 provides a summary of the models. 
Interestingly, in both regression models, the parameter air 
pollution is found significant that has a detrimental effect 
on self-reported health. 

Utilizing the computed AIC, and BIC values is essential 
in selecting the most suitable model. With the unit-TL 
distribution exhibiting the lowest values for these 
statistics, it is evident that the proposed model 
outperforms the alternative model in terms of fitting 
performance for the dataset. Furthermore, Figure 8 
illustrates the Cox-Snell residuals for the unit-TL 
regression model, demonstrating the proximity of the 
plotted points to the diagonal line. 

 

Figure 8. PP plot of the residuals. 
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Conclusion 
 
We introduce a unique distribution with restricted 

support and two parameters. A number of statistical 
properties are obtained. Through a simulation study, the 
estimate of unknown parameters of the unit-TL 
distribution is explored using weighted least squares, 
maximum likelihood, and least squares approaches. To 
compare the performance and adaptability of the unit-TL 
distribution with competitive distributions, two datasets 
are analyzed. Additionally, the unit-TL regression 
constructed for the modeling of the bounded dependent 
variable is presented. 
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