
618 

  

Cumhuriyet Science Journal 
Cumhuriyet Sci. J., 45(3) (2024) 618-628 

DOI: https://doi.org/10.17776/csj.1467360 

 

│  csj.cumhuriyet.edu.tr  │ Founded: 2002 ISSN: 2587-2680    e-ISSN: 2587-246X Publisher: Sivas Cumhuriyet University 

 

Modeling Long Memory Volatilities of Nigeria Selected Macro Economic Variables 
with Arfima and Arfima Figarch  
Adewole Ayoade 1,a,* 

1Department of Mathematics, Tai Solarin University of Education Ijagun Ogun State, Nigeria. 
*Corresponding author  
Research Article ABSTRACT 
 

History 
Received: 10/04/2024 
Accepted: 20/08/2024 
 
 
 
 
 
 

 
This article is licensed under a Creative 
Commons Attribution-NonCommercial 4.0 
International License (CC BY-NC 4.0) 

The research delved into analysing the stochastic characteristics of Nigeria's Real GDP, the exchange rate of the 
Naira to US Dollar, and the inflation rate employing Autoregressive fractionally integrated moving average 
(ARFIMA) and the Autoregressive Fractionally Integrated Moving Average Fractionally Integrated Generalized 
Autoregressive Conditional Heteroskedasticity (FIGARCH) modelling approach. The ability of the hybrid 
formation of ARFIMA-FIGARCH model with Nigeria macroeconomic variables in modeling the periodicity of long 
memory volatilities was examined. ARIMA GARCH method of modeling was also employed in analyzing the 
volatilities of Nigeria selected macroeconomic variables to enrich the study. The efficiency of ARFIMA, ARFIMA 
FIGARCH and ARIMA GARCH models were evaluated with the forecast evaluation measurements. Results 
revealed that ARFIMA FIGARCH and ARIMA GARCH models are more adequate in modeling the Inflation rate 
and the exchange rate while ARFIMA present more adequacies in modeling the RGDP. This result revealed 
evidence of high volatilities in Nigeria Inflation and the exchange rate of Naira to US dollar. 
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Introduction 
 

Improvements in econometrics methods have fetched 
different tools of exploring the theoretical features of 
economic variables over time. Analyzing and modelling 
applied times series from diverse area of application in 
econometric study is very essential due to their salient 
features. Recently, there is evolution of phenomenon of 
modelling and forecasting series with long memory 
behavior with time varying conditional variance,[1-3] 
introduced a widely adopted method for analyzing long 
memory time series data through the utilization of 
autoregressive fractionally integrated moving average 
(ARFIMA) processes. The perception of long memory 
characteristics relates to the interdependence among 
data points gathered over a period of time. In the study of 
[4,5], long-term memory descriptions were described as 
the gradual decrease occurring in the autocorrelation 
function's graphical representation within a dataset. This 
phenomenon led to suggestion of applying fractional 
differencing in mean models when long memory is being 
identified in the time series data. 

Researchers have extensively worked on analyzing 
significant inferences of long memory returns of 
modelling financial economic series. Modern researches 
delved into modelling of long memory in econometrics 
model, prediction of prices of agricultural products and 
numerous financial series [3,6,1,7] among others. 

However, ARFIMA model is based on the assumptions 
of linearity, stationarity and homoscedasticity of error 
variance, ARFIMA model is incompetent in handling 

dataset that exhibits presence of high volatility, most 
financial time series portrays features involving high 
volatilities in unstable phase succeeding stability periods. 
Autoregressive conditional heteroscedastic (ARCH) model 
was proposed by [8] to handle cases of volatility in Times 
series.  

 Nevertheless, ARCH model has the features of rapid 
decay in squared residuals of unconditional 
autocorrelation function when compared to a usual 
observed values unless there is large extreme lag. The 
generalized autoregressive conditional heteroskedasticity 
(GARCH) model was developed by [9,10] with the purpose 
of handling the evolving pattern of conditional variance, 
thus addressing the limitations of the ARCH model. The 
square volatility modelling was assumed to relate to its 
past values and errors in estimating the parameters 
involved, GARCH model are independent of one another. 
Several theoretical and empirical works has been 
established relating GARCH and its kind.[11,12].  Long 
memory procedure allows the integration of conditional 
heteroscedasticity which revealed the presence non-
periodic cycles. [13-15] Employed a seasonal ARFIMA 
model with GARCH errors in analyzing PM concentration. 
[16,17] explored nonlinear time series with GARCH 
models and nonetheless, neither the Generalized 
Autoregressive Conditional Heteroscedasticity nor ARCH 
process can effectively capture the handling of the 
presence of long memory in model volatility. Addressing 
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long-term memory effects in variations, incorporating 
fractional differencing into variance models.  

Developed a new notable model named FIGARCH in 
the realm of long-term memory variance from 
Exponential Generalized Autoregressive Conditional 
Heteroscedasticity (EGARCH), a generalized family of 
GARCH that allows persistency in conditional variance. 
Fractionally Integrated Generalized Autoregressive 
Conditional Heteroscedasticity (FIGARCH) model is mostly 
used for modeling long memory in time series with 
volatility. [18]  FIGARCH model was introduced mainly to 
create a more flexible process of estimating and 
summarizing conditional variance that has dependencies 
in financial market volatility, the FIGARCH model permits 
gradual hyperbolic rate of decay for the lagged squared in 
the conditional variance function. Several studies had 
been conducted on modelling and forecasting times series 
model applying concept and relevance of FIGARCH model. 
FIGARCH model was employed by [2,19] in modeling and 
predicting the effect of long-range relationship long 
memory patterns in conditional variance. Applicability of 
FIGARCH in other field were well spelt out by researchers, 
[20,21] introduced a FIGARCH model with seasonality, the 
work gives room for examining both periodic patterns and 
long memory comportments in conditional variance.[22] 
ascertained that FIGARCH model operates in the opposite 
direction as that of ARFIMA in persistency, as the 
fractional parameters parameter approaches zero, the 
memory of the process rises. ARFIMA-FIGARCH model is a 
connection between ARFIMA model and FIGRACH model 
[23]. Several studies show the significant evidences of long 
memory model in series that exhibits volatilities through 
the use of ARFIMA-FIGARCH [24,25] among others. 

A number of recent studies suggest that most 
macroeconomic variables exhibit long-range dependence 
followed by the periods of instability in volatility and 
should be modelled as a fractionally integrated process 
[26-28] among others. Although long-memory models 
have gained popularity in modeling and forecasting future 
series but there are limited studies explored the possibility 
of long-period dependence and volatilities of macro-
economic variables in Nigeria. Modeling time series 
volatility aids in improving parameter estimation 
efficiency and forecast accuracy [29].  

However, this study aims to leverage the combination 
of ARFIMA-FIGARCH models to capture both the mean 
and long memory aspects of volatility within combined 
data samples. The research endeavors to explore the 
empirical stochastic properties of the inflation rate, 
exchange rate, and Nigeria's Real GDP using both the 
autoregressive fractionally integrated moving average 
(ARFIMA) and the Autoregressive Fractionally Integrated 
Moving Average Fractionally Integrated Generalized 
Autoregressive Conditional Heteroskedasticity (FIGARCH) 
modeling approaches. 

Moreover, this work investigates the capability of the 
ARFIMA-FIGARCH model using Nigeria macroeconomic 
variables to estimate the long memory volatilities. The 

model efficiency is then evaluated with the forecast 
evaluation measurements. 

 
Material and Method 

 
ARFIMA Model Process 
 The Autoregressive Fractionally Integrated Moving 

Average (ARFIMA) process is stated as: 
 
 𝛾𝛾(𝑈𝑈) (1 − 𝑈𝑈)𝑑𝑑𝑋𝑋𝑡𝑡 =  𝜗𝜗(𝑈𝑈)𝜀𝜀𝑡𝑡 (1) 
 

𝑈𝑈 is defined as the lag operator such that 

𝑈𝑈𝑋𝑋𝑡𝑡 = 𝑈𝑈𝑋𝑋𝑡𝑡−1 (2) 
 
and the (1𝑈𝑈)𝑑𝑑  fractional difference operator  replaced 

the usual standard difference operator (1 − 𝑈𝑈) of a short 
memory ARIMA process, d is a non-integer parameter that 
represent the level of the fractional difference. 𝜀𝜀𝑡𝑡 is 
independently and identically distributed with mean 0 and 
variance 𝜎𝜎2, 𝛾𝛾(𝑈𝑈) and 𝜗𝜗(𝑈𝑈) signify AR and MA 
components respectively. The method is covariance 
stationary for the interval of d lying between - 0.5 and 0.5; 
which involve mean reversion when d is less than 1. 
[29],[4] and [5]) generalized process of ARFIMA as the 
fractional white-noise process Where 𝛾𝛾(𝑈𝑈) is established 
to equal to unity to further analyze the features of the 
method. Following the fact that many time series steadily 
exhibits slow decay autocorrelations process, the 
possibility virtue of exploiting ARFIMA process with decay 
hyperbolic autocorrelation patterns in financial time 
series modeling are numerous compared to modelling the 
process of ARMA model that have either geometric 
exponential decay.  
 

(1 − 𝑈𝑈)𝑑𝑑 = �(−1)𝑘𝑘 �𝑑𝑑𝑘𝑘� (𝑈𝑈)𝑘𝑘
∞

𝑘𝑘=0
= 1 − 𝑑𝑑𝑈𝑈

+ 
𝑑𝑑(𝑑𝑑 − 1)

2!  𝑈𝑈2 𝑑𝑑(𝑑𝑑 − 1)(𝑑𝑑 − 2)
3! 𝑈𝑈3 +, … , +�𝐶𝐶𝑘𝑘(𝑑𝑑)

∞

𝑘𝑘=0

 

(3) 

 
for any d>-1. When d = 0, equation (3) above reduces to 

the classical ARMA(p,q) model, following the expression 

in equation (3), obvious significance of the hyperbolic 

features is shown. 

 
Long Memory Test 
Testing whether the observed data series exhibits long 

memory behavior is a prior process to method of 
estimating ARFIMA models. The techniques of Hurst 
Exponent will be employed in checking whether the data 
conforms to long memory structures. 

  
Hurst Exponent 
The Hurst exponent is one of the time series long-

memory family. The long memory structure happens 
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when the values of H fall in the interval 0.5 < 𝐻𝐻 < 1. The 
Hurst exponent estimation process uses the formula; 
 

𝐻𝐻 =  
log�𝑅𝑅𝑆𝑆�

log(𝑁𝑁)
  (4) 

 
 N signifies length of the sample data, R is the range, S 

is the standard deviation and  𝑅𝑅
𝑆𝑆
 is the matching value of 

the rescaled evaluation.  
 
ARFIMA process estimation 
 The estimations of d are usually done in frequency 

domain. ARFIMA estimators of 𝑑𝑑 are generally categorized 
into semi parametric and parametric forms. 

This research employed the approaches of the Hurst 
exponent and semi-parametric approaches of Geweke 
and Porter–Hudak (GPH) methods to test and estimate 
long memory parameters, using the following regression, 
 
  
ln(𝑤𝑤𝑘𝑘) = 𝑈𝑈 − 𝑑𝑑𝑑𝑑𝑑𝑑[4𝑠𝑠𝑠𝑠𝑑𝑑2(𝑤𝑤𝑘𝑘/2)] + 𝑑𝑑𝑘𝑘 (5) 
 

where 𝑤𝑤𝑘𝑘 = 2𝑛𝑛𝑘𝑘
𝑇𝑇

, 𝑘𝑘 = 1,2, . . . ,𝑑𝑑,  𝑑𝑑𝑘𝑘 is the white noise 
term and 𝑤𝑤𝑘𝑘  represent the Fourier frequencies. 

The periodogram of a time series 𝑎𝑎1 is 𝐼𝐼(𝑤𝑤𝑘𝑘) defined 
as; 
 

𝐼𝐼(𝑤𝑤𝑘𝑘) =  
1

2𝜋𝜋𝜋𝜋
⃒� 𝑎𝑎1𝑒𝑒−𝑤𝑤𝑘𝑘𝑡𝑡

𝑇𝑇

𝑡𝑡=1
⃒2 (6) 

 

GARCH Model 
The variance equation of GARCH(u,v) model can 

expressed as; 
 

𝜎𝜎𝑡𝑡2 =   𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−12𝑢𝑢
𝑡𝑡=1 + ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑣𝑣

𝑡𝑡=1                                                                                                                                      (7) 
 
The 𝜎𝜎𝑡𝑡2 are the model parameter to be estimated 

according to GARCH(u,v) models  where 𝜔𝜔 > 0, for i= 1…,u 
and  𝛽𝛽𝑗𝑗 ≥ 0, for j = 1,…,v.    

𝛼𝛼𝑖𝑖  represent the parameter determining the effect of 
previous residual 𝜀𝜀𝑡𝑡−12 while 𝛽𝛽𝛽𝛽 measures the effect of 
change in its lagged value 𝜎𝜎𝑡𝑡−𝑗𝑗2 .. 

From equation (7), conditional variance 𝜎𝜎𝑡𝑡.
2, 𝜀𝜀𝑡𝑡  at time 

t dependent on the occurrence of the lagged squared 
errors in the preceding past periods and also on the 
conditional variance over the past periods.  

In general, [7] has established that the stationarity of 
GARCH (u, v) if there is satisfactory of the following 
conditions, 

 
𝐸𝐸(𝜀𝜀𝑡𝑡) = 0                                                                                                                                     (8) 

 
𝑉𝑉𝑎𝑎𝑉𝑉(𝜀𝜀𝑡𝑡) = 𝜔𝜔

(1−𝛼𝛼(1)−𝛽𝛽(1))
               (9) 

 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑠𝑠), 𝑡𝑡 ≠ 𝑠𝑠, 𝑝𝑝𝑉𝑉𝐶𝐶𝐶𝐶𝑠𝑠𝑑𝑑𝑒𝑒𝑑𝑑 𝛼𝛼(1) + 𝛽𝛽(1) is less than 
1  

The Fractionally Integrated Generalized 
Autoregressive Conditional Heteroscedasticity 
(FIGARCH). 

The FIGARCH (u,D,v); model was  introduced by [2]) in 
depicting long memory in volatility. The effect of shocks 
on the volatility is not finite. This infinite idea leads to the 
process of fractional integration in volatility. Fractional 
difference parameter (D) is used to model the persistent 
behavior of volatility in the FIGARCH model, whereas 
short term volatility is being considered by usual ARCH 
and GARCH parameters. 

 Considering, the typical (GARCH) model defined as; 
 
𝜎𝜎𝑡𝑡2 =   𝜔𝜔 +  𝛼𝛼(𝑈𝑈)𝜀𝜀𝑡𝑡2 + 𝛽𝛽(𝑈𝑈)𝜎𝜎𝑡𝑡2  (10) 
 

where 𝜎𝜎𝑡𝑡2 and 𝜀𝜀𝑡𝑡2 are conditional and unconditional 
variances of 𝜀𝜀𝑡𝑡 respectively.  U is the backshift operator 
and 

 
𝛼𝛼(𝑈𝑈) =  𝛼𝛼1𝑢𝑢 + 𝛼𝛼2𝑢𝑢2+, … ,𝛼𝛼𝑣𝑣𝑢𝑢𝑣𝑣                     

  
𝛽𝛽(𝑈𝑈) =  𝛽𝛽1𝑢𝑢 +  𝛽𝛽2𝑢𝑢2+, … ,𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢  

              
To ascertain the stability and covariance stability of the 

𝜀𝜀𝑡𝑡  process, all the roots of 1- 𝛼𝛼(𝑈𝑈) −  𝛽𝛽(𝑈𝑈)and 1- 𝛽𝛽(𝑈𝑈)  
lies outside the unit circle.  

 From GARCH (u,v) model, the conditional variance of  
𝜎𝜎𝑡𝑡2, 𝜀𝜀𝑡𝑡2 depends on the squared innovations in the 
previous u periods, and the conditional variance in the 
previous v periods.  Equation (10) can be expressed as; 
 
𝜎𝜎𝑡𝑡2 =   𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−12𝑝𝑝

𝑡𝑡=1 + ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑞𝑞
𝑡𝑡=1   (11) 

 
where 𝜎𝜎𝑡𝑡−𝑗𝑗2 is the volatility at day 𝑡𝑡 − 𝛽𝛽, 𝜔𝜔 > 0, 𝛼𝛼𝑠𝑠 ≥ 0 for 

𝑠𝑠 = 1, … , p, and 𝛽𝛽𝛽𝛽 ≥ 0 for 𝛽𝛽 = 1, … , q, are parameters of 
the model to be estimated.  

The GARCH (u, v) process in equation [10] can be 
simplified as an ARMA (r,s) process in 𝜀𝜀𝑡𝑡2 as follows;   
 
1 − 𝛼𝛼(𝑈𝑈) −  𝛽𝛽(𝑈𝑈)𝜀𝜀𝑡𝑡2 = 𝜔𝜔 +  𝛽𝛽(𝑈𝑈)𝐶𝐶𝑡𝑡            (12) 
 

where r is equivalent to maximum of {u, v} and 
 
𝐶𝐶𝑡𝑡= 𝜀𝜀𝑡𝑡2 − 𝜎𝜎𝑡𝑡2= (𝜖𝜖𝑡𝑡2 − 1) 𝜎𝜎𝑡𝑡2        (13) 

 
The{𝐶𝐶𝑡𝑡} is known to be the innovations for the 

conditional variance.   𝜖𝜖𝑡𝑡′𝑠𝑠 are uncorrelated with E(𝜖𝜖𝑡𝑡)= 0 
and var (𝜖𝜖𝑡𝑡) 𝑠𝑠𝑠𝑠 one. 

From the integrated GARCH (IGARCH) models of [30] 
whose unconditional variance does not occur represented 
in equation (14) below 

 
(IGARCH) (p,q)= ∅(𝑈𝑈)(1 − 𝑈𝑈)𝜀𝜀𝑡𝑡2 =   𝜔𝜔 + [1 −
 𝛽𝛽(𝑈𝑈)𝐶𝐶𝑡𝑡]                                               (14) 

 
where  
 

(∅(𝑈𝑈) =  1- 𝛼𝛼(𝑈𝑈) −  𝛽𝛽(𝑈𝑈)(1 − 𝑈𝑈)−1  (15) 
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is of order r-1. 
The Fractionally Integrated Generalized 

Autoregressive Conditional Heteroscedasticity (FIGARCH) 
is achieved by substituting first difference in equation (15) 
above with fractional difference operator (1 − 𝑈𝑈)𝑑𝑑 such 
that; 
 
∅(𝑈𝑈)(1 − 𝑈𝑈)𝑑𝑑𝜀𝜀𝑡𝑡2 =   𝜔𝜔 + [1 −  𝛽𝛽(𝑈𝑈)]𝐶𝐶𝑡𝑡 (16) 

 
If d=0, the FIGARCH (u, D, v) process reduces to a GARCH 
(u, v) process and if d=1, the FIGARCH process becomes an 
integrated GARCH process. Rearranging the terms in 
Eq.(16), the FIGARCH model can be simplified as; 
 
 1 −  𝛽𝛽(𝑈𝑈)𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + [1 −  𝛽𝛽(𝑈𝑈)] (1 − 𝑈𝑈)𝑑𝑑𝜀𝜀𝑡𝑡2 (17) 
 

ARFIMA- FIGARCH Model  
The ARFIMA-FIGARCH model is employed to 

simultaneously investigate the long memory and volatility 
characteristics of a time series. The ARFIMA (u,d,v)-
FIGARCH (U,D.V) model is a  conditional time-dependent 
variance of the process 𝜎𝜎𝑡𝑡2  specified by the FIGARCH 
model defined in equation (16).  The FIGARCH model 
propose enhanced flexibility in modeling volatility by 
enforcing an ARFIMA structure on 𝜀𝜀𝑡𝑡2 yielding a hybrid of 
ARFIMA FIGARCH model.  In this hybrid forms, the two 
fractional integration parameters d and D will account for 
the long-term dynamics of the volatility of the series. 

The ARFIMA (u,d,v)-FIGARCH (U,D.V) model follow this 
polynomial form 
 
∅(1 − 𝑈𝑈)𝑑𝑑  (𝑉𝑉𝑡𝑡−𝜇𝜇) =   𝜃𝜃(𝑈𝑈)𝜀𝜀𝑡𝑡 (18) 
 
1 − 𝛽𝛽(𝑈𝑈)(1 − 𝑈𝑈)𝐷𝐷𝜀𝜀𝑡𝑡2 = 𝜔𝜔 + [1 −  𝛼𝛼(𝑈𝑈)𝐶𝐶𝑡𝑡]   (19) 
𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡𝜎𝜎𝑡𝑡 𝑧𝑧𝑡𝑡~𝑁𝑁(0.1) 

𝜇𝜇 is an unconditional mean, u and v representing the 
AR and MA lag orders addressing the short memory, 
𝑑𝑑𝜖𝜖(0,1) represents the long memory in the series; 𝜀𝜀𝑡𝑡 is a 
white noise process; 
 
∅(𝑈𝑈) =  1 − ∅1𝑈𝑈 −  ∅2𝑈𝑈2−, … ,∅𝑝𝑝𝑈𝑈𝑢𝑢 (20) 
 

And 
 
𝜃𝜃(𝑈𝑈) = 1 + 𝜃𝜃1𝑈𝑈 +  𝜃𝜃2𝑈𝑈2+, … ,𝜃𝜃𝑞𝑞𝑈𝑈𝑣𝑣  (21) 
 

are the AR and MA polynomials, 𝐷𝐷𝜖𝜖(0,1) measures the 
degree of volatility persistence; where 𝜔𝜔is a constant,  
 
𝛼𝛼(𝑈𝑈) = 𝛼𝛼1𝑈𝑈+𝛼𝛼2𝑈𝑈2+, … ,𝛼𝛼𝑞𝑞𝑈𝑈𝑣𝑣  (22) 
 
𝛽𝛽(𝑈𝑈) = 𝛽𝛽1𝑈𝑈+𝛽𝛽2𝑈𝑈2+, … ,𝛽𝛽𝑝𝑝𝑈𝑈𝑢𝑢 (23) 

 
 are the ARCH and GARCH polynomials; 𝐶𝐶𝑡𝑡 represents 

serially uncorrelated, zero-mean residuals, measured by 
 
𝐶𝐶𝑡𝑡= 𝜀𝜀𝑡𝑡2 − 𝜎𝜎𝑡𝑡2 (24) 
 

The methodology involved in the work involved the 
iterative steps of [31] which include identification of the 
adequate model, parameter estimations of the 
parameters involved, model diagnostic and forecasting. 

 
THE ARIMA-GARCH Model 
The ARIMA-GARCH model is employed to examine 

trend and volatility of a time series concurrently. ARIMA 
(p,d,q) and GARCH(u,v) is generally defined as 
 
∅(𝐵𝐵)(1 − 𝑈𝑈)𝑑𝑑𝑌𝑌𝑡𝑡 = ∅(𝑈𝑈)𝜀𝜀𝑡𝑡  (25) 
 

𝜀𝜀𝑡𝑡⃒𝑌𝑌𝑡𝑡−1~ 𝑁𝑁(𝜇𝜇,𝜎𝜎𝑡𝑡2) (26) 
 

The ARIMA-GARCH method has been established to 
handle the serial correlated residuals encountered in 
ARIMA models. ARIMA-GARCH model permits concurrent 
modeling of both the conditional means and the volatility 
of the series.  Moreover, this method of modeling times 
series yields more precise estimate values and higher 
forecast performance compared to ARIMA models. 

 
 Test Statistics  
Model Identification: stationarity and fractional 

integration modelling of the data involved were evaluated 
with the Autocorrelation function, partial autocorrelation 
function, ADF and KPSS at 0.05 level of significant level.  

 Augmented Dickey Fuller Test of Stationarity: ADF test 
model is expressed as; 
 
Δ𝑋𝑋𝑡𝑡 =  𝛼𝛼𝑋𝑋𝑡𝑡−𝑝𝑝 +  𝑌𝑌𝑡𝑡𝜑𝜑 +  𝛽𝛽1∆𝑋𝑋𝑡𝑡−1

+  𝛽𝛽2∆𝑋𝑋𝑡𝑡−2+, … ,𝛽𝛽𝑝𝑝∆𝑋𝑋𝑡𝑡−𝑝𝑝 (27) 

 
where,  
 
Δ𝑋𝑋𝑡𝑡  denotes the differenced series 
∆𝑋𝑋𝑡𝑡−𝑝𝑝 denotes the immediate past observations. 
 𝑌𝑌𝑡𝑡  signifies the optional exogenous regressor which 

can be constant or be represented as constant trend 
𝛼𝛼 and 𝜑𝜑 are parameters needed to be estimated. 
𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 signifies the coefficients of the lagged terms. 
The ADF test statistic is denoted by 

 

𝑡𝑡𝛼𝛼 =  
𝛼𝛼⏞

𝑆𝑆𝑒𝑒(𝛼𝛼⏞)
 (28) 

 
 
The test of hypothesis involves; 
𝐻𝐻0:𝛼𝛼 = 0,   it implies that the series contains unit roots 
𝐻𝐻1:𝛼𝛼 < 0,   it implies that the series contains no unit 

roots. 
Decision rule: Reject 𝐻𝐻0:  if 𝑡𝑡𝛼𝛼 is less than asymptotic 

critical value 
 
Kwiatkowski-Philips-Schmidt-Shin(KPSS)Test 
Considering the following DGP with no linear trend 

that assumes the null hypothesis of stationarity; 
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𝑦𝑦𝑡𝑡 =  𝑥𝑥𝑡𝑡 + 𝑧𝑧𝑡𝑡 (29) 
 
where  

 
𝑥𝑥𝑡𝑡 =  𝛼𝛼1𝑥𝑥𝑡𝑡−1 +  𝛼𝛼2𝑥𝑥𝑡𝑡−2+, … ,𝛼𝛼𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝑢𝑢𝑡𝑡 (30) 

  
𝑢𝑢𝑡𝑡~𝑠𝑠𝑠𝑠𝑑𝑑(0.𝜎𝜎2) and 𝑧𝑧𝑡𝑡 is assume to follow a stationary 

process. 
 
KPSS test statistic is expressed as; 
 

𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆 =  1
𝑁𝑁2

 ∑ 𝑠𝑠𝑡𝑡
2

𝜎𝜎2∞
𝑁𝑁
𝑛𝑛=1   (31) 

 
Where 𝑠𝑠𝑡𝑡 =  ∑ 𝑚𝑚�𝑗𝑗𝑡𝑡

𝑗𝑗=1   with 𝑚𝑚�𝑡𝑡= 𝑥𝑥𝑡𝑡 − 𝑥𝑥 and 𝜎𝜎�∞
2 is a 

long run variance estimator of the 
 stationary Process 𝑧𝑧𝑡𝑡 . 
 
Model selection 
The model selection was accomplished implementing 

the optimum selection criteria by choosing the model with 
minimum Akaike Information Criteria (AIC), Schwarz 
Information Criterion (SIC) and Hannan-Quinn 
Information Criteria (HQIC). 

 

Model estimation  
After identification of the best tentative model, Quasi 

Maximum Likelihood (QMLE) method of estimation will be 
adopted to estimate the ARFIMA-FIGARCH model that is 
normally distributed based with the following log-
likelihood function: 
 

𝐿𝐿𝐶𝐶𝐿𝐿 (𝜀𝜀𝑡𝑡  𝜃𝜃) = −
1
2

logN(2𝜋𝜋) −
1
2

 ��log𝜎𝜎𝑡𝑡2 +
𝜀𝜀𝑡𝑡2

𝜎𝜎𝑡𝑡2
�

𝑁𝑁

𝑛𝑛=1

 (32) 

where 𝜃𝜃′ = (𝛼𝛼0,𝑑𝑑,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝,∅1, … ,∅𝑞𝑞) 
 
Model Diagnostics 
The white noise, serial correlation and the 

heteroscedasticity test was examined applying the 
residual normality test, the Portmanteau test and 
Autoregressive Conditional Heteroscedasticity Lagrange 
Multiplier (ARCH-LM) test respectively to validate the 
adequacy of the selected ARFIMA models. It is actualized 
by examining the test of the hypothesis of white noise 
residuals that assumed to be independently distributed. 

Employing the methods of [29] the variance of 
autocorrelation is defined as 
Var(𝜌𝜌𝑘𝑘(𝜀𝜀) = 1

𝑁𝑁(𝑁𝑁−2)
 (N-K), k= 1,2,…, K 

And 

�� 𝑁𝑁−𝐾𝐾
𝑁𝑁(𝑁𝑁+2)�

−1

           𝜌𝜌𝑘𝑘(𝜀𝜀) ≈ 𝑁𝑁(0,1) 

 

𝑄𝑄𝐿𝐿𝐿𝐿 =  ���
𝑁𝑁 − 𝐾𝐾

𝑁𝑁(𝑁𝑁 + 2)
�

−1

     𝜌𝜌𝑘𝑘(𝜀𝜀)�

2

 (33) 

 

=𝑁𝑁(𝑁𝑁 + 2)∑ [𝜌𝜌𝑘𝑘(𝜀𝜀)]2 
𝑁𝑁−𝐾𝐾

   ≈  𝜒𝜒2 (𝐾𝐾 − 1)𝐾𝐾
𝑘𝑘=1  (34) 

  

where K-1 = k-p-q and there is no inclusion of constant 
term in p+q, N is the sample size and 𝜌𝜌 symbolize the 
autocorrelation coefficient.  

 
Autoregressive Conditional Heteroscedastic-

Lagrange Multiplier (ARCH –LM) Test 
 [8] proposed ARCH-LM test that allows issues of 

conditional heteroscedasticity in squared residuals, it has 
the null hypothesis that there is no heteroscedasticity in 
the model residuals.  The test statistic is given by; 
 
𝑄𝑄 = 𝐵𝐵(𝐵𝐵 + 2)∑ 𝜌𝜌𝑖𝑖

(𝑀𝑀−1)′
𝑀𝑀
𝑖𝑖=1                                                                                                                                                          (35) 

 
the Q statistic is an asymptotic 𝜒𝜒2distribution that has 

𝑑𝑑 degrees of freedom with uncorrelated squared 
residuals, B is the number of observation and the sample 
correlation coefficient between squared residuals 
𝜀𝜀�̂�𝑡2 𝑎𝑎𝑑𝑑𝑑𝑑 𝜀𝜀�̂�𝑡−12 is denoted by 𝜌𝜌𝑖𝑖.  

 
Model Forecasting and Performance Evaluation 
 Validation criterion such as; Akaike Information 

criteria (AIC), Schwarz Information Criterion (SIC) and 
Hannan-Quinn Information Criteria (HQIC) were 
employed for examining and comparing the predicting 
performances of the selected models  
 
𝐴𝐴𝐼𝐼𝐶𝐶 =  2𝜋𝜋 − 𝑚𝑚                                                                                                                                                                           (36) 
 
𝑆𝑆𝐼𝐼𝐶𝐶 = 2𝜋𝜋𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑 − 𝑑𝑑𝐶𝐶𝐿𝐿𝑚𝑚                                                                                                                                                             (37) 
 
𝐻𝐻𝑄𝑄𝐼𝐼𝐶𝐶 =  −2𝑑𝑑𝐶𝐶𝐿𝐿𝑚𝑚 + 2𝜋𝜋𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑 (38) 
 

where T symbolizes the total of estimable parameters, 
𝑚𝑚 denotes the maximum likelihood and n is the digits of 
samples. Moreover, the forecasts accuracy of fitted 
ARFIMA and ARFIMA FIGARCH model are evaluated in 
terms of Root Mean Square Error (RMSE), the Mean 
Absolute Error (MAE) and the Relative Mean Absolute 
Percentage Error (MAPE) respectively. 

MAE is the absolute value of the difference between 
the forecasted value and the actual value. It calculates the 
average absolute deviation of predicted values from real 
values. MAE is estimated as follow: 
 
𝐻𝐻𝑄𝑄𝐼𝐼𝐶𝐶 =  −2𝑑𝑑𝐶𝐶𝐿𝐿𝑚𝑚 + 2𝜋𝜋𝑑𝑑𝐶𝐶𝐿𝐿𝑑𝑑 (38) 
 

𝑀𝑀𝐴𝐴𝐸𝐸 =   
1
𝑑𝑑

 �⃒𝑦𝑦�𝑓𝑓 − 𝑦𝑦𝑡𝑡⃒
𝑛𝑛

𝑡𝑡=1

 (39) 

 
RMAPE is projected as the mean absolute percent 

error for each time period minus real values divided by 
real values. It computes the percentage of mean absolute 
error occurred in the model formation. It is stated as 
follows; 
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𝑅𝑅𝑀𝑀𝐴𝐴𝐾𝐾𝐸𝐸 =  1
𝑛𝑛

 ∑ ⃒ 𝑦𝑦�𝑓𝑓−𝑦𝑦𝑡𝑡
𝑦𝑦𝑡𝑡

𝑛𝑛
𝑡𝑡=1 ⃒ × 100%                                                                                                                       (40) 

 

RMSE illustrate the absolute fit of the model to the 
observed data, it is computed as follows: 
 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  �1
𝑛𝑛

 ∑ �𝑦𝑦�𝑓𝑓 − 𝑦𝑦𝑡𝑡�
2𝑛𝑛

𝑡𝑡=1                                                                                                                                                   (41) 

 
Where: 𝑦𝑦�𝑓𝑓 𝑎𝑎𝑑𝑑𝑑𝑑 𝑦𝑦𝑡𝑡 are the estimated and the real 

values respectively; n is the sample size. Model with lesser 
value is likely to have the best precision power of forecast. 

  
Data Collection and Description 
The data for this study is a secondary monthly data set 

from 1970 to 2023 obtained from Nigeria CBN bulletin, it 
comprised figures of Real Gross Domestic Product (RGDP) 
per capital, Inflation rate and Exchange rate of Naira-US 
Dollar.  

 
Results and Discussion 

 
 Table 1. Summary Statistics  

RGDP Inflatıon  
Rate 

Exchange 
rate 

  Mean 173.8996 0.181853 91.78458 

 Median 73.48 0.1301 21.89526 

 Maximum 574.18 0.7284 425.9792 

 Minimum 9.18 0.0346 0.546781 

 Std. Dev. 175.9127 0.151777 115.8329 

 Skewness 0.893138 2.010273 1.302508 

 Kurtosis 2.190781 6.343058 3.872064 

 Jarque-Bera 8.492408 6.3776556 16.66542 

 P- value 0.014318 0.0000000 0.000241 

 Sum Sq. Dev. 1609155 1.197882 697698 

Observations 648 648 648 

NB:  RGDP is   Real Gross Domestic Product per capital. 
 
Table 1. gives the summary statistics of monthly 

average macro-economic data for this study, the series 
ranges from 1970 to 2023.The total observation is 648, 
which is large enough for modelling Autoregressive 
Fractionally Integrated Moving Average models. The 
series are normally distributed as revealed by the high p-
value and low Jarque-Bera test values. 
 

 
Figure 1. Times series plot of RGDP            
 

 
Figure 2. Times series plot of INF. RT 
 

 
Figure 3. Times series plot of EXC. RT. 
 

   Fig 1, 2 and 3 displays times series plots of the 
average annual series of Nigeria Real Gross Domestic 
Product (RGDP) per capital, Inflation rate and exchange 
rate of Naira-US dollar respectively. The plot shows the 
direction of the series over time. 

 
Table 2. Stationarity test results at level. 

 ADF KPPS 

Variables ADF Test 
Stat Prob. KPSS Test  

Stat Prob. 

RGDP -4.2670 0.0278 0.5196 0.0341 
INFLATION 

RATE 0.1953 0.1374 0.3301 0.0922 

EXCHANGE 
RATE -2.3203 0.0732 0.6282 0.0638 

 
Table 3. Stationarity test results at First Difference. 

 ADF KPPS 

Variables ADF Test 
Stat Prob. KPSS Test  

Stat Prob. 

RGDP -2.1023 0.008 0.6318 0.000 

INFLATION 
RATE 

0.2310 0.002 0.6027 0.036 

EXCHANGE 
RATE 

-4.1203 0.000 0.8924 0.091 

 
Table 2 and 3 shows the result of ADF and KPSS test for 

unit root of Nigeria Real Gross Domestic Product (RGDP) 
per capital, Inflation rate and exchange rate of Nigeria 
Naira to US Dollar using the lag length of 12. The outcome 
of the unit root test for ADF-test of RGDP shows that the 
variable is stationary at level of 5% level of significant, 
which implies that RGDP is integrated of order zero i.e., 
1(0) while the results of ADF of the inflation and exchange 
rate indicate that the time series data integrated at I (1).  
The KPSS tests at both level and first difference are greater 
than 5% critical values which shows that the series is 
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neither I(0) nor I(1), this warrant needs to carry out 
fractional difference on the data.     

Table 4: Long Memory tests of the ARFIMA models. 
Macroeconomics Variables 

 RGDP INFLATION 
RATE 

EXCHANGE 
RATE 

HURST.E/RS 0.6302 
(0.002) 

0.7210 
(0.000) 0.6664 (0.008) 

Hurst. E/ RS is the Hurst Exponent Rescaled Range.  
 

Table 4. above shows the Hurst exponent values of 
Nigeria RGDP per capital, Inflation and Exchange rate of 
Nigeria Naira to US Dollar data using the rescaled Range, 
Table 4 confirmed the existence of long memory of the 
series under study. Also, the Hurst exponent test gives 
values in the range of 0 < d < 1.  

Fig 4,5 and 6 above displayed the correlogram of 
Nigeria RGDP per capital, Inflation and Exchange rate of 
Nigeria Naira to US Dollar respectively. From the 
correlogram of the series presented in fig 4,5 and 6 above, 
several speculative ARFIMA models for the variables were 
fitted to the series. 
 

 
Figure 4. Correlogram of RGDP           
 

 
Figure 5. Correlogram of INF.RT 
 

 
Figure 6. Correlogram of EXC            

 
(RGDP) per capital, INF. RATE and EXCH. RATE is the 

inflation rate and exchange rate of Nigeria Naira to US 
Dollar respectively. 

Table 5 report the estimates of the fractional 
difference of Nigeria RGDP per capital, inflation and 
exchange rate series employing an automatic 
commencement of integration employing approaches of 
Geweke and Porter-Hundlak log-periodogram. The 
competitive estimated models of each series and their 
respective values for the selection criteria are as tabulated 
in Table 5. The optimum model for each series is in bold 
print and asterisk mark for easier identification. 

 
Table 5. ARFIMA Model Identification 

MODEL ARFIMA (p,d,q) D AIC SIC HQIC 

RGDP 

MODEL 1 ARFIMA 1, d, 1 0.5117 6.393* 6.937* 6.842* 

MODEL  2 ARFIMA 1, d, 2 0.1956 7.220 7.479 6.926 
MODEL 3 ARFIMA 2, d, 1 0.8945 6.451 6.952 6.970 

INF. RATE 
MODEL 1 ARFIMA 1, d, 1 0.5339 12.002 10.573 10.208 
MODEL 2 ARFIMA  1, d, 2 0.7167 13.342 9.175 9.944 

MODEL 3 ARFIMA 2, d, 2 0.6802 9.035* 8.884* 9.240* 

EXCH. RATE 
MODEL 1 ARFIMA 1, d, 1 0.6930 4.720* 4.717* 4.509* 

MODEL 2 ARFIMA 2, d, 2 0.7760 4.939 4.958 4.820 

NB: RGDP is the of Nigeria Real Gross Domestic Product  
 
 
 

     
   
    j

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.265 0.265 3.8752 0.049
2 -0.065 -0.145 4.1102 0.128
3 -0.146 -0.096 5.3255 0.149
4 0.043 0.114 5.4314 0.246
5 0.021 -0.051 5.4585 0.363
6 0.091 0.103 5.9633 0.427
7 0.037 0.005 6.0503 0.534
8 0.040 0.033 6.1503 0.630
9 -0.095 -0.097 6.7379 0.664

10 -0.160 -0.124 8.4455 0.585
11 0.019 0.113 8.4699 0.671
12 -0.055 -0.179 8.6793 0.730
13 -0.063 -0.012 8.9669 0.775
14 -0.026 0.025 9.0152 0.830
15 -0.032 -0.091 9.0905 0.873
16 0.010 0.097 9.0977 0.909
17 -0.029 -0.083 9.1673 0.935
18 -0.032 0.021 9.2493 0.954
19 -0.070 -0.085 9.6606 0.961
20 -0.082 -0.086 10.250 0.963
21 -0.085 -0.007 10.912 0.964
22 -0.063 -0.163 11.280 0.971
23 -0.001 0.084 11.280 0.980
24 -0.027 -0.104 11.353 0.986

     
  

Included observations: 53
Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.596 0.596 19.904 0.000
2 0.177 -0.276 21.702 0.000
3 0.078 0.181 22.061 0.000
4 0.057 -0.071 22.256 0.000
5 0.111 0.172 23.003 0.000
6 0.178 0.042 24.962 0.000
7 0.089 -0.102 25.468 0.001
8 -0.077 -0.110 25.855 0.001
9 -0.147 -0.039 27.288 0.001

10 -0.119 -0.012 28.241 0.002
11 -0.116 -0.104 29.182 0.002
12 -0.063 0.078 29.463 0.003
13 -0.033 -0.056 29.544 0.005
14 -0.076 0.004 29.971 0.008
15 -0.166 -0.150 32.094 0.006
16 -0.140 0.092 33.645 0.006
17 -0.031 0.023 33.724 0.009
18 -0.071 -0.178 34.144 0.012
19 -0.116 0.018 35.301 0.013
20 -0.108 -0.069 36.323 0.014
21 -0.178 -0.103 39.198 0.009
22 -0.206 -0.073 43.199 0.004
23 -0.183 -0.113 46.438 0.003
24 -0.122 0.061 47.924 0.003

     
   

Included observations: 52 after adjustments
Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.392 0.392 8.4655 0.004
2 0.070 -0.099 8.7433 0.013
3 0.067 0.090 9.0006 0.029
4 0.221 0.199 11.854 0.018
5 0.226 0.078 14.906 0.011
6 0.141 0.039 16.119 0.013
7 0.071 0.010 16.437 0.021
8 -0.016 -0.098 16.453 0.036
9 -0.137 -0.189 17.685 0.039

10 0.037 0.138 17.775 0.059
11 -0.003 -0.133 17.775 0.087
12 -0.008 0.056 17.780 0.123
13 -0.024 0.048 17.823 0.164
14 -0.061 -0.060 18.100 0.202
15 -0.053 0.015 18.311 0.247
16 0.098 0.183 19.055 0.266
17 0.218 0.137 22.867 0.154
18 0.157 0.022 24.903 0.128
19 -0.070 -0.097 25.321 0.150
20 -0.062 -0.084 25.662 0.177
21 0.132 0.116 27.229 0.163
22 0.082 -0.152 27.864 0.180
23 0.014 -0.015 27.883 0.220
24 -0.053 -0.039 28.163 0.253
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Table 6: Parameter Estimates of the ARFIMA fitted model. 
Parameter Coefficient Standard Error Prob. 

RGDP 
D 0.5117  0.0324 0.0001 

𝛾𝛾1 0.1972 0.0208 0.0000 
𝜗𝜗1 0.8287 0.0450 0.0009 

Inflation Rate 
D 0.6802 0.5810 0.0057 

𝛾𝛾1 -0.9567 0.3981 0.0002 
𝛾𝛾2 0.8326 0.3106 0.0028 
𝜗𝜗1 0.2798 0.2851 0.0000 
𝜗𝜗2 0.2089 0.0495 0.0005 

Exchange Rate 
D 0.6930 0.8314  0.0049 

𝛾𝛾1 1.0038 0.0348 0.0000 
𝜗𝜗1 -0.9822 0.3119 0.0000 

 
Diagnostics checking of ARFIMA Models. 

 
Table 7:  Statistical tests of the residuals of selected ARFIMA models. 
Times series ARFIMA(p,fd,q) Autocorrelation Test  Heteroskedacity Test Normality test 

 Model Lung Box 𝑸𝑸 Portmanteau Breusch 
Pagan  

White  Jarque Bera 
Test 

Shapiro Wiki 

  p- value p- value p-value p. value p-value p-value 
RGDP ARFIMA(1,0.5117,1) 0.1923 0.1011 0.1422 0.1721 0.2431 0.2142 

Inflation RT ARFIMA(2, 0.6802,2) 0.2831 0.1829 0.2160 0.3230 0.2206 0.3339 

Exchange RT ARFIMA(1, 0.6930,1) 0.2925 0.2026 0.2542 0.4951 0.3534 0.1474 

𝛼𝛼  0.05 0.05 0.05 0.05 0.05 0.05 

 

Table 7 gives the outcome of the autocorrelation, 
Heteroskedacity and the normality check and the 
respective p values for each selected ARFIMA models for 
the variables. The normality tests revealed that the 
residuals generated from the selected ARFIMA models are 
normally distributed, the Ljung-Box and the Portmanteau 

value for all the variables are greater than the significant 
level which inferred   that there is no autocorrelation 
among the residual of the model's forecast errors, 
moreso, the results of heteroscedasticity tests of residuals 
for the variables revealed homoscedasticity nature of the 
residuals. 

 
FIGARCH Model Estimation. 
Heteroscedasticity Test 

 
Table 8: Results of test for ARCH effect on the series. 
 RGDP Inflation Rate Exchange Rate 

 Test statistic value Prob. Test statistic value Prob. Test statistic value Prob. 

F Statistic 134.4516 0.0000** 89.3780 0.0001** 158.2819 0.0000** 

Observed R2 140.1827 0.0000** 94.2268 0.000** 147.2072 0.0000** 

        **1% level 
 
To model the volatility of a time series variable, it is 

mandatory to test for the presence of ARCH Effect in the 
residuals of the series. 

The result of the ARCH-LM test in Table 8 revealed the 
presence heteroscedasticity in the series. The macro-

economic variables reveal presence of conditional 
volatility from the result which can well be captured by 
fitting a FIGARCH model to the series.  
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Table 9: FIGARCH 1, D,1 Models 
 RGDP Inflatıon Exchange  

𝜔𝜔 1.3269 (1.7219)  1.4649 (1.0172)  1.2895 (1.0170)  

𝛼𝛼1 0.0496 (0.1206)  -0.0427(0.192)  -0.3102(0.282) 

𝛽𝛽1 0.3314(0.225)  0.3509 (0.422)  0.5819 (0.014)  

D 0.3842(0.162)  0.4682(0.332)  0.3936(0.171)  

ln (L) 1928.816  1048.619  2734.307 

AIC 8.3694 6.2791 4.9164 

SIC 8.2001 6.2640 .49387 

Q(5) 7.8854  12.1552 5.3458  

ARCH 5 0.6852 (0.773)  0.5293 (0.1193)  0.2204 (0.7898) 

Skewness -0.0295 0.0074 0.00367 

Jarque Bera 43.39 68.06 92.18 

Kurtosis 1.4438 1.3941 1.4140 

Table 9 above presented the estimates of FIGARCH 
models, the standard errors are reported in parenthesis, 
the model selection is based on the selecting model that 
has the lowest selection criteria and passes Q-test 
simultaneously using AIC, SIC and Ljung-Box Q-statistics.  

The model fitting specifications are given in Table 9, 
Estimate of long memory parameter ‘D’ from the FIGARCH 
model above is shown to be significantly different from 

zero and falls within theoretical range. the revealing that 
the volatility exhibits a long memory process in the macro-
economic variables under study. This justifies the 
significance of modeling persistence behavior in volatility 
and hence there is need for the dual long memory test. 
This justification brings about the examination of blended 
ARFIMA- FIGARCH model in investigating the structure of 
long memory and volatility simultaneously in the series.  

 
Table 10: Estimates of ARFIMA FIGARCH Model. 

Series RGDP Inflation  Exchange Rate 
Mean Equation 
Constant (𝜇𝜇) 0.024** (0.020)  0.037** (0.016)  0.042** (0.028)  
AR 1 -0.168** (0.221)  -0.721 (0.217)  -0.150 (0.4 20)  
AR 2  0.135**(0.024)  
MA 1 -0.354** (0.095)  -0.779** (0.010)  0.241 (0.193)  
MA 2  -0.372**(0.005)  
D 0.257** (0.040)  0.450** (0.000)  0.665** (0.012)  
Variance Equation 
Constant (𝜔𝜔) 0.025** (0.001)  0.016** (0.062)  0.033** (0.031)  

𝛼𝛼1 0.326** (0.000) 0.064** (0.000)  0.283** (0.000) 
𝛽𝛽1 0.532** (0.005)  0.715**(0.021)  0.867** (0.041)  

D 0.696** (0.019)  0.305** (0.001)  0.518** (0.02)  
ln (L) -6403.186  -3949.247  -7351.233  
AIC 8.278  6.125  9.223  
SIC 8.279  6.532  .9246  
Q(5) 7.304  4.365  2.294  
ARCH( 5) 3.680  1.526  3.389  

Notes:  Table 10 gives the estimates of the quasi-maximum likelihood estimation of the hybrid of ARFIMA-FIGARCH 
model for the monthly data of Nigeria macroeconomic variables.  
 

ARFIMA FIGARCH model combines the ARFIMA model 
that considered the mean behavior of the time series and 

the FIGARCH model which is employed to model the 
variance behavior (ARCH effect). 
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Table 11: Estimate of ARIMA GARCH. 
 Coefficient Std. Error t- value Prob. 

RGDP 
𝜃𝜃 0.3203 0.2936 -1.3144 0.0144 
𝜔𝜔 0.0016 0.0026 2.0270 0.0039 
𝛼𝛼 0.1231 0.0182 2.2033 0.0000 
𝛽𝛽 0.2849 0.0315 4.3184 0.0007 

INFLATION RATE 
𝜃𝜃 0.2701 0.0631 0.3164 -2.284 
𝜔𝜔 0.0019 0.0000 1.2012 0.0022 
𝛼𝛼 0.3861 0.0742 2.5433 0.0000 
𝛽𝛽 0.3849 0.0201 5.2934 0.0001 

EXCHANGE RATE 
𝜃𝜃 0.3031 0.1333 -1.8344 0.0038 
𝜔𝜔 0.0029 0.0018 0.3712 0.0000 
𝛼𝛼 0.2171 0.0182 0.3733 0.0050 
𝛽𝛽 0.3749 0.0171 2.1634 0.0000 

  
Applying the residual series obtained from the fitted 

ARFIMA models, suitable FIGARCH models were built.  
Table 10 above present results of the combined ARFIMA-
FIGARCH model fitted to the macro-economic variables 
series and parameter estimates with their respective 
standard error in bracket, the best model is selected on 
the basis of the selection criteria. From Table 10, the 
fractional parameters for all the variables at 5% level of 
significance revealed significances. 

ARIMA-GARCH model combines the ARIMA model that 
considered the mean behavior of the time series and the 
GARCH model which is employed to model the variance 
behavior (ARCH effect). 

 
Table 12: Diagnostics check for the ARIMA GARCH Model. 

Times series Model Portmanteau Test ARCH LM Test 
RGDP ARIMA(1,1,1) GARCH(1,1) (1623.258) 0.0122 (11.6128) 0.4721 

INF RATE ARIMA(1,1,1) GARCH(1,1) (2102.1671) 0.3190 (9.336) 0.2775 

EXCH RATE ARIMA(1,1,1) GARCH(1,1) (1918.2052) 0.1884 (11.3688) 0.0326 

 

Applying the residual series obtained from the fitted 
ARIMA models, suitable GARCH models were built. The 
results of the combined models are presented in Table 11 

above while Table 12 presents the serial correlation and 
heteroscedascity diagnostics for the ARIMA-GARCH 
models.  

 
Table 13: Evaluation of selected ARFIMA, ARFIMA FIGARCH and ARIMA GARCH Models forecast Accuracy. 
 ARFIMA ARFIMA FIGARCH ARIMA GARCH 

 RGDP INF RATE EXCH RATE RGDP INF RATE EXCH RATE RGDP INF RATE EXCH RATE 

RMSE 0.0312 0.5051 0.3347 0.5147 0.0212 0.0112 0.0172 0.2934 0.0311 

MAE 0.0235 0.4637 0.2619 0.1196 0.0257 0.0214 0.0219 0.4826 0.0292 

MAPE 0.1947 0.6853 0.4417 0.2226 0.0051 0.0092 0.0039 0.5044 0.0018 

R2 0.9274 0.8155 0.8771 0.9742 0.9602 0.8899 0.9912 0.9187 0.8938 

 

Table 13 displayed the ARFIMA, ARFIMA FIGARCH and 
ARIMA GARCH selected models for Nigeria macro-
economic variables forecast accuracy measures 
respectively.  From the Results comparison of ARFIMA, 
ARFIMA FIGARCH and ARIMA GARCH modeling from Table 
13, low estimates of the validation statistics such as RMSE, 
MAE and MAPE from ARFIMA FIGARCH and ARIMA GARCH 
models revealed the adequacy of the models in modeling 
the Inflation Rate and the exchange rate while estimates 
of validation statistics from ARFIMA model shows more 
adequacy in modeling the RGDP. This result revealed 
evidence of high volatilities in Nigeria Inflation and the 
exchange rate of Naira to US dollar.  The low values of an 
unbiased statistic MAPE of ARFIMA FIGARCH models in 
Table 13 revealed the adequacy of the selected ARFIMA 
FIGARCH models. Moreover, the general error measures 
showed evidence of better forecast performance with 
ARFIMA FIGARCH models in forecasting the inflation and 
exchange values of Naira to US dollar. 

Conclusion 
 
The study investigated the relevance of two iterative 

methods of long memory dependency in modeling and 
forecasting the rate and volatilities of selected major 
macro-economic variables of Nigeria, these variables 
were chosen based on the crucial roles they played in 
influencing the overall economic performance of Nigeria 
economy; the selected predictors are some of the 
powerful instruments for upgrading developing nations 
from their current economic status.  Hybrid of ARFIMA-
FIGARCH and ARFIMA model were employed in modeling 
the series. FIGARCH techniques of modeling were applied 
to model the residuals sequence from the fitted ARFIMA 
model. ARIMA GARCH methods of modeling were also 
employed in analyzing the volatilities of Nigeria selected 
macroeconomic variables to enrich the study. Results 
comparison of ARFIMA, ARFIMA-FIGARCH and ARIMA 
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GARCH modeling revealed that ARFIMA-FIGARCH and 
ARIMA GARCH models are more adequate in modeling the 
Inflation Rate and the exchange rate while ARFIMA 
present more adequacies in modeling the RGDP. The 
selection of the best model is based on the minimum 
selection criteria. The result from the research revealed 
evidence of high volatilities in Nigeria inflation and the 
exchange rate of Naira to US dollar. Certainty of the fitted 
models was established by the evidence of minimal values 
of MAPE. Both conditional mean and conditional variance 
parameters of the long memory were statistically 
significant, this revealed the prevalence of the dual long 
memory property in the series and volatility.   
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