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Abstract: In this study, we define the sequence space 𝒃𝒑
𝒓,𝒔(𝑮) derived by the composition of the Binomial 

matrix and generalized difference(double band) matrix and show that the space 𝒃𝒑
𝒓,𝒔(𝑮) is linearly isomorphic 

to the space 𝒍𝒑, where 𝟏 ≤ 𝒑 < ∞. Furthermore, we mention some inclusion relations and give Schauder basis 

of the space 𝒃𝒑
𝒓,𝒔(𝑮). Moreover, we determine 𝜶-, 𝜷- and 𝜸-duals of the space 𝒃𝒑

𝒓,𝒔(𝑮). Lastly, we characterize 

some matrix classes related to the space 𝒃𝒑
𝒓,𝒔(𝑮). 

MSC: 40C05;40H05;46B45 

Keywords: Matrix Transformation, Matrix Domain, Schauder Basis, 𝜶-, 𝜷- and 𝜸-Duals 

𝒃𝒑
𝒓,𝒔(𝑮) Dizi Uzayı Üzerine Bir Not 

Özet: Bu çalışmada, Binom ve genelleştirilmiş fark(ikili band) matrislerinin kompozisyonu ile türetilen 𝑏𝑝
𝑟,𝑠(𝐺) 

dizi uzayı tanımlandı ve 𝑏𝑝
𝑟,𝑠(𝐺) uzayının 1 ≤ 𝑝 < ∞ durumlarında 𝑙𝑝 uzayına lineer olarak izomorfik olduğu 

gösterildi. Ayrıca, bazı kapsama bağıntılarından bahsedildi ve 𝑏𝑝
𝑟,𝑠(𝐺) uzayının Schauder bazı verildi. Bundan 

başka, 𝑏𝑝
𝑟,𝑠(𝐺) uzayının 𝛼-, 𝛽- ve 𝛾-dualleri belirlendi. Son olarak, 𝑏𝑝

𝑟,𝑠(𝐺) uzayı ile ilgili bazı matris sınıfları 

karakterize edildi. 

MKS: 40C05;40H05;46B45 

Anahtar Kelimeler: Matris Dönüşümü, Etki Alanı, Schauder Bazı, 𝛼-, 𝛽- ve 𝛾-Dualleri 

 

1. INTRODUCTION 

   A sequence space is a vector subspace of 𝑤 

which becomes a vector space under pointwise 

addition and scalar multiplication, where 𝑤 is a set 

of all real(or complex) valued sequences. The 

symbols 𝑙∞, 𝑐, 𝑐0 and 𝑙𝑝 represent the classical 

sequence spaces of all bounded, convergent, null 

and absolutely 𝑝-summable sequences, 

respectively, where 1 ≤ 𝑝 < ∞. 

A Banach sequence space is called a 𝐵𝐾-space 

provided each of the maps 𝑝𝑛: 𝑋 ⟶ ℂ defined by 

𝑝𝑛(𝑥) = 𝑥𝑛 is continuous for all 𝑛 ∈ ℕ[1]. By 

considering this notion, one can say that 𝑙∞, 𝑐 and 

𝑐0 are 𝐵𝐾-spaces with their usual sup-norm 

defined by ‖𝑥‖∞ = sup
𝑘∈ℕ

|𝑥𝑘| and 𝑙𝑝 is a 𝐵𝐾-space 

with its 𝑝-norm defined by 

‖𝑥‖𝑝 = (∑|𝑥𝑘|𝑝

∞

𝑘=0

)

1
𝑝

 

where 1 ≤ 𝑝 < ∞. For simplicity, the summation 

without limits runs from 0 to ∞ in the rest of the 

paper. 
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Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix of complex 

entries, 𝑋 and 𝑌 be two sequence spaces and 𝑥 =

(𝑥𝑘) ∈ 𝑤. Then, the 𝐴-transform of 𝑥 is defined by  

(𝐴𝑥)𝑛 = ∑ 𝑎𝑛𝑘𝑥𝑘

𝑘

 

and is assumed to be convergent for all 𝑛 ∈ ℕ, the 

class of all infinite matrices from 𝑋 into 𝑌 is 

defined by 

(𝑋: 𝑌) = {𝐴 = (𝑎𝑛𝑘): 𝐴𝑥 ∈ 𝑌 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋} 

and the matrix domain of 𝐴 = (𝑎𝑛𝑘) in 𝑋 is defined 

by 

𝑋𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝐴𝑥 ∈ 𝑋} 

which is also a sequence space[2]. 

We write 𝑏𝑠 and 𝑐𝑠 for the sets of all bounded and 

convergent series, which are defined by means of 

the matrix domain of the summation matrix 𝑆 =

(𝑠𝑛𝑘) such that 𝑏𝑠 = (𝑙∞)𝑆 and 𝑐𝑠 = 𝑐𝑆, 

respectively, where 𝑆 = (𝑠𝑛𝑘) is defined by 

𝑠𝑛𝑘 = {
1 , 0 ≤ 𝑘 ≤ 𝑛
0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ. 

An infinite matrix 𝐴 = (𝑎𝑛𝑘) is called a triangle 

provided the entries 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛 and 𝑎𝑛𝑛 ≠

0 for all 𝑛, 𝑘 ∈ ℕ. A triangle matrix has an inverse 

which is unique and a triangle. Unless stated 

otherwise, any term with negative subscript is 

assumed to be zero. 

The method constructing a new sequence space by 

means of the matrix domain of an infinite matrix 

has recently been used by many authors : (𝑙𝑝)
𝑁𝑞

 

and 𝑐𝑁𝑞
 in [3],  𝑋𝑝  and  𝑋∞ in 

[4], 𝑙∞(∆), 𝑐0(∆) and 𝑐(∆) in [5], 𝑙∞(∆2), 𝑐0(∆2) 

and 𝑐(∆2) in [6], 𝑒0
𝑟 and 𝑒𝑐

𝑟 in [7], 𝑒𝑝
𝑟 and 𝑒∞

𝑟  in [8] 

and [9], 𝑒0
𝑟(∆), 𝑒𝑐

𝑟(∆) and 𝑒∞
𝑟 (∆) in [10], 𝑒0

𝑟(∆𝑚), 

𝑒𝑐
𝑟(∆𝑚) and 𝑒∞

𝑟 (∆𝑚) in [11], 𝑒0
𝑟(𝐵(𝑚)), 𝑒𝑐

𝑟(𝐵(𝑚)) 

and 𝑒∞
𝑟 (𝐵(𝑚)) in [12], 𝑙∞, �̂�, �̂�0 and 𝑙𝑝 in [13]. 

2. THE SEQUENCE SPACE 𝒃𝒑
𝒓,𝒔(𝑮) 

In this chapter, we speak of the previous studies of 

Binomial matrix and Euler matrix, and define the 

sequence space 𝑏𝑝
𝑟,𝑠(𝐺). Moreover, we prove that 

the sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is linearly isomorphic 

to the sequence space 𝑙𝑝 and is not a Hilbert space 

except the case 𝑝 = 2, where 1 ≤ 𝑝 < ∞. 

Furthermore, we mention some inclusion relations. 

The usage of matrix domain of the Euler matrix 

was first motivated by Altay, Başar and Mursaleen 

in [7], [8] and [9]. They constructed the Euler 

sequence spaces 𝑒0
𝑟, 𝑒𝑐

𝑟, 𝑒∞
𝑟  and 𝑒𝑝

𝑟 as follows: 

 

𝑒0
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

= 0}, 

𝑒𝑐
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

  𝑒𝑥𝑖𝑠𝑡𝑠}, 

𝑒∞
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
|∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

| < ∞} 

and 

𝑒𝑝
𝑟 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

where 1 ≤ 𝑝 < ∞, 0 < 𝑟 < 1 and the Euler matrix of order 𝑟 is defined by 
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𝑒𝑛𝑘
𝑟 = {

(
𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘 , 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛
 

 

for all 𝑛, 𝑘 ∈ ℕ. 

Thereafter, Altay and Polat improved Altay, Başar and Mursaleen’s work by defining the sequence spaces 

𝑒0
𝑟(∆), 𝑒𝑐

𝑟(∆) and 𝑒∞
𝑟 (∆) in [10] as follows: 

𝑒0
𝑟(∆) = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑛

𝑘=0

= 0}, 

𝑒𝑐
𝑟(∆) = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞
∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑛

𝑘=0

  𝑒𝑥𝑖𝑠𝑡𝑠} 

and  

𝑒∞
𝑟 (∆) = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
|∑ (

𝑛
𝑘

) (1 − 𝑟)𝑛−𝑘𝑟𝑘(𝑥𝑘 − 𝑥𝑘−1)

𝑛

𝑘=0

| < ∞} 

Quite recently, Bişgin has generalized Altay, Başar and Mursaleen’s works by defining the Binomial 

sequence spaces 𝑏0
𝑟,𝑠

, 𝑏𝑐
𝑟,𝑠, 𝑏∞

𝑟,𝑠 𝑎𝑛𝑑 𝑏𝑝
𝑟,𝑠

 in [14] and [15] as follows: 

𝑏0
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

= 0}, 

𝑏𝑐
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑛→∞

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

  𝑒𝑥𝑖𝑠𝑡𝑠}, 

𝑏∞
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
|

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

| < ∞} 

and 

𝑏𝑝
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

where 1 ≤ 𝑝 < ∞ and the Binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) is defined by 

𝑏𝑛𝑘
𝑟,𝑠 = {

1

(𝑠 + 𝑟)𝑛
(

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘 , 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ, 𝑟, 𝑠 ∈ ℝ and 𝑠. 𝑟 > 0. Here, if we take 𝑟 + 𝑠 = 1, we obtain the Euler matrix of order 𝑟. 

By considering the Binomial matrix and generalized difference matrix 𝐺 = (𝑔𝑛𝑘), we define the sequence 

space 𝑏𝑝
𝑟,𝑠(𝐺) by 
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𝑏𝑝
𝑟,𝑠(𝐺) = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑ |

1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘(𝑢𝑥𝑘 + 𝑣𝑥𝑘−1)

𝑛

𝑘=0

|

𝑝

𝑛

< ∞} 

where 1 ≤ 𝑝 < ∞ and generalized difference matrix 𝐺 = (𝑔𝑛𝑘) is defined by 

𝑔𝑛𝑘 = {
𝑢 , 𝑘 = 𝑛
𝑣 , 𝑘 = 𝑛 − 1
0 , otherwise

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑢, 𝑣 ∈ ℝ\{0}. Here, we would like to touch on a point, if we take 𝑢 = 1 and 𝑣 = −1, 

we obtain the difference matrix ∆. So, generalized difference matrix generalizes the difference matrix 

[13]. 

If we use the domain of the generalized difference matrix, we define the sequence space 𝑏𝑝
𝑟,𝑠(𝐺) by 

                                                              𝑏𝑝
𝑟,𝑠(𝐺) = (𝑏𝑝

𝑟,𝑠)
𝐺

                                                                  (2.1) 

   Also, by constructing a matrix 𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) so that 

𝑡𝑛𝑘
𝑟,𝑠 = {

𝑠𝑛−𝑘−1𝑟𝑘

(𝑠 + 𝑟)𝑛
[𝑢𝑠 (

𝑛
𝑘

) + 𝑣𝑟 (
𝑛

𝑘 + 1
)] , 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ, we redefine the sequence space 𝑏𝑝
𝑟,𝑠(𝐺) by aid of the 𝑇𝑟,𝑠 = (𝑡𝑛𝑘

𝑟,𝑠) matrix as follows: 

                                                             𝑏𝑝
𝑟,𝑠(𝐺) = (𝑙𝑝)

𝑇𝑟,𝑠                                                                    (2.2) 

   So, for given 𝑥 = (𝑥𝑘) ∈ 𝑤, the 𝑇𝑟,𝑠-transform of 𝑥 is defined by 

                             𝑦𝑘 = (𝑇𝑟,𝑠𝑥)𝑘 =
1

(𝑠 + 𝑟)𝑘
∑ (

𝑘
𝑖

) 𝑠𝑘−𝑖𝑟𝑖(𝑢𝑥𝑖 + 𝑣𝑥𝑖−1)

𝑘

𝑖=0

                              (2.3) 

or  

                     𝑦𝑘 = (𝑇𝑟,𝑠𝑥)𝑘 =
1

(𝑠 + 𝑟)𝑘
∑ [𝑢𝑠 (

𝑘
𝑖

) + 𝑣𝑟 (
𝑘

𝑖 + 1
)]

𝑘

𝑖=0

𝑠𝑘−𝑖−1𝑟𝑖𝑥𝑖                       (2.4) 

for all 𝑘 ∈ ℕ. 

Theorem 2.1 

The sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is a 𝐵𝐾-space with its norm defined by 

‖𝑥‖𝑏𝑝
𝑟,𝑠(𝐺) = ‖𝑇𝑟,𝑠𝑥‖𝑝 = (∑|(𝑇𝑟,𝑠𝑥)𝑘|𝑝

∞

𝑘=0

)

1
𝑝

 

where 1 ≤ 𝑝 < ∞.  

Proof. It is known that 𝑙𝑝 is a 𝐵𝐾-space according to its 𝑝-norm and (2.2) holds. Also, the matrix 𝑇𝑟,𝑠 =

(𝑡𝑛𝑘
𝑟,𝑠) is a triangle. By combining these results and Theorem 4.3.12 of Wilansky [2], we deduce that the 

sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is a 𝐵𝐾-space, where 1 ≤ 𝑝 < ∞. This completes the proof. 

 



 

 

15 Bisgin / Cumhuriyet Sci. J., Vol.38-4, Supplement (2017) 11-25 

Theorem 2.2 

The sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is linearly isomorphic to the sequence space 𝑙𝑝, where 1 ≤ 𝑝 < ∞. 

Proof. Let 𝐿 be a transformation such that 𝐿: 𝑏𝑝
𝑟,𝑠(𝐺) ⟶ 𝑙𝑝, 𝐿(𝑥) = 𝑇𝑟,𝑠𝑥. Then, we should show that 𝐿 

is a linear bijection. The linearity of 𝐿 and 𝑥 = 𝜃 whenever 𝑇𝑥 = 𝜃 are clear. So, 𝐿 is injective. 

   Now, let us define a sequence 𝑥 = (𝑥𝑘) such that 

𝑥𝑘 =
1

𝑢
∑ [∑ (

𝑖
𝑗
) (−

𝑣

𝑢
)

𝑘−𝑖

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘

𝑖=𝑗

] 𝑦𝑗

𝑘

𝑗=0

 

for all 𝑘 ∈ ℕ, where 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝 and 1 ≤ 𝑝 < ∞. Then, we have 

𝑢𝑥𝑘 + 𝑣𝑥𝑘−1 = ∑ [∑ (
𝑖
𝑗
) (−

𝑣

𝑢
)

𝑘−𝑖

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘

𝑖=𝑗

] 𝑦𝑗

𝑘

𝑗=0

− ∑ [∑ (
𝑖
𝑗
) (−

𝑣

𝑢
)

𝑘−𝑖

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘−1

𝑖=𝑗

] 𝑦𝑗

𝑘−1

𝑗=0

 

= ∑ (
𝑘
𝑗

) (−𝑠)𝑘−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑘𝑦𝑗

𝑘

𝑗=0

 

and so 

‖𝑥‖𝑏𝑝
𝑟,𝑠(𝐺) = ‖𝑇𝑟,𝑠𝑥‖𝑝                                                                                                                                  

= (∑|(𝑇𝑟,𝑠𝑥)𝑛|𝑝

∞

𝑛=0

)

1
𝑝

                                                                                           

    = (∑ |
1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘(𝑢𝑥𝑘 + 𝑣𝑥𝑘−1)

𝑛

𝑘=0

|

𝑝∞

𝑛=0

)

1
𝑝

                                    

= (∑ |
1

(𝑠 + 𝑟)𝑛
∑ (

𝑛
𝑘

) 𝑠𝑛−𝑘𝑟𝑘

𝑛

𝑘=0

∑ (
𝑘
𝑗

) (−𝑠)𝑘−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑘𝑦𝑗

𝑘

𝑗=0

|

𝑝
∞

𝑛=0

)

1
𝑝

 

= (∑|𝑦𝑛|𝑝

∞

𝑛=0

)

1
𝑝

                                                                                                    

= ‖𝑦‖𝑝 < ∞.                                                                                                       

Therefore, 𝐿 is norm preserving and 𝑥 = (𝑥𝑛) ∈ 𝑏𝑝
𝑟,𝑠(𝐺) for all 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝, namely 𝐿 is surjective. As 

a consequence, 𝐿 is a linear bijection as desired. This completes the proof. 
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Theorem 2.3 

The sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is not a Hilbert space in circumstances 𝑝 ≠ 2, where 1 ≤ 𝑝 < ∞. 

Proof. Let us take 𝑝 = 2. One can say from the Theorem 2.1 that the sequence space 𝑏2
𝑟,𝑠(𝐺) is a 𝐵𝐾-

space with its norm defined by 

‖𝑥‖𝑏2
𝑟,𝑠(𝐺) = ‖𝑇𝑟,𝑠𝑥‖2 = (∑|(𝑇𝑟,𝑠𝑥)𝑘|2

∞

𝑘=0

)

1
2

 

which is also generated by an inner product such that 

‖𝑥‖𝑏2
𝑟,𝑠(𝐺) = 〈𝑇𝑟,𝑠𝑥, 𝑇𝑟,𝑠𝑥〉

1
2. 

   So, 𝑏2
𝑟,𝑠(𝐺) is a Hilbert space. 

On the other hand, assuming that 𝑝 ∈ [1, ∞)\{2}, we define two sequences 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as 

follows: 

𝑦𝑘 =
1

𝑢
∑ (−

𝑣

𝑢
)

𝑘−𝑖

(−
𝑠

𝑟
)

𝑖−1 −𝑠 + 𝑖(𝑟 + 𝑠)

𝑟

𝑘

𝑖=0

 

and 

𝑧𝑘 =
1

𝑢
∑ (−

𝑣

𝑢
)

𝑘−𝑖

(−
𝑠

𝑟
)

𝑖−1
−𝑠 − 𝑖(𝑟 + 𝑠)

𝑟

𝑘

𝑖=0

 

for all 𝑘 ∈ ℕ. Then we get 

‖𝑦 + 𝑧‖
𝑏𝑝

𝑟,𝑠(𝐺) 
2 + ‖𝑦 − 𝑧‖

𝑏𝑝
𝑟,𝑠(𝐺) 

2 = 8 ≠ 2
2
𝑝

+2
= 2 [‖𝑦‖

𝑏𝑝
𝑟,𝑠(𝐺) 

2 + ‖𝑧‖
𝑏𝑝

𝑟,𝑠(𝐺) 
2 ]. 

Therefore, the norm of the sequence space 𝑏𝑝
𝑟,𝑠(𝐺) does not satisfy the parallelogram equality, namely the 

norm can not be generated by an inner product. As a consequence, the sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is not a 

Hilbert space in circumstances 𝑝 ≠ 2, where 1 ≤ 𝑝 < ∞. This completes the proof. 

Theorem 2.4 

The inclusion 𝑙𝑝(𝐺) ⊂ 𝑏𝑝
𝑟,𝑠(𝐺) strictly holds, where 1 ≤ 𝑝 < ∞. 

Proof. We give the proof of theorem for 1 < 𝑝 < ∞. In case of 𝑝 = 1, the proof can be given by using a 

similar way. 

For a given arbitrary sequence 𝑥 = (𝑥𝑘) ∈ 𝑙𝑝(𝐺), from the definition of the sequence space 𝑙𝑝(𝐺), we 

have 

∑|𝑢𝑥𝑘 + 𝑣𝑥𝑘−1|𝑝

𝑘

< ∞ 

where 1 < 𝑝 < ∞. Also, by considering the Hölder’s inequality, we write 
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|(𝑇𝑟,𝑠𝑥)𝑘|𝑝 = |
1

(𝑠 + 𝑟)𝑘
∑ (

𝑘
𝑗

) 𝑠𝑘−𝑗𝑟𝑗(𝑢𝑥𝑗 + 𝑣𝑥𝑗−1)

𝑘

𝑗=0

|

𝑝

                                                                      

                     ≤ (
1

|𝑠 + 𝑟|𝑘
)

𝑝

[∑ [((
𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗)

1
𝑞

]

𝑘

𝑗=0

[((
𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗)

1
𝑝

|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|]]

𝑝

         

 

                      ≤ (
1

|𝑠 + 𝑟|𝑘
)

𝑝

[(∑ (
𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

)

𝑝−1

× (∑ (
𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|
𝑝

)] 

    =
1

|𝑠 + 𝑟|𝑘
∑ (

𝑘
𝑗

) |𝑠|𝑘−𝑗|𝑟|𝑗

𝑘

𝑗=0

|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|
𝑝

                                                   

= ∑ (
𝑘
𝑗

) |
𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗
𝑘

𝑗=0

|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|
𝑝

                                                          

where 1 < 𝑝 < ∞. Then we obtain 

∑|(𝑇𝑟,𝑠𝑥)𝑘|𝑝

𝑘

≤ ∑ ∑ (
𝑘
𝑗

) |
𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗
𝑘

𝑗=0

|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|
𝑝

𝑘

                             

= ∑|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|
𝑝

𝑗

∑ (
𝑘
𝑗

) |
𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗
∞

𝑘=𝑗

 

= |
𝑠 + 𝑟

𝑠
| ∑|𝑢𝑥𝑗 + 𝑣𝑥𝑗−1|

𝑝

𝑗

                         

where 1 < 𝑝 < ∞. If we connect this result and comparison test, we bring to a conclusion that 𝑇𝑟,𝑠𝑥 ∈ 𝑙𝑝 

, namely 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐺). This gives us that 𝑙𝑝(𝐺) ⊂ 𝑏𝑝

𝑟,𝑠(𝐺). 

   Let us define a sequence 𝑧 = (𝑧𝑘) such that 𝑧𝑘 =
(−1)𝑘

𝑢−𝑣
[1 − (

𝑣

𝑢
)

𝑘+1
] for all 𝑘 ∈ ℕ and 𝑢 ≠ 𝑣. Then, 

one can see that 𝐺𝑧 = ((−1)𝑘) ∉ 𝑙𝑝 and 𝑇𝑟,𝑠𝑧 = ((
𝑠−𝑟

𝑠+𝑟
)

𝑘
) ∈ 𝑙𝑝, namely 𝑧 = (𝑧𝑘) ∉ 𝑙𝑝(𝐺) and 𝑧 =

(𝑧𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐺). This shows us that the inclusion 𝑙𝑝(𝐺) ⊂ 𝑏𝑝

𝑟,𝑠(𝐺) is strict. This completes the proof. 

Theorem 2.5 

The inclusion 𝑏𝑝
𝑟,𝑠(𝐺) ⊂ 𝑏𝑞

𝑟,𝑠(𝐺) strictly holds in case of 1 ≤ 𝑝 < 𝑞 < ∞. 

Proof. It is known that the inclusion 𝑙𝑝 ⊂ 𝑙𝑞 holds in case of 1 ≤ 𝑝 < 𝑞 < ∞. Let us take an arbitrary 

sequence 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐺). Then, we have 𝑇𝑟,𝑠𝑥 ∈ 𝑙𝑝. By combining these two facts, we write 𝑇𝑟,𝑠𝑥 ∈

𝑙𝑞, namely 𝑥 = (𝑥𝑘) ∈ 𝑏𝑞
𝑟,𝑠(𝐺). This shows us that the inclusion 𝑏𝑝

𝑟,𝑠(𝐺) ⊂ 𝑏𝑞
𝑟,𝑠(𝐺) holds. 

   Let us consider the sequence 𝑑 = (𝑑𝑘) defined by 
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𝑑𝑘 =
1

𝑢
∑ [∑ (

𝑖
𝑗
) (−

𝑣

𝑢
)

𝑘−𝑖

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘

𝑖=𝑗

]

𝑘

𝑗=0

(𝑗 + 1)
−

1

𝑝 

for all 𝑘 ∈ ℕ. Then, it is clear that 𝑇𝑟,𝑠𝑑 = (
1

(𝑘+1)
1
𝑝

) ∈ 𝑙𝑞\𝑙𝑝, namely 𝑑 = (𝑑𝑘) ∈ 𝑏𝑞
𝑟,𝑠(𝐺)\𝑏𝑝

𝑟,𝑠(𝐺) in case 

of 1 ≤ 𝑝 < 𝑞 < ∞. Therefore the inclusion 𝑏𝑝
𝑟,𝑠(𝐺) ⊂ 𝑏𝑞

𝑟,𝑠(𝐺) strictly holds. This completes the proof. 

Theorem 2.6 

The sequence spaces 𝑏𝑝
𝑟,𝑠(𝐺) and 𝑙∞(𝐺) overlap but do not include each other, where 𝑝 ∈ [1, ∞). 

Proof. Let us define three sequences 𝑥 = (𝑥𝑘), 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) such that 

𝑥𝑘 =
(−1)𝑘

𝑢−𝑣
[1 − (

𝑣

𝑢
)

𝑘+1
] , 𝑦𝑘 =

1

𝑢+𝑣
[1 − (−

𝑣

𝑢
)

𝑘+1
]  and  𝑧𝑘 =

𝑟(−1)𝑘

𝑣𝑟−𝑢𝑠
(

𝑣

𝑢
)

𝑘+1
[1 − (

𝑢𝑠

𝑣𝑟
)

𝑘+1
] 

for all 𝑘 ∈ ℕ, where 𝑢 − 𝑣 ≠ 0, 𝑢 + 𝑣 ≠ 0, 𝑣𝑟 − 𝑢𝑠 ≠ 0, |
𝑠

𝑟
| > 1. Then 𝐺𝑥 = ((−1)𝑘) ∈ 𝑙∞, 𝑇𝑟,𝑠𝑥 =

((
𝑠−𝑟

𝑠+𝑟
)

𝑘
) ∈ 𝑙𝑝, 𝐺𝑦 = 𝑒 ∈ 𝑙∞, 𝑇𝑟,𝑠𝑦 = 𝑒 ∉ 𝑙𝑝, 𝐺𝑧 = ((−

𝑠

𝑟
)

𝑘
) ∉ 𝑙∞ and 𝑇𝑟,𝑠𝑧 = (1, 0, 0, … ) ∈ 𝑙𝑝, 

namely 𝑥 ∈ 𝑙∞(𝐺)⋂𝑏𝑝
𝑟,𝑠(𝐺), 𝑦 ∈ 𝑙∞(𝐺)\𝑏𝑝

𝑟,𝑠(𝐺) and 𝑧 ∈ 𝑏𝑝
𝑟,𝑠(𝐺)\𝑙∞(𝐺). As a consequence of these the 

spaces 𝑏𝑝
𝑟,𝑠(𝐺) and 𝑙∞(𝐺) overlap but do not include each other, where 𝑝 ∈ [1, ∞). This completes the 

proof. 

3. The Schauder Basis And 𝜶−, 𝜷−, 𝜸 −Duals Of The Space 𝒃𝒑
𝒓,𝒔(𝑮) 

In this section, we determine the Schauder basis and 𝛼-, 𝛽-, 𝛾-duals of the sequence space 𝑏𝑝
𝑟,𝑠(𝐺). 

A sequence 𝑦 = (𝑦𝑘) is called a Schauder basis of a normed space (𝑋, ‖ . ‖𝑋), if for each 𝑥 = (𝑥𝑘) ∈ 𝑋, 

there exists a unique sequence 𝜆 = (𝜆𝑘) of scalars such that 

lim
𝑚→∞

‖𝑥 − ∑ 𝜆𝑘𝑦𝑘

𝑚

𝑘=0

‖

𝑋

= 0. 

Then the expansion of 𝑥 = (𝑥𝑘) with respect to 𝑦 = (𝑦𝑘) is written by 

𝑥 = ∑ 𝜆𝑘𝑦𝑘

∞

𝑘=0

 

We know from [16] of Jarrah and Malkowsky that 𝑋𝐴 has a Schauder basis if and only if 𝑋 has a Schauder 

basis whenever 𝐴 = (𝑎𝑛𝑘) is a triangle. Also, the sequence (𝑒(𝑘)) is a Schauder basis for 𝑙𝑝 and the matrix 

𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) is a triangle, where 𝑒(𝑘) is a sequence with 1 in the 𝑘-th place and zeros elsewhere. 

By combining these results, we can give next corollary. 

Corollary 3.1 

Let 𝜇(𝑘)(𝑟, 𝑠) = {𝜇𝑛
(𝑘)(𝑟, 𝑠)}

𝑛∈ℕ
 be a sequence defined by 
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𝜇𝑛
(𝑘)(𝑟, 𝑠) = {

1

𝑢
∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

, 𝑛 ≥ 𝑘

0 , 0 ≤ 𝑛 < 𝑘

 

for all fixed 𝑘 ∈ ℕ. Then, the Schauder basis of the sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is the sequence 

{𝜇(𝑘)(𝑟, 𝑠)}
𝑘∈ℕ

 and every 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐺) can be uniquely written on the form 

𝑥 = ∑ 𝜎𝑘𝜇(𝑘)(𝑟, 𝑠)

𝑘

 

where 𝜎𝑘 = (𝑇𝑟,𝑠𝑥)𝑘 for all 𝑘 ∈ ℕ. 

By connecting the results of Theorem 2.1 and Corollary 3.1 , one more result can be given. 

Corollary 3.2 

The sequence space 𝑏𝑝
𝑟,𝑠(𝐺) is separable. 

   A set defined by 

𝑀(𝑋, 𝑌) = {𝑦 = (𝑦𝑘) ∈ 𝑤 ∶  𝑥𝑦 = (𝑥𝑘𝑦𝑘) ∈ 𝑌  for all 𝑥 = (𝑥𝑘) ∈ 𝑋} 

is called the multiplier space of the sequence spaces 𝑋 and 𝑌. Then, the 𝛼-, 𝛽- and 𝛾-duals of the sequence 

space 𝑋 are defined by means of the multiplier space, 𝑙1, 𝑐𝑠 and 𝑏𝑠 such that 

𝑋𝛼 = 𝑀(𝑋, 𝑙1)  , 𝑋𝛽 = 𝑀(𝑋, 𝑐𝑠)  and  𝑋𝛾 = 𝑀(𝑋, 𝑏𝑠) 

respectively. 

   Now, we continue with quoting lemmas from Stieglitz and Tietz [17]. 

Lemma 3.3 (see [17]) 

Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the following statements hold. 

   i-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙1) if and only if 

                    sup
𝑘∈ℕ

∑|𝑎𝑛𝑘|

𝑛

< ∞                                                                                                            (3.1) 

   ii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙∞) if and only if 

                    sup
𝑛,𝑘∈ℕ

|𝑎𝑛𝑘| < ∞                                                                                                                 (3.2) 

   iii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑐) if and only if (3.2) holds and 

             lim
𝑛→∞

𝑎𝑛𝑘 = 𝑎𝑘  for all  𝑘 ∈ ℕ                                                                                                (3.3) 

Lemma 3.4 (see [17]) 

Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the following statements hold. 

   i-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑙1) if and only if 

                  sup
𝐾∈ℱ

∑ |∑ 𝑎𝑛𝑘

𝑛∈𝐾

|

𝑞

𝑘

< ∞                                                                                                    (3.4) 

   ii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑙∞) if and only if 
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                  sup
𝑛∈ℕ

∑|𝑎𝑛𝑘|𝑞

𝑘

< ∞                                                                                                            (3.5) 

   iii-) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑐) if and only if (3.3) and (3.5) hold 

where  
1

𝑝
+

1

𝑞
= 1 , 1 < 𝑝 < ∞ and ℱ is the collection of all finite subset of ℕ. 

Theorem 3.5 

Let 𝜉1
𝑟,𝑠(G) and 𝜉2

𝑟,𝑠(G) be two sets defined by 

𝜉1
𝑟,𝑠(G) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝐾∈ℱ
∑ |

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

𝑎𝑛

𝑛∈𝐾

|

𝑞

𝑘

< ∞} 

and 

𝜉2
𝑟,𝑠(G) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝑘∈ℕ
∑ |

1

𝑢
∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

𝑎𝑛|

𝑛

< ∞}. 

Then {𝑏1
𝑟,𝑠(𝐺)}𝛼 = 𝜉2

𝑟,𝑠(G) and {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛼
= 𝜉1

𝑟,𝑠(G) , where 1 < 𝑝 < ∞. 

Proof. Consider the sequence 𝑥 = (𝑥𝑛), which is defined by 

                       𝑥𝑛 =
1

𝑢
∑ [∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

] 𝑦𝑘

𝑛

𝑘=0

                                      (3.6) 

for all 𝑛 ∈ ℕ. Then, for given 𝑎 = (𝑎𝑛) ∈ 𝑤, we write 

𝑎𝑛𝑥𝑛 = ∑ [
1

𝑢
∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

𝑎𝑛] 𝑦𝑘

𝑛

𝑘=0

= ∑ 𝑑𝑛𝑘
𝑟,𝑠𝑦𝑘

𝑛

𝑘=0

= (𝐷𝑟,𝑠𝑦)𝑛 

for all 𝑛 ∈ ℕ. By taking into account the equality above, we observe that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑙1 whenever 

𝑥 = (𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐺) or 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝

𝑟,𝑠(𝐺) if and only if 𝐷𝑟,𝑠𝑦 ∈ 𝑙1 whenever 𝑦 = (𝑦𝑘) ∈ 𝑙1 or 𝑦 =

(𝑦𝑘) ∈ 𝑙𝑝, respectively where 1 < 𝑝 < ∞. So, we obtain that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐺)}𝛼 or 𝑎 = (𝑎𝑛) ∈

{𝑏𝑝
𝑟,𝑠(𝐺)}

𝛼
 if and only if 𝐷𝑟,𝑠 ∈ (𝑙1: 𝑙1) or 𝐷𝑟,𝑠 ∈ (𝑙𝑝: 𝑙1), respectively, where 1 < 𝑝 < ∞. By connecting 

these results, Lemma 3.3(i) and Lemma 3.4(i), we deduce that 

𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐺)}𝛼 ⟺ sup

𝑘∈ℕ
∑ |

1

𝑢
∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

𝑎𝑛|

𝑛

< ∞ 

and 

𝑎 = (𝑎𝑛) ∈ {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛼
⟺ sup

𝐾∈ℱ
∑ |

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑛−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑛

𝑖=𝑘

𝑎𝑛

𝑛∈𝐾

|

𝑞

𝑘

< ∞ 

where 1 < 𝑝 < ∞. These yield us that {𝑏1
𝑟,𝑠(𝐺)}𝛼 = 𝜉2

𝑟,𝑠(G) and {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛼
= 𝜉1

𝑟,𝑠(G) , where 1 < 𝑝 <

∞. This completes the proof. 

Theorem 3.6 

Consider the sets 𝜉3
𝑟,𝑠(G), 𝜉4

𝑟,𝑠(G) and 𝜉5
𝑟,𝑠(G) defined by 
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𝜉3
𝑟,𝑠(G) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

∞

𝑗=𝑘

  exists for all 𝑘 ∈ ℕ} 

𝜉4
𝑟,𝑠(G) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝑘,𝑛∈ℕ
|
1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

| < ∞} 

and 

𝜉5
𝑟,𝑠(G) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶  sup

𝑛∈ℕ
∑ |

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

|

𝑞
𝑛

𝑘=0

< ∞} 

where 1 < 𝑞 < ∞. 

Then the following statements hold: 

(I) {𝑏1
𝑟,𝑠(𝐺)}𝛽 = 𝜉3

𝑟,𝑠(G)⋂𝜉4
𝑟,𝑠(G), 

(II) {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛽
= 𝜉3

𝑟,𝑠(G)⋂𝜉5
𝑟,𝑠(G), where 1 < 𝑝 < ∞, 

(III) {𝑏1
𝑟,𝑠(𝐺)}𝛾 = 𝜉4

𝑟,𝑠(G), 

(IV) {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛾
= 𝜉5

𝑟,𝑠(G), where 1 < 𝑝 < ∞. 

Proof. Since the proofs of the parts (II), (III) and (IV) may be obtained by using a same way, we prove 

the theorem for only the part (I). Let 𝑎 = (𝑎𝑛) ∈ 𝑤 be arbitrarily given. Consider the sequence 𝑥 = (𝑥𝑛) 

defined by the relation (3.6). Then, we write 

∑ 𝑎𝑘𝑥𝑘

𝑛

𝑘=0

= ∑ [
1

𝑢
∑ ∑ (

𝑖
𝑗
) (−

𝑣

𝑢
)

𝑘−𝑖

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘

𝑖=𝑗

𝑘

𝑗=0

𝑦𝑗] 𝑎𝑘

𝑛

𝑘=0

 

                    = ∑ [
1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

] 𝑦𝑘

𝑛

𝑘=0

 

= (𝑉𝑟,𝑠𝑦)𝑛                                                                

for all 𝑛 ∈ ℕ, where the matrix 𝑉𝑟,𝑠 = (𝑣𝑛𝑘
𝑟,𝑠) is defined by 

𝑣𝑛𝑘
𝑟,𝑠 = {

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

, 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ. So, 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠 whenever 𝑥 = (𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐺) if and only if 𝑉𝑟,𝑠𝑦 ∈ 𝑐 whenever 

𝑦 = (𝑦𝑘) ∈ 𝑙1. This yields us that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐺)}𝛽 if and only if 𝑉𝑟,𝑠 ∈ (𝑙1: 𝑐). By connecting this 

result and Lemma 3.3 (iii), we obtain that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠(𝐺)}𝛽 if and only if 

sup
𝑘,𝑛∈ℕ

|
1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

𝑛

𝑗=𝑘

| < ∞ 
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and 

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑗

∞

𝑗=𝑘

  exists for all 𝑘 ∈ ℕ 

This result shows us that {𝑏1
𝑟,𝑠(𝐺)}𝛽 = 𝜉3

𝑟,𝑠(G)⋂𝜉4
𝑟,𝑠(G). This completes the proof. 

4. Some Matrix Classes 

In this section, we charecterize some matrix classes related to the sequence space 𝑏𝑝
𝑟,𝑠(𝐺), where 1 ≤ 𝑝 <

∞. 

For simplicity in notation, we prefer to use following equality throughout the section 4. 

ℎ𝑛𝑘
𝑟,𝑠,𝐺 =

1

𝑢
∑ ∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

𝑎𝑛𝑗

∞

𝑗=𝑘

 

for all 𝑛, 𝑘 ∈ ℕ. 

Theorem 4.1 

Given an infinite matrix 𝐴 = (𝑎𝑛𝑘), the following statements hold. 

   (i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐺): 𝑙∞) if and only if 

                            sup
𝑘,𝑛∈ℕ

|ℎ𝑛𝑘
𝑟,𝑠,𝐺| < ∞                                                                                                      (4.1) 

   (ii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑝
𝑟,𝑠(𝐺): 𝑙∞) if and only if 

                         sup
𝑛∈ℕ

∑|ℎ𝑛𝑘
𝑟,𝑠,𝐺|

𝑞

𝑘

< ∞                                                                                                  (4.2) 

                         {𝑎𝑛𝑘}𝑘∈ℕ ∈ 𝜉5
𝑟,𝑠(G)                                                                                                     (4.3) 

where 1 < 𝑝 < ∞. 

Proof. Let 𝑝 ∈ (1, ∞). We take any 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠(𝐺) by assuming that the conditions (4.2) and (4.3) 

hold. Then, it is obtained that {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏𝑝
𝑟,𝑠(𝐺)}

𝛽
. This result implies the existence of the 𝐴 transform 

of 𝑥. From the relation (3.6), we have 

∑ 𝑎𝑛𝑘𝑥𝑘

𝑚

𝑘=0

= ∑ [
1

𝑢
∑ ∑ (

𝑖
𝑗
) (−

𝑣

𝑢
)

𝑘−𝑖

(−𝑠)𝑖−𝑗(𝑟 + 𝑠)𝑗𝑟−𝑖

𝑘

𝑖=𝑗

𝑘

𝑗=0

𝑦𝑗] 𝑎𝑛𝑘

𝑚

𝑘=0

                                     

                         = ∑ ∑ [
1

𝑢
∑ (

𝑖
𝑘

) (−
𝑣

𝑢
)

𝑗−𝑖

(−𝑠)𝑖−𝑘(𝑟 + 𝑠)𝑘𝑟−𝑖

𝑗

𝑖=𝑘

]

𝑚

𝑗=𝑘

𝑎𝑛𝑗𝑦𝑘

𝑚

𝑘=0

                             (4.4) 

By taking limit (4.4) side by side as 𝑚 → ∞, we obtain that 

                                          ∑ 𝑎𝑛𝑘𝑥𝑘

𝑘

= ∑ ℎ𝑛𝑘
𝑟,𝑠,𝐺𝑦𝑘

𝑘

  (𝑛 ∈ ℕ)                                                        (4.5) 

Then, we derive by taking 𝑙∞-norm (4.5) side by side and by applying Hölder’s inequality that 
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‖𝐴𝑥‖∞ = sup
𝑛∈ℕ

|∑ ℎ𝑛𝑘
𝑟,𝑠,𝐺𝑦𝑘

𝑘

|                                                    

≤ sup
𝑛∈ℕ

(∑|ℎ𝑛𝑘
𝑟,𝑠,𝐺|

𝑞

𝑘

)

1
𝑞

(∑|𝑦𝑘|𝑝

𝑘

)

1
𝑝

< ∞ 

As a result of this, we obtain that 𝐴𝑥 ∈ 𝑙∞, namely 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑝
𝑟,𝑠(𝐺): 𝑙∞). 

Conversly, assume that 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑝
𝑟,𝑠(𝐺): 𝑙∞). This gives us to {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏𝑝

𝑟,𝑠(𝐺)}
𝛽

 for all 𝑛 ∈

ℕ. Then, the necessity of (4.3) is immediate and {ℎ𝑛𝑘
𝑟,𝑠,𝐺}

𝑘,𝑛∈ℕ
 exists. On account of {𝑎𝑛𝑘}𝑘∈ℕ ∈

{𝑏𝑝
𝑟,𝑠(𝐺)}

𝛽
, we can see that the condition (4.5) holds and the sequences 𝑎𝑛 = (𝑎𝑛𝑘)𝑘∈ℕ define the 

continuous linear functionals 𝑓𝑛 on 𝑏𝑝
𝑟,𝑠(𝐺) by 

𝑓𝑛(𝑥) = ∑ 𝑎𝑛𝑘𝑥𝑘

𝑘

 

for all 𝑛 ∈ ℕ. Also, we know from the Theorem 2.2 that the sequence spaces 𝑏𝑝
𝑟,𝑠(𝐺) and 𝑙𝑝 are norm 

isomorphic. By connecting this result and the condition (4.5), we obtain that 

‖𝑓𝑛‖ = ‖(ℎ𝑛𝑘
𝑟,𝑠,𝐺)

𝑘∈ℕ
‖

𝑞
 

which yields that the functionals 𝑓𝑛 are pointwise bounded. Moreover, we derive from the Banach-

Steinhaus theorem that the functionals 𝑓𝑛 are uniformly bounded, namely there exists a constant 𝑀 > 0 

such that  

(∑|ℎ𝑛𝑘
𝑟,𝑠,𝐺|

𝑞

𝑘

)

1
𝑞

= ‖𝑓𝑛‖ ≤ 𝑀 

for all 𝑛 ∈ ℕ, which shows us that the condition (4.2) holds. The part (i) can be proved by using a similar 

method. This completes the proof. 

Now, we quote a lemma from Stieglitz and Tietz [17], which is needed in the next proof. 

Lemma 4.2 (see [17]) 

Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙𝑝) if and only if 

sup
𝑘∈ℕ

∑|𝑎𝑛𝑘|𝑝

𝑛

< ∞ 

where 1 < 𝑝 < ∞. 

Theorem 4.3 

Let an infinite matrix 𝐴 = (𝑎𝑛𝑘) be given. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐺) ∶ 𝑙𝑝) if and only if 

                                                                 sup
𝑘∈ℕ

∑|ℎ𝑛𝑘
𝑟,𝑠,𝐺|

𝑝

𝑛

< ∞                                                          (4.6) 

where 1 ≤ 𝑝 < ∞. 
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Proof. Let a sequence 𝑥 = (𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐺) be given. Assume that the condition (4.6) holds. Then, it is 

clear that 𝑦 = (𝑦𝑘) ∈ 𝑙1 and {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏1
𝑟,𝑠(𝐺)}𝛽 for all 𝑛 ∈ ℕ, namely 𝐴-transform of 𝑥 exists. As a 

result of this, the series ∑ ℎ𝑛𝑘
𝑟,𝑠,𝐺𝑦𝑘𝑘  are absolutely convergent for all 𝑛 ∈ ℕ and 𝑦 = (𝑦𝑘) ∈ 𝑙1. By 

applying the Minkowsky inequality to (4.5), we can write 

(∑|(𝐴𝑥)𝑛|𝑝

𝑛

)

1
𝑝

≤ ∑|𝑦𝑘|

𝑘

(∑|ℎ𝑛𝑘
𝑟,𝑠,𝐺|

𝑝

𝑛

)

1
𝑝

 

which yields that 𝐴𝑥 ∈ 𝑙𝑝, namely 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐺): 𝑙𝑝). 

Conversly, we suppose that 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏1
𝑟,𝑠(𝐺): 𝑙𝑝), where 1 ≤ 𝑝 < ∞, namely 𝐴𝑥 ∈ 𝑙𝑝 for all 𝑥 =

(𝑥𝑘) ∈ 𝑏1
𝑟,𝑠(𝐺). So, {𝑎𝑛𝑘}𝑘∈ℕ ∈ {𝑏1

𝑟,𝑠(𝐺)}𝛽 for all 𝑛 ∈ ℕ, which shows us that the relation (4.5) holds. 

These results give us that 𝐻𝑟,𝑠,𝐺 = (ℎ𝑛𝑘
𝑟,𝑠,𝐺) ∈ (𝑙1: 𝑙𝑝). By combining last result and Lemma 4.2, we obtain 

that the condition (4.6) holds. This completes the proof. 

5. CONCLUSION 

The domain of Binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) in the sequence space 𝑙𝑝 has been introduced by Bişgin in 

[15]. Also, the domain of generalized difference(double band) matrix 𝐺 = (𝑔𝑛𝑘) in some sequence spaces 

was used and studied by many authors. Since 𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) is composition of 𝐵𝑟,𝑠 = (𝑏𝑛𝑘

𝑟,𝑠) and 𝐺 =

(𝑔𝑛𝑘), and 𝑇𝑟,𝑠 = (𝑡𝑛𝑘
𝑟,𝑠) is stronger than 𝐺 = (𝑔𝑛𝑘), our results are more general. 
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