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Abstract: In this study, we define the sequence space b;'s(G) derived by the composition of the Binomial
matrix and generalized difference(double band) matrix and show that the space b;'S(G) is linearly isomorphic
to the space 1,,, where 1 < p < co. Furthermore, we mention some inclusion relations and give Schauder basis
of the space b;,*(G). Moreover, we determine a-, 8- and y-duals of the space b;,*(G). Lastly, we characterize
some matrix classes related to the space b,*(G).
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by, *(G) Dizi Uzay Uzerine Bir Not

Ozet: Bu calismada, Binom ve genellestirilmis fark(ikili band) matrislerinin kompozisyonu ile tiiretilen b;‘s (@)
dizi uzay1 tanimlandi ve b{,’S(G) uzaymin 1 < p < co durumlarinda l,, uzayma lineer olarak izomorfik oldugu
gosterildi. Ayrica, bazi kapsama bagintilarindan bahsedildi ve b;'S(G ) uzaymin Schauder bazi verildi. Bundan
baska, b,*(G) uzaymn a-, B- ve y-dualleri belirlendi. Son olarak, b,*(G) uzayu ile ilgili bazi matris simiflari
karakterize edildi.
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1. INTRODUCTION considering this notion, one can say that [, ¢ and

A sequence space is a vector subspace of w
which becomes a vector space under pointwise
addition and scalar multiplication, where w is a set
of all real(or complex) valued sequences. The
symbols I, c,co and L, represent the classical
sequence spaces of all bounded, convergent, null
and absolutely ~ p-summable  sequences,
respectively, where 1 < p < co.

A Banach sequence space is called a BK-space
provided each of the maps p,,;: X — C defined by
pn(x) = x,, is continuous for all n € N[1]. By

* Corresponding author. Email address:
http://dergipark.gov.tr/csj

c, are BK-spaces with their usual sup-norm
defined by ||x||., = suplx,| and [, is a BK-space
keN

with its p-norm defined by

. 1
p
Ixll, = (lekv’)
k=0

where 1 < p < co. For simplicity, the summation
without limits runs from 0 to oo in the rest of the

paper.
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Let A = (a,,) be an infinite matrix of complex
entries, X and Y be two sequence spaces and x =
(x) € w. Then, the A-transform of x is defined by

(Ax), = Z AniXk
%

and is assumed to be convergent for all n € N, the
class of all infinite matrices from X into Y is
defined by

X:Y) ={A = (an):Ax €Y forall x € X}
and the matrix domain of A = (a,;,) in X is defined
by

X, ={x=(x) Ew:Ax € X}
which is also a sequence space[2].

We write bs and cs for the sets of all bounded and
convergent series, which are defined by means of
the matrix domain of the summation matrix S =

(sp) such that bs = (lo)s and c¢s =cg,
respectively, where S = (s,,;) is defined by
_ {1 , 0<k<n
Snk =0 , k>n

forall n, k € N.

An infinite matrix A = (a,;) is called a triangle
provided the entries a,;, = 0 for k > nand a,,,, #
0 for all n, k € N. A triangle matrix has an inverse

Q
o5
I
— e

x = (x) € w:sup
neN

Q]
8=
I
— e

and

ey ={x= (x3) EW:Z

z (Z) (1 —r)Frky,

k=

o

n

Z (Z) (1 —7r)"*rkx,

k=0
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which is unique and a triangle. Unless stated
otherwise, any term with negative subscript is
assumed to be zero.

The method constructing a new sequence space by
means of the matrix domain of an infinite matrix
has recently been used by many authors : (lp)N

q

and cn, in[3], X, and X, in

[4], L, (A), co(A) and c(A) in [5], L (A2), co(A?)
and c(A?) in [6], eg and e/ in [7], e}, and e, in [8]
and [9], eZ(A), el (A) and e, (A) in [10], el (A™),
el (A™) and eZ (A™) in [11], ef (B™), eZ (B™)
and e, (B™) in [12], I, ¢, &, and I, in [13].

2. THE SEQUENCE SPACE b;’S(G)

In this chapter, we speak of the previous studies of
Binomial matrix and Euler matrix, and define the
sequence space b;'S(G). Moreover, we prove that
the sequence space b,*(G) is linearly isomorphic
to the sequence space [, and is not a Hilbert space
except the case p =2, where 1<p< o,
Furthermore, we mention some inclusion relations.

The usage of matrix domain of the Euler matrix
was first motivated by Altay, Basar and Mursaleen
in [7], [8] and [9]. They constructed the Euler
sequence spaces e, e¢., ex, and ey, as follows:

n
el = {x = (o) €w: lim > () (1 = )" krky, = 0},

k

n
x = (x;) € w: lim Z (Z) (1 —7r)"*rkx, exists},
=,

s
.

where 1 < p < o0, 0 < r < 1 and the Euler matrix of order r is defined by
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forall n, k € N.

Thereafter, Altay and Polat improved Altay, Basar and Mursaleen’s work by defining the sequence spaces
e (A), el (A) and el (A) in [10] as follows:

e§(8) = {x = (o) € ws Jim > (1) (1= )" o = i) = o},

el (A) = {x = (x;) Ew: 1 z ( — )RR (x — Xp—1) exists}

s

Quite recently, Bisgin has generalized Altay, Basar and Mursaleen’s works by defining the Binomial
sequence spaces by, b.”, be;® and by, in [14] and [15] as follows:

n
1
bgs {x = (xk) €Ew: llm mz (Tl) s~ k?"kxk = 0};

and

() @ =7k e = xy)

el (A) = {x = (x) € w:sup
neN

=
||M=
o

n
1
b = {x = (x) € W:}li—r’gmkzo (Z) s Rk existsl,

s
.

n

1
2 (B s

eN
n k=0

by = {x = (xx) € w:sup

and

brs {x = (x) Ew: Z an r)nz (n) s krky,

where 1 < p < o and the Binomial matrix B" = (b, ) is defined by

1 N\ n—k..k
brrl,]f: m(k)s T , OSkSTl

0 , k>n

foralln,k € N, r,s € Rands.r > 0. Here, if we take r + s = 1, we obtain the Euler matrix of order r.

By considering the Binomial matrix and generalized difference matrix G = (g,x), we define the sequence
space b, (G) by
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b (G) = {x = (x) € W:Z

p
<o

n
g nk k
re(ux, + vx;,_
(S+T')n ( k kl)

where 1 < p < o and generalized difference matrix G = (gyy) is defined by

u , k=n
Ink = {v , k=n-1
0 , otherwise

foralln, k € N and u, v € R\{0}. Here, we would like to touch on a point, if we takeu = 1and v = —1,
we obtain the difference matrix A. So, generalized difference matrix generalizes the difference matrix
[13].

If we use the domain of the generalized difference matrix, we define the sequence space b;’s (@) by
b,*(G) = (b;'S)G (2.1)

Also, by constructing a matrix 7™ = (¢, ) so that

Snklk

0= e )+ ()] o osksn
0 , k>n

forall n, k € N, we redefine the sequence space b,*(G) by aid of the T™S = (t,’) matrix as follows:

by (6) = (1) s (2.2)

So, for given x = (x;) € w, the T™*-transform of x is defined by

K
1 k o
Vi = (T™x), = mz (l) sE=r b (ux; + vx;_q) (2.3)
i=0
or
1 k
— 7,5 — k k k—i—-1,.i,.
ye = (T x)k—(S+r)k20[us(i)+vr(i+1)]s rx; (2.4)
1=
forall k € N.
Theorem 2.1

The sequence space b,”(G) is a BK-space with its norm defined by

1

® 2

||x||b{,'5(G) = ||TT'Sx||p = (ZKTT’SX)HP)
k=0

where 1 < p < .

Proof. It is known that [, is a BK-space according to its p-norm and (2.2) holds. Also, the matrix T =

(t;,ﬁ) is a triangle. By combining these results and Theorem 4.3.12 of Wilansky [2], we deduce that the
sequence space bg'S(G) is a BK-space, where 1 < p < oo. This completes the proof.
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Theorem 2.2

The sequence space b[,’s(G) is linearly isomorphic to the sequence space [,,, where 1 < p < oo,

Proof. Let L be a transformation such that L: bg'S(G) — Ly, L(x) = T"*x. Then, we should show that L
is a linear bijection. The linearity of L and x = 6 whenever Tx = 6 are clear. So, L is injective.

Now, let us define a sequence x = (x;) such that

w1y zo

]:

o

forall k € N, where y = (y,) € [, and 1 < p < co. Then, we have
k [k
uxy + vx_q =z Z ( —s) I (r+s)rt|y
j=0 [i=j
k-1[k-1
l . .
() (- o+ syrly,
j=0|i=j
k
=S (9 =i+ 5y
= j —s r+s)r- y]
j=0
and so
||x||b;'5(c) = |[T™5x|l,

(Sorwo.r)
n=0

0o n k
) 2 ﬁ;(’i) Sn_krk;@ =)k (r + 5)ir*y;
(ilynlp)p

n=0

p\p

(s + r)” Z (71:) s™Fr (U + va-q)

S

p

= llyll, < oo

Therefore, L is norm preserving and x = (x,,) € b;'S(G) forally = (yx) € L,, namely L is surjective. As
a consequence, L is a linear bijection as desired. This completes the proof.
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Theorem 2.3
The sequence space b[,’S(G) is not a Hilbert space in circumstances p # 2, where 1 < p < co.

Proof. Let us take p = 2. One can say from the Theorem 2.1 that the sequence space b, (G) is a BK-
space with its norm defined by

1

© 2

Il = T, = (ZI(T“x)kP)
k=0

which is also generated by an inner product such that
1
”x”b;S(@ =(T"°x, T x)z.

So, b,”*(G) is a Hilbert space.

On the other hand, assuming that p € [1,0)\{2}, we define two sequences y = (y,) and z = (z;) as

follows:
k » i1 .
yk=%§:(_g)k l(_;>l 1 S+lr(r+5)

and
k —i -1 .
N

l

forall k € N. Then we get
2
1y + 2l3rs gy + 1y = 2llfrsigy = 8 # 20 = 2[5y ) + llzlrsey |

Therefore, the norm of the sequence space bg's (@) does not satisfy the parallelogram equality, namely the
norm can not be generated by an inner product. As a consequence, the sequence space bg's((;) is not a
Hilbert space in circumstances p # 2, where 1 < p < oo. This completes the proof.

Theorem 2.4
The inclusion 1,(G) < b,”(G) strictly holds, where 1 < p < oo.

Proof. We give the proof of theorem for 1 < p < 0. In case of p = 1, the proof can be given by using a
similar way.

For a given arbitrary sequence x = (x;) € [,,(G), from the definition of the sequence space ,(G), we
have

Zluxk + vxp_1|P < o0
K

where 1 < p < 0. Also, by considering the Holder’s inequality, we write
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D

k
50 = e ()54 sy + v30)

Jj=0

k 1 1 p

1 p o \a k P

<—|S+T|k> Z <(])|S|k—]|’r|]> ((]_)lslk—]l‘r'l]) |u.X'j+vx]'_1

j=0

K p-1 K .
i p
J=0 j=0

: k
:Z<j> s+r| | | [uxj + v 1|

J=0

where 1 < p < co. Then we obtain

k .
S < ()l b+ oo

k j=0

Sy + ol Y, ()= B

= ux; + vx;_ . -

L -1 \J/Is+7rl s
j k=)

) Z|uxj + vxj_1|p
J

where 1 < p < oo. If we connect this result and comparison test, we bring to a conclusion that T™*x € L,
, namely x = (x) € b, (G). This gives us that [,(G) c b, (G).

_1\k
Let us define a sequence z = (z;) such that z;, = (ui

v) +1
] forall k € N and u # v. Then,

N

one can see that Gz = ((—1)") €l, and Tz = ((;—:) ) € l,, namely z = (z,) € [,(G) and z =
(zx) € by*(G). This shows us that the inclusion 1,,(G) < b, (G) is strict. This completes the proof.
Theorem 2.5

The inclusion b, (G) < by (G) strictly holds in case of 1 < p < q < 0.

Proof. It is known that the inclusion 1, c [, holds in case of 1 < p < g < . Let us take an arbitrary
sequence x = (xx) € b,”(G). Then, we have T™*x € L,. By combining these two facts, we write T"*x €
lg, namely x = (x;) € by (G). This shows us that the inclusion b,*(G) < bg*(G) holds.

Let us consider the sequence d = (d,,) defined by
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k

ko L )
6= 2 ()3 oo

j=0

forall k € N. Then, itis clear that T"d = (%) € 1;\lp, namely d = (dy) € by (G)\b,”*(G) in case
(k+1)P

of 1 < p < g < 0. Therefore the inclusion b, (G) < bg*(G) strictly holds. This completes the proof.
Theorem 2.6
The sequence spaces b, (G) and I, (G) overlap but do not include each other, where p € [1, ).

Proof. Let us define three sequences x = (x;), y = (yx) and z = (z;) such that

5= = O o= - (0 w0 =12 - ()]

> 1. Then Gx = ((—=1D¥) € Iy, T™x =

forall k eN,whereu—v#0,u+v+0, vr —us #0, |§

S+r
namely x € l(G)Nb,*(G), y € L (G)\by*(G) and z € b,”(G)\l,(G). As a consequence of these the
spaces b, (G) and 1., (G) overlap but do not include each other, where p € [1, ). This completes the
proof.

Hle— ly, T™y=e¢l, Gz= Skl d TSz =(1,0,0 l
(—) €Ely, Gy=ec€ly,, y=eél, Gz= (—;) €l, an z=(1,0,0,..) €l,,

3. The Schauder Basis And a—, B—, ¥ —Duals Of The Space b,* ()
In this section, we determine the Schauder basis and a-, 8-, y-duals of the sequence space b, (G).

A sequence y = () is called a Schauder basis of a normed space (X, || . ||x), if for each x = (x;) € X,
there exists a unique sequence A = (A;) of scalars such that

m
lim ||x — szyk - 0.
m-—co

k=0 X

Then the expansion of x = (x;) with respect to y = (y,) is written by

X = Z MYk
k=0

We know from [16] of Jarrah and Malkowsky that X, has a Schauder basis if and only if X has a Schauder
basis whenever 4 = (ay) is atriangle. Also, the sequence (e®)) is a Schauder basis for I, and the matrix
T™S = (¢;7) is a triangle, where e is a sequence with 1 in the k-th place and zeros elsewhere.

By combining these results, we can give next corollary.
Corollary 3.1

Let u®(r,s) = {uflk) (, s)} | be a sequence defined by

ne
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n

u(r,s) = %z (Ilc) (_ Z)n_i (=) +s)r™ , nxk

i=k

0 , 0<n<k

for all fixed k € N. Then, the Schauder basis of the sequence space b;'S(G) is the sequence
{n®(r, S)}kEN and every x = (x;) € by *(G) can be uniquely written on the form

X = z ot (r, s)

k

where g, = (T"™x), forall k € N.
By connecting the results of Theorem 2.1 and Corollary 3.1, one more result can be given.
Corollary 3.2
The sequence space b;,”(G) is separable.
A set defined by
MX,Y)={y=(y) ew: xy = (x,y;) €Y forall x = (x;) € X}

is called the multiplier space of the sequence spaces X and Y. Then, the a-, - and y-duals of the sequence
space X are defined by means of the multiplier space, [;, cs and bs such that

X*=M(X,1l), X8 =M(X,cs) and XY = M(X, bs)
respectively.
Now, we continue with quoting lemmas from Stieglitz and Tietz [17].
Lemma 3.3 (see [17])
Let A = (a,x) be an infinite matrix. Then, the following statements hold.

i-) A = (a,) € (I1:1,) ifand only if

sup ) |ap| < oo (3.1)
keN &

ii-) A = (ay) € (l;: 1) ifand only if

sup |ap| < o (3.2)
n,keN

iii-) A = (ayy) € (l3:¢) if and only if (3.2) holds and

rlll_rgo any = ai forall kK €N (3.3)
Lemma 3.4 (see [17])
Let A = (a,x) be an infinite matrix. Then, the following statements hold.
i-) A = (an) € (I,:1y) ifand only if

q
2,

sup < o0 (3.4)
nexK

KeF

k

ii-) A = (ank) € (I,:le,) if and only if
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sup ) |any|? < oo (3.5)

eN
e

iii-) A = (an) € (I,:c) ifand only if (3.3) and (3.5) hold

where %+$ =1,1 < p < oo and F is the collection of all finite subset of N.

Theorem 3.5
Let &°(G) and &;°(G) be two sets defined by

%Z Z (;{) (— g)n_i (=) *(r + s)rta,

q
<o

9(6) = {a = (@) Ew: sup

keF T 1™ nex i=x
and
rs 1w i NG . »
7°(G) = {a = (@) €w: sup sz () (- a) (=)~ (r + )kr~la,| < oo}.
n 1=

Then {b]*(6)}* = £5°(G) and {b5*(6)}" = &°(G) , where 1 < p < .

Proof. Consider the sequence x = (x,,), which is defined by

=Y DO eoreron
k=0 Li=k

for all n € N. Then, for given a = (a,,) € w, we write

n n . n
1 ; L . )
it = ) [;Z (W (-3 oo+ an] Yo=Y Ay, = (075,

for all n € N. By taking into account the equality above, we observe that ax = (a,x,) € l; whenever
x = (x) € by°(G) or x = (x) € b,”(G) if and only if D™y € [; whenever y = (y,) €1, or y =
(yx) € L, respectively where 1 < p < co. So, we obtain that a = (a,) € {b;*(G)}* or a = (a,) €

Yk (3.6)

{b;'S(G)}a ifand only if D™ € (I;:14) or D™ € (1,: 1, ), respectively, where 1 < p < oo. By connecting
these results, Lemma 3.3(i) and Lemma 3.4(i), we deduce that

%Z (D (- Z)n_i (=) + ) ay

i=k

a = (a,) € {b;”(G)}* < sup
keN

<

n
and
q
<

%Z Z (;{) (— g)n_i (=) (r + s)krta,

nekK i=k

a=(a,) € {bg’s(G)}a = i}égzk:

where 1 < p < 0. These yield us that {b]”*(¢)}* = &,°(G) and {b;’S(G)}a =&°(G) ,where 1 < p <
oo, This completes the proof.

Theorem 3.6
Consider the sets &3°(G), £,° (G) and &;”°(G) defined by
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j=ki=

o .
§°(G) = {a =(ag) Ew: %Z Z (;{) (— g)] ()% (r + s)kr~ta; existsforallk € N}
X

n J .
1 i A . .
r,s _ _ . - _ _\i—k ko.—1i .
2 (G)=qa=(a) Ew: ks';lepNu. ' (k)( u) (=) (r+s)rta;| <o
j=k i=k
and
n n J L. q
1 ] 1AMl . .
F@={a=@ew:supy =3 > () (-) D+ g] <o
neN = (Vi = u

where 1 < q < oo.

Then the following statements hold:

() {617 (6} = &7 (NG (G,

(N {b°(6)} = E°(G)NEL(G), where 1 < p < oo,
(1 {1 (@Y = &7 (G,

(1V) {b;'S(G)}y = £2°(G), where 1 < p < oo,

Proof. Since the proofs of the parts (1), (1) and (IV) may be obtained by using a same way, we prove
the theorem for only the part (1). Let a = (a,) € w be arbitrarily given. Consider the sequence x = (x,,)
defined by the relation (3.6). Then, we write

Zn: DX = Zn: lizk:zk: C) (- g)k_i (=) + )7 y; | ax
S ST O cororsrral

= V" y)n

for all n € N, where the matrix V™5 = (v, ) is defined by

s _
v

n
nk — -

Jj .
V(=2 ()@ +s)ria , 0<k<n
2.()(2) j

ki=k

1
u

J

0 , k>n

forall n, k € N. So, ax = (a,x,) € cs whenever x = (x;) € b;”*(G) if and only if V"Sy € ¢ whenever
y = (y) € L. Thisyields us that a = (a,) € {b]”°(G)}¥ if and only if V"5 € (I;: ¢). By connecting this
result and Lemma 3.3 (iii), we obtain that a = (a,,) € {b]"*(G)}? if and only if
1 n J i
i A i~k k.—i
sup |— —— —s r+s)r7ta]| <o
sup 1) =k<")( ) )T+

j=ki
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and
o .
1 1—1 )
EZ z (=s) 7k (r + )kt a; existsforallk € N

j=k i=k
This result shows us that {b]”*(G)}# = £3°(G)NE&,°(G). This completes the proof.
4. Some Matrix Classes
In this section, we charecterize some matrix classes related to the sequence space b{,’s (G),where1 <p <

0o,

For simplicity in notation, we prefer to use following equality throughout the section 4.

h”G ZZ (=) (r + Hkrtay,;

j=k i=

foralln, k € N.

Theorem 4.1

Given an infinite matrix A = (a,;), the following statements hold.

(i) A = (an) € (b1°(G):1y,) if and only if

sup |h”G| < (4.1)
kneN
(i) A = (am) € (by*(6): 1) if and only if
hrsG 4.2
e #2)
{@ni}ken € £7°(G) (4.3)

where 1 < p < oo,

Proof. Let p € (1, ). We take any x = (x) € b;'s(G) by assuming that the conditions (4.2) and (4.3)

hold. Then, it is obtained that {a,; }xen € {b;'s (G)}ﬁ. This result implies the existence of the A transform
of x. From the relation (3.6), we have

k—i

Zk: (,l) (_ 5) (=) (r+s)r 7ty | an
B i i %Z]: (;c) (‘Z)H (=)7K + $)r™ [ ansyi (4.4)

By taking limit (4.4) side by side as m — oo, we obtain that

Z AnpXy = Z h¢ye (n€N) (4.5)

Then, we derive by taking [.,-norm (4.5) side by side and by applying Ho6lder’s inequality that
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Z hTS Gyk
neN

lAx|le; = sup
k

i 7
< sup <Z|h”6 ) <Z|yk|l’> <
neN "

As a result of this, we obtain that Ax € I, namely 4 = (any) € (by°(6): Lo ).

Conversly, assume that A = (@) € (by°(G): ). This gives us to {ani}ken € {b{,'S(G)}B foralln e

N. Then, the necessity of (4.3) is immediate and {h”G eney EXists. On account of {atken €

{b{,’s(G)} , we can see that the condition (4.5) holds and the sequences a,, = (a,i)rey define the
continuous linear functionals f,, on by, (G) by

fa(x) = Z Ank Xk

k

for all n € N. Also, we know from the Theorem 2.2 that the sequence spaces b;'S(G) and [,, are norm
isomorphic. By connecting this result and the condition (4.5), we obtain that

ol = |2,

which yields that the functionals f,, are pointwise bounded. Moreover, we derive from the Banach-
Steinhaus theorem that the functionals f,, are uniformly bounded, namely there exists a constant M > 0

such that
(zwsc ) = lfull < M

for all n € N, which shows us that the condition (4.2) holds. The part (i) can be proved by using a similar
method. This completes the proof.

Now, we quote a lemma from Stieglitz and Tietz [17], which is needed in the next proof.

Lemma 4.2 (see [17])

Let A = (an) be an infinite matrix. Then, A = (@) € (I3:1,) if and only if

sup ) [api|P < oo
keEN -

where 1 < p < co.
Theorem 4.3

Let an infinite matrix A = (a,) be given. Then, 4 = (an) € (b1*°(G) : 1,) if and only if
supZ|hr5G (4.6)

where 1 < p < 0.
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Proof. Let a sequence x = (x;) € b;”*(G) be given. Assume that the condition (4.6) holds. Then, it is
clear that y = (yx) € I3 and {an}ren € {b7°(G)}F for all n € N, namely A-transform of x exists. As a

result of this, the series ), h:l',i'Gyk are absolutely convergent for all n € N and y = (y;) € [;. By
applying the Minkowsky inequality to (4.5), we can write

(ZKAxW)5 <> il (Zlh,?i'a ”)5
n k

n

which yields that Ax € L,,, namely A = (an) € (b1 (6):1,).

Conversly, we suppose that A = (a,;) € (b;*(6):1,), where 1 < p < oo, namely Ax € L, for all x =
(x) € b]°(G). SO, {ani}ken € {b]°(G)}¥ for all n € N, which shows us that the relation (4.5) holds.

7,5,G

These results give us that H™5¢ = (k) € (I;:1,). By combining last result and Lemma 4.2, we obtain
that the condition (4.6) holds. This completes the proof.

5. CONCLUSION

The domain of Binomial matrix B = (b:l,f) in the sequence space [, has been introduced by Bisgin in
[15]. Also, the domain of generalized difference(double band) matrix G = (gy,) in Some sequence spaces
was used and studied by many authors. Since T™S = (¢, ) is composition of B™ = (b)) and G =
(gni), and T™S = (¢,77) is stronger than G = (gy), our results are more general.
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