

Onmandiy ot Sciance Journal
CS7
e-ISSN: 2587-246X
ISSN: 2587-2680
Cumhuriyet Sci. J., Vol.38-4, Supplement (2017) 11-25

A Note on the Sequence Space $\boldsymbol{b}_{p}^{r, s}(\boldsymbol{G})$

Mustafa Cemil BişGi̇N

Recep Tayyip Erdoğan University, Faculty Of Arts And Sciences, Department Of Mathematics, Zihni Derin Campus, 53100 Rize / TURKEY

Received: 08.06.2017; Accepted: 13.10.2017
http://dx.doi.org/10.17776/csj. 363211

Abstract

In this study, we define the sequence space $\boldsymbol{b}_{\boldsymbol{p}}^{\boldsymbol{r}, \boldsymbol{s}}(\boldsymbol{G})$ derived by the composition of the Binomial matrix and generalized difference(double band) matrix and show that the space $\boldsymbol{b}_{\boldsymbol{p}}^{r, \boldsymbol{s}}(\boldsymbol{G})$ is linearly isomorphic to the space $\boldsymbol{l}_{\boldsymbol{p}}$, where $\mathbf{1} \leq \boldsymbol{p}<\infty$. Furthermore, we mention some inclusion relations and give Schauder basis of the space $\boldsymbol{b}_{\boldsymbol{p}}^{\boldsymbol{r}, \boldsymbol{s}}(\boldsymbol{G})$. Moreover, we determine $\boldsymbol{\alpha}$-, $\boldsymbol{\beta}$ - and $\boldsymbol{\gamma}$-duals of the space $\boldsymbol{b}_{\boldsymbol{p}}^{\boldsymbol{r}, \boldsymbol{s}}(\boldsymbol{G})$. Lastly, we characterize some matrix classes related to the space $\boldsymbol{b}_{\boldsymbol{p}}^{r, \boldsymbol{s}}(\boldsymbol{G})$.

MSC: 40C05;40H05;46B45
Keywords: Matrix Transformation, Matrix Domain, Schauder Basis, $\boldsymbol{\alpha}$-, $\boldsymbol{\beta}$ - and $\boldsymbol{\gamma}$-Duals

$b_{p}^{r, s}(G)$ Dizi Uzayı Üzerine Bir Not

Özet: Bu çalışmada, Binom ve genelleştirilmiş fark(ikili band) matrislerinin kompozisyonu ile türetilen $b_{p}^{r, s}(G)$ dizi uzayı tanımlandı ve $b_{p}^{r, s}(G)$ uzayının $1 \leq p<\infty$ durumlarında l_{p} uzayına lineer olarak izomorfik olduğu gösterildi. Ayrıca, bazı kapsama bağıntılarından bahsedildi ve $b_{p}^{r, s}(G)$ uzayının Schauder bazı verildi. Bundan başka, $b_{p}^{r, s}(G)$ uzayının α-, β - ve γ-dualleri belirlendi. Son olarak, $b_{p}^{r, s}(G)$ uzayı ile ilgili bazı matris sınıfları karakterize edildi.

MKS: 40C05;40H05;46B45
Anahtar Kelimeler: Matris Dönüşümü, Etki Alanı, Schauder Bazı, α-, β - ve γ-Dualleri

1. INTRODUCTION

A sequence space is a vector subspace of w which becomes a vector space under pointwise addition and scalar multiplication, where w is a set of all real(or complex) valued sequences. The symbols l_{∞}, c, c_{0} and l_{p} represent the classical sequence spaces of all bounded, convergent, null and absolutely p-summable sequences, respectively, where $1 \leq p<\infty$.

A Banach sequence space is called a $B K$-space provided each of the maps $p_{n}: X \rightarrow \mathbb{C}$ defined by $p_{n}(x)=x_{n}$ is continuous for all $n \in \mathbb{N}[1]$. By
considering this notion, one can say that l_{∞}, c and c_{0} are $B K$-spaces with their usual sup-norm defined by $\|x\|_{\infty}=\sup _{k \in \mathbb{N}}\left|x_{k}\right|$ and l_{p} is a $B K$-space with its p-norm defined by

$$
\|x\|_{p}=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

where $1 \leq p<\infty$. For simplicity, the summation without limits runs from 0 to ∞ in the rest of the paper.

[^0]Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex entries, X and Y be two sequence spaces and $x=$ $\left(x_{k}\right) \in w$. Then, the A-transform of x is defined by

$$
(A x)_{n}=\sum_{k} a_{n k} x_{k}
$$

and is assumed to be convergent for all $n \in \mathbb{N}$, the class of all infinite matrices from X into Y is defined by

$$
(X: Y)=\left\{A=\left(a_{n k}\right): A x \in Y \text { for all } x \in X\right\}
$$

and the matrix domain of $A=\left(a_{n k}\right)$ in X is defined by

$$
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\}
$$

which is also a sequence space[2].
We write $b s$ and $c s$ for the sets of all bounded and convergent series, which are defined by means of the matrix domain of the summation matrix $S=$ $\left(s_{n k}\right)$ such that $b s=\left(l_{\infty}\right)_{S}$ and $c s=c_{S}$, respectively, where $S=\left(s_{n k}\right)$ is defined by

$$
s_{n k}=\left\{\begin{array}{lc}
1, & 0 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$.
An infinite matrix $A=\left(a_{n k}\right)$ is called a triangle provided the entries $a_{n k}=0$ for $k>n$ and $a_{n n} \neq$ 0 for all $n, k \in \mathbb{N}$. A triangle matrix has an inverse
which is unique and a triangle. Unless stated otherwise, any term with negative subscript is assumed to be zero.

The method constructing a new sequence space by means of the matrix domain of an infinite matrix has recently been used by many authors: $\left(l_{p}\right)_{N_{q}}$ and $c_{N_{q}}$ in [3], X_{p} and X_{∞} in
[4], $l_{\infty}(\Delta), c_{0}(\Delta)$ and $c(\Delta)$ in [5], $l_{\infty}\left(\Delta^{2}\right), c_{0}\left(\Delta^{2}\right)$ and $c\left(\Delta^{2}\right)$ in [6], e_{0}^{r} and e_{c}^{r} in [7], e_{p}^{r} and e_{∞}^{r} in [8] and [9], $e_{0}^{r}(\Delta), e_{c}^{r}(\Delta)$ and $e_{\infty}^{r}(\Delta)$ in [10], $e_{0}^{r}\left(\Delta^{m}\right)$, $e_{c}^{r}\left(\Delta^{m}\right)$ and $e_{\infty}^{r}\left(\Delta^{m}\right)$ in [11], $e_{0}^{r}\left(B^{(m)}\right), e_{c}^{r}\left(B^{(m)}\right)$ and $e_{\infty}^{r}\left(B^{(m)}\right)$ in [12], $\hat{l}_{\infty}, \hat{c}, \hat{c}_{0}$ and \hat{l}_{p} in [13].

2. THE SEQUENCE SPACE $\boldsymbol{b}_{p}^{r, s}(\boldsymbol{G})$

In this chapter, we speak of the previous studies of Binomial matrix and Euler matrix, and define the sequence space $b_{p}^{r, s}(G)$. Moreover, we prove that the sequence space $b_{p}^{r, s}(G)$ is linearly isomorphic to the sequence space l_{p} and is not a Hilbert space except the case $p=2$, where $1 \leq p<\infty$. Furthermore, we mention some inclusion relations.

The usage of matrix domain of the Euler matrix was first motivated by Altay, Başar and Mursaleen in [7], [8] and [9]. They constructed the Euler sequence spaces $e_{0}^{r}, e_{c}^{r}, e_{\infty}^{r}$ and e_{p}^{r} as follows:

$$
\begin{aligned}
& e_{0}^{r}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k}=0\right\}, \\
& e_{c}^{r}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k} \text { exists }\right\}, \\
& e_{\infty}^{r}=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k}\right|<\infty\right\}
\end{aligned}
$$

and

$$
e_{p}^{r}=\left\{x=\left(x_{k}\right) \in w: \sum_{n}\left|\sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k} x_{k}\right|^{p}<\infty\right\}
$$

where $1 \leq p<\infty, 0<r<1$ and the Euler matrix of order r is defined by

$$
e_{n k}^{r}=\left\{\begin{array}{cc}
\binom{n}{k}(1-r)^{n-k} r^{k} & , \quad 0 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$.
Thereafter, Altay and Polat improved Altay, Başar and Mursaleen's work by defining the sequence spaces $e_{0}^{r}(\Delta), e_{c}^{r}(\Delta)$ and $e_{\infty}^{r}(\Delta)$ in [10] as follows:

$$
\begin{gathered}
e_{0}^{r}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k}\left(x_{k}-x_{k-1}\right)=0\right\}, \\
e_{c}^{r}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k}\left(x_{k}-x_{k-1}\right) \text { exists }\right\}
\end{gathered}
$$

and

$$
e_{\infty}^{r}(\Delta)=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\binom{n}{k}(1-r)^{n-k} r^{k}\left(x_{k}-x_{k-1}\right)\right|<\infty\right\}
$$

Quite recently, Bişgin has generalized Altay, Başar and Mursaleen's works by defining the Binomial sequence spaces $b_{0}^{r, s}, b_{c}^{r, s}, b_{\infty}^{r, s}$ and $b_{p}^{r, s}$ in [14] and [15] as follows:

$$
\begin{aligned}
& b_{0}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}=0\right\}, \\
& b_{c}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k} \text { exists }\right\}, \\
& b_{\infty}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \sup _{n \in \mathbb{N}}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|<\infty\right\}
\end{aligned}
$$

and

$$
b_{p}^{r, s}=\left\{x=\left(x_{k}\right) \in w: \sum_{n}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} x_{k}\right|^{p}<\infty\right\}
$$

where $1 \leq p<\infty$ and the Binomial matrix $B^{r, s}=\left(b_{n k}^{r, s}\right)$ is defined by

$$
b_{n k}^{r, s}=\left\{\begin{array}{cc}
\frac{1}{(s+r)^{n}}\binom{n}{k} s^{n-k} r^{k} & , \quad 0 \leq k \leq n \\
0 & , \quad k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}, r, s \in \mathbb{R}$ and $s . r>0$. Here, if we take $r+s=1$, we obtain the Euler matrix of order r.
By considering the Binomial matrix and generalized difference matrix $G=\left(g_{n k}\right)$, we define the sequence space $b_{p}^{r, s}(G)$ by

$$
b_{p}^{r, s}(G)=\left\{x=\left(x_{k}\right) \in w: \sum_{n}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right)\right|^{p}<\infty\right\}
$$

where $1 \leq p<\infty$ and generalized difference matrix $G=\left(g_{n k}\right)$ is defined by

$$
g_{n k}=\left\{\begin{array}{lc}
u, & k=n \\
v, & k=n-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$ and $u, v \in \mathbb{R} \backslash\{0\}$. Here, we would like to touch on a point, if we take $u=1$ and $v=-1$, we obtain the difference matrix Δ. So, generalized difference matrix generalizes the difference matrix [13].

If we use the domain of the generalized difference matrix, we define the sequence space $b_{p}^{r, s}(G)$ by

$$
\begin{equation*}
b_{p}^{r, s}(G)=\left(b_{p}^{r, s}\right)_{G} \tag{2.1}
\end{equation*}
$$

Also, by constructing a matrix $T^{r, s}=\left(t_{n k}^{r, s}\right)$ so that

$$
t_{n k}^{r, s}=\left\{\begin{array}{cc}
\frac{s^{n-k-1} r^{k}}{(s+r)^{n}}\left[u s\binom{n}{k}+v r\binom{n}{k+1}\right], & 0 \leq k \leq n \\
0 & , \\
k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$, we redefine the sequence space $b_{p}^{r, s}(G)$ by aid of the $T^{r, s}=\left(t_{n k}^{r, s}\right)$ matrix as follows:

$$
\begin{equation*}
b_{p}^{r, s}(G)=\left(l_{p}\right)_{T^{r, s}} \tag{2.2}
\end{equation*}
$$

So, for given $x=\left(x_{k}\right) \in w$, the $T^{r, s}$-transform of x is defined by

$$
\begin{equation*}
y_{k}=\left(T^{r, s} x\right)_{k}=\frac{1}{(s+r)^{k}} \sum_{i=0}^{k}\binom{k}{i} s^{k-i} r^{i}\left(u x_{i}+v x_{i-1}\right) \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{k}=\left(T^{r, s} x\right)_{k}=\frac{1}{(s+r)^{k}} \sum_{i=0}^{k}\left[u s\binom{k}{i}+\operatorname{vr}\binom{k}{i+1}\right] s^{k-i-1} r^{i} x_{i} \tag{2.4}
\end{equation*}
$$

for all $k \in \mathbb{N}$.
Theorem 2.1
The sequence space $b_{p}^{r, s}(G)$ is a $B K$-space with its norm defined by

$$
\|x\|_{b_{p}^{r, s}(G)}=\left\|T^{r, s} x\right\|_{p}=\left(\sum_{k=0}^{\infty}\left|\left(T^{r, s} x\right)_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

where $1 \leq p<\infty$.
Proof. It is known that l_{p} is a $B K$-space according to its p-norm and (2.2) holds. Also, the matrix $T^{r, s}=$ $\left(t_{n k}^{r, s}\right)$ is a triangle. By combining these results and Theorem 4.3.12 of Wilansky [2], we deduce that the sequence space $b_{p}^{r, s}(G)$ is a $B K$-space, where $1 \leq p<\infty$. This completes the proof.

Theorem 2.2

The sequence space $b_{p}^{r, s}(G)$ is linearly isomorphic to the sequence space l_{p}, where $1 \leq p<\infty$.
Proof. Let L be a transformation such that $L: b_{p}^{r, s}(G) \longrightarrow l_{p}, L(x)=T^{r, s} x$. Then, we should show that L is a linear bijection. The linearity of L and $x=\theta$ whenever $T x=\theta$ are clear. So, L is injective.

Now, let us define a sequence $x=\left(x_{k}\right)$ such that

$$
x_{k}=\frac{1}{u} \sum_{j=0}^{k}\left[\sum_{i=j}^{k}\binom{i}{j}\left(-\frac{v}{u}\right)^{k-i}(-s)^{i-j}(r+s)^{j} r^{-i}\right] y_{j}
$$

for all $k \in \mathbb{N}$, where $y=\left(y_{k}\right) \in l_{p}$ and $1 \leq p<\infty$. Then, we have

$$
\begin{aligned}
u x_{k}+v x_{k-1}= & \sum_{j=0}^{k}\left[\sum_{i=j}^{k}\binom{i}{j}\left(-\frac{v}{u}\right)^{k-i}(-s)^{i-j}(r+s)^{j} r^{-i}\right] y_{j} \\
& -\sum_{j=0}^{k-1}\left[\sum_{i=j}^{k-1}\binom{i}{j}\left(-\frac{v}{u}\right)^{k-i}(-s)^{i-j}(r+s)^{j} r^{-i}\right] y_{j} \\
= & \sum_{j=0}^{k}\binom{k}{j}(-s)^{k-j}(r+s)^{j} r^{-k} y_{j}
\end{aligned}
$$

and so

$$
\begin{aligned}
\|x\|_{b_{p}^{r, s}(G)} & =\left\|T^{r, s} x\right\|_{p} \\
& =\left(\sum_{n=0}^{\infty}\left|\left(T^{r, s} x\right)_{n}\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{n=0}^{\infty}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k}\left(u x_{k}+v x_{k-1}\right)\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{n=0}^{\infty}\left|\frac{1}{(s+r)^{n}} \sum_{k=0}^{n}\binom{n}{k} s^{n-k} r^{k} \sum_{j=0}^{k}\binom{k}{j}(-s)^{k-j}(r+s)^{j} r^{-k} y_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{n=0}^{\infty}\left|y_{n}\right|^{p}\right)^{\frac{1}{p}} \\
& =\|y\|_{p}<\infty .
\end{aligned}
$$

Therefore, L is norm preserving and $x=\left(x_{n}\right) \in b_{p}^{r, s}(G)$ for all $y=\left(y_{k}\right) \in l_{p}$, namely L is surjective. As a consequence, L is a linear bijection as desired. This completes the proof.

Theorem 2.3

The sequence space $b_{p}^{r, s}(G)$ is not a Hilbert space in circumstances $p \neq 2$, where $1 \leq p<\infty$.
Proof. Let us take $p=2$. One can say from the Theorem 2.1 that the sequence space $b_{2}^{r, s}(G)$ is a $B K-$ space with its norm defined by

$$
\|x\|_{b_{2}^{r, s}(G)}=\left\|T^{r, s} x\right\|_{2}=\left(\sum_{k=0}^{\infty}\left|\left(T^{r, s} x\right)_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

which is also generated by an inner product such that

$$
\|x\|_{b_{2}^{r, s}(G)}=\left\langle T^{r, s} x, T^{r, s} x\right\rangle^{\frac{1}{2}}
$$

So, $b_{2}^{r, s}(G)$ is a Hilbert space.
On the other hand, assuming that $p \in[1, \infty) \backslash\{2\}$, we define two sequences $y=\left(y_{k}\right)$ and $z=\left(z_{k}\right)$ as follows:

$$
y_{k}=\frac{1}{u} \sum_{i=0}^{k}\left(-\frac{v}{u}\right)^{k-i}\left(-\frac{s}{r}\right)^{i-1} \frac{-s+i(r+s)}{r}
$$

and

$$
z_{k}=\frac{1}{u} \sum_{i=0}^{k}\left(-\frac{v}{u}\right)^{k-i}\left(-\frac{s}{r}\right)^{i-1} \frac{-s-i(r+s)}{r}
$$

for all $k \in \mathbb{N}$. Then we get

$$
\|y+z\|_{b_{p}^{r, s}(G)}^{2}+\|y-z\|_{b_{p}^{r, s}(G)}^{2}=8 \neq 2^{\frac{2}{p}+2}=2\left[\|y\|_{b_{p}^{r, s}(G)}^{2}+\|z\|_{b_{p}^{r, s}(G)}^{2}\right]
$$

Therefore, the norm of the sequence space $b_{p}^{r, s}(G)$ does not satisfy the parallelogram equality, namely the norm can not be generated by an inner product. As a consequence, the sequence space $b_{p}^{r, s}(G)$ is not a Hilbert space in circumstances $p \neq 2$, where $1 \leq p<\infty$. This completes the proof.

Theorem 2.4

The inclusion $l_{p}(G) \subset b_{p}^{r, s}(G)$ strictly holds, where $1 \leq p<\infty$.
Proof. We give the proof of theorem for $1<p<\infty$. In case of $p=1$, the proof can be given by using a similar way.

For a given arbitrary sequence $x=\left(x_{k}\right) \in l_{p}(G)$, from the definition of the sequence space $l_{p}(G)$, we have

$$
\sum_{k}\left|u x_{k}+v x_{k-1}\right|^{p}<\infty
$$

where $1<p<\infty$. Also, by considering the Hölder's inequality, we write

$$
\begin{aligned}
\left|\left(T^{r, s} x\right)_{k}\right|^{p} & =\left|\frac{1}{(s+r)^{k}} \sum_{j=0}^{k}\binom{k}{j} s^{k-j} r^{j}\left(u x_{j}+v x_{j-1}\right)\right|^{p} \\
& \leq\left(\frac{1}{|s+r|^{k}}\right)^{p}\left[\sum_{j=0}^{k}\left[\left(\binom{k}{j}|s|^{k-j}|r|^{j}\right)^{\frac{1}{q}}\right]\left[\left(\binom{k}{j}|s|^{k-j}|r|^{j}\right)^{\frac{1}{p}}\left|u x_{j}+v x_{j-1}\right|\right]\right]^{p} \\
& \leq\left(\frac{1}{|s+r|^{k}}\right)^{p}\left[\left(\sum_{j=0}^{k}\binom{k}{j}|s|^{k-j}|r|^{j}\right)^{p-1} \times\left(\sum_{j=0}^{k}\binom{k}{j}|s|^{k-j}|r|^{j}\left|u x_{j}+v x_{j-1}\right|^{p}\right)\right] \\
& =\frac{1}{|s+r|^{k}} \sum_{j=0}^{k}\binom{k}{j}|s|^{k-j}|r|^{j}\left|u x_{j}+v x_{j-1}\right|^{p} \\
& =\sum_{j=0}^{k}\binom{k}{j}\left|\frac{s}{s+r}\right|^{k}\left|\frac{r}{S}\right|^{j}\left|u x_{j}+v x_{j-1}\right|^{p}
\end{aligned}
$$

where $1<p<\infty$. Then we obtain

$$
\begin{aligned}
\sum_{k}\left|\left(T^{r, s} x\right)_{k}\right|^{p} & \leq \sum_{k} \sum_{j=0}^{k}\binom{k}{j}\left|\frac{s}{s+r}\right|^{k}\left|\frac{r}{s}\right|^{j}\left|u x_{j}+v x_{j-1}\right|^{p} \\
& =\sum_{j}\left|u x_{j}+v x_{j-1}\right|^{p} \sum_{k=j}^{\infty}\binom{k}{j}\left|\frac{s}{s+r}\right|^{k}\left|\frac{r}{s}\right|^{j} \\
& =\left|\frac{s+r}{s}\right| \sum_{j}\left|u x_{j}+v x_{j-1}\right|^{p}
\end{aligned}
$$

where $1<p<\infty$. If we connect this result and comparison test, we bring to a conclusion that $T^{r, s} x \in l_{p}$, namely $x=\left(x_{k}\right) \in b_{p}^{r, s}(G)$. This gives us that $l_{p}(G) \subset b_{p}^{r, s}(G)$.
Let us define a sequence $z=\left(z_{k}\right)$ such that $z_{k}=\frac{(-1)^{k}}{u-v}\left[1-\left(\frac{v}{u}\right)^{k+1}\right]$ for all $k \in \mathbb{N}$ and $u \neq v$. Then, one can see that $G z=\left((-1)^{k}\right) \notin l_{p}$ and $T^{r, s} Z=\left(\left(\frac{s-r}{s+r}\right)^{k}\right) \in l_{p}$, namely $z=\left(z_{k}\right) \notin l_{p}(G)$ and $z=$ $\left(z_{k}\right) \in b_{p}^{r, s}(G)$. This shows us that the inclusion $l_{p}(G) \subset b_{p}^{r, s}(G)$ is strict. This completes the proof.

Theorem 2.5

The inclusion $b_{p}^{r, s}(G) \subset b_{q}^{r, s}(G)$ strictly holds in case of $1 \leq p<q<\infty$.
Proof. It is known that the inclusion $l_{p} \subset l_{q}$ holds in case of $1 \leq p<q<\infty$. Let us take an arbitrary sequence $x=\left(x_{k}\right) \in b_{p}^{r, s}(G)$. Then, we have $T^{r, s} x \in l_{p}$. By combining these two facts, we write $T^{r, s} x \in$ l_{q}, namely $x=\left(x_{k}\right) \in b_{q}^{r, s}(G)$. This shows us that the inclusion $b_{p}^{r, s}(G) \subset b_{q}^{r, s}(G)$ holds.

Let us consider the sequence $d=\left(d_{k}\right)$ defined by

$$
d_{k}=\frac{1}{u} \sum_{j=0}^{k}\left[\sum_{i=j}^{k}\binom{i}{j}\left(-\frac{v}{u}\right)^{k-i}(-s)^{i-j}(r+s)^{j} r^{-i}\right](j+1)^{-\frac{1}{p}}
$$

for all $k \in \mathbb{N}$. Then, it is clear that $T^{r, s} d=\left(\frac{1}{(k+1)^{\frac{1}{p}}}\right) \in l_{q} \backslash l_{p}$, namely $d=\left(d_{k}\right) \in b_{q}^{r, s}(G) \backslash b_{p}^{r, s}(G)$ in case of $1 \leq p<q<\infty$. Therefore the inclusion $b_{p}^{r, s}(G) \subset b_{q}^{r, S}(G)$ strictly holds. This completes the proof.

Theorem 2.6

The sequence spaces $b_{p}^{r, s}(G)$ and $l_{\infty}(G)$ overlap but do not include each other, where $p \in[1, \infty)$.
Proof. Let us define three sequences $x=\left(x_{k}\right), y=\left(y_{k}\right)$ and $z=\left(z_{k}\right)$ such that

$$
x_{k}=\frac{(-1)^{k}}{u-v}\left[1-\left(\frac{v}{u}\right)^{k+1}\right], y_{k}=\frac{1}{u+v}\left[1-\left(-\frac{v}{u}\right)^{k+1}\right] \text { and } z_{k}=\frac{r(-1)^{k}}{v r-u s}\left(\frac{v}{u}\right)^{k+1}\left[1-\left(\frac{u s}{v r}\right)^{k+1}\right]
$$

for all $k \in \mathbb{N}$, where $u-v \neq 0, u+v \neq 0, v r-u s \neq 0,\left|\frac{s}{r}\right|>1$. Then $G x=\left((-1)^{k}\right) \in l_{\infty}, T^{r, s} x=$ $\left(\left(\frac{s-r}{s+r}\right)^{k}\right) \in l_{p}, \quad G y=e \in l_{\infty}, \quad T^{r, s} y=e \notin l_{p}, \quad G z=\left(\left(-\frac{s}{r}\right)^{k}\right) \notin l_{\infty} \quad$ and $T^{r, s} z=(1,0,0, \ldots) \in l_{p}$, namely $x \in l_{\infty}(G) \cap b_{p}^{r, s}(G), y \in l_{\infty}(G) \backslash b_{p}^{r, s}(G)$ and $z \in b_{p}^{r, s}(G) \backslash l_{\infty}(G)$. As a consequence of these the spaces $b_{p}^{r, s}(G)$ and $l_{\infty}(G)$ overlap but do not include each other, where $p \in[1, \infty)$. This completes the proof.

3. The Schauder Basis And $\alpha-, \boldsymbol{\beta}-, \gamma$-Duals Of The Space $b_{p}^{r, s}(G)$

In this section, we determine the Schauder basis and $\alpha-, \beta-, \gamma$-duals of the sequence space $b_{p}^{r, s}(G)$.
A sequence $y=\left(y_{k}\right)$ is called a Schauder basis of a normed space $\left(X,\|\cdot\|_{X}\right)$, if for each $x=\left(x_{k}\right) \in X$, there exists a unique sequence $\lambda=\left(\lambda_{k}\right)$ of scalars such that

$$
\lim _{m \rightarrow \infty}\left\|x-\sum_{k=0}^{m} \lambda_{k} y_{k}\right\|_{X}=0
$$

Then the expansion of $x=\left(x_{k}\right)$ with respect to $y=\left(y_{k}\right)$ is written by

$$
x=\sum_{k=0}^{\infty} \lambda_{k} y_{k}
$$

We know from [16] of Jarrah and Malkowsky that X_{A} has a Schauder basis if and only if X has a Schauder basis whenever $A=\left(a_{n k}\right)$ is a triangle. Also, the sequence $\left(e^{(k)}\right)$ is a Schauder basis for l_{p} and the matrix $T^{r, s}=\left(t_{n k}^{r, s}\right)$ is a triangle, where $e^{(k)}$ is a sequence with 1 in the k-th place and zeros elsewhere.

By combining these results, we can give next corollary.

Corollary 3.1

Let $\mu^{(k)}(r, s)=\left\{\mu_{n}^{(k)}(r, s)\right\}_{n \in \mathbb{N}}$ be a sequence defined by

$$
\mu_{n}^{(k)}(r, s)=\left\{\begin{array}{cc}
\frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i}, & n \geq k \\
0, & 0 \leq n<k
\end{array}\right.
$$

for all fixed $k \in \mathbb{N}$. Then, the Schauder basis of the sequence space $b_{p}^{r, s}(G)$ is the sequence $\left\{\mu^{(k)}(r, s)\right\}_{k \in \mathbb{N}}$ and every $x=\left(x_{k}\right) \in b_{p}^{r, s}(G)$ can be uniquely written on the form

$$
x=\sum_{k} \sigma_{k} \mu^{(k)}(r, s)
$$

where $\sigma_{k}=\left(T^{r, s} x\right)_{k}$ for all $k \in \mathbb{N}$.
By connecting the results of Theorem 2.1 and Corollary 3.1, one more result can be given.

Corollary 3.2

The sequence space $b_{p}^{r, s}(G)$ is separable.
A set defined by

$$
M(X, Y)=\left\{y=\left(y_{k}\right) \in w: x y=\left(x_{k} y_{k}\right) \in Y \text { for all } x=\left(x_{k}\right) \in X\right\}
$$

is called the multiplier space of the sequence spaces X and Y. Then, the $\alpha-, \beta$ - and γ-duals of the sequence space X are defined by means of the multiplier space, $l_{1}, c s$ and $b s$ such that

$$
X^{\alpha}=M\left(X, l_{1}\right), X^{\beta}=M(X, c s) \text { and } X^{\gamma}=M(X, b s)
$$

respectively.
Now, we continue with quoting lemmas from Stieglitz and Tietz [17].
Lemma 3.3 (see [17])
Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then, the following statements hold.
i-) $A=\left(a_{n k}\right) \in\left(l_{1}: l_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \sum_{n}\left|a_{n k}\right|<\infty \tag{3.1}
\end{equation*}
$$

ii-) $A=\left(a_{n k}\right) \in\left(l_{1}: l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k \in \mathbb{N}}\left|a_{n k}\right|<\infty \tag{3.2}
\end{equation*}
$$

iii-) $A=\left(a_{n k}\right) \in\left(l_{1}: c\right)$ if and only if (3.2) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=a_{k} \text { for all } k \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

Lemma 3.4 (see [17])
Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then, the following statements hold.
i-) $A=\left(a_{n k}\right) \in\left(l_{p}: l_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in \mathcal{F}} \sum_{k}\left|\sum_{n \in K} a_{n k}\right|^{q}<\infty \tag{3.4}
\end{equation*}
$$

ii-) $A=\left(a_{n k}\right) \in\left(l_{p}: l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|^{q}<\infty \tag{3.5}
\end{equation*}
$$

iii-) $A=\left(a_{n k}\right) \in\left(l_{p}: c\right)$ if and only if (3.3) and (3.5) hold
where $\frac{1}{p}+\frac{1}{q}=1,1<p<\infty$ and \mathcal{F} is the collection of all finite subset of \mathbb{N}.

Theorem 3.5

Let $\xi_{1}^{r, s}(\mathrm{G})$ and $\xi_{2}^{r, s}(\mathrm{G})$ be two sets defined by

$$
\xi_{1}^{r, s}(\mathrm{G})=\left\{a=\left(a_{k}\right) \in w: \sup _{K \in \mathcal{F}} \sum_{k}\left|\frac{1}{u} \sum_{n \in K} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right|^{q}<\infty\right\}
$$

and

$$
\xi_{2}^{r, s}(\mathrm{G})=\left\{a=\left(a_{k}\right) \in w: \sup _{k \in \mathbb{N}} \sum_{n}\left|\frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right|<\infty\right\} .
$$

Then $\left\{b_{1}^{r, s}(G)\right\}^{\alpha}=\xi_{2}^{r, s}(\mathrm{G})$ and $\left\{b_{p}^{r, s}(G)\right\}^{\alpha}=\xi_{1}^{r, s}(\mathrm{G})$, where $1<p<\infty$.
Proof. Consider the sequence $x=\left(x_{n}\right)$, which is defined by

$$
\begin{equation*}
x_{n}=\frac{1}{u} \sum_{k=0}^{n}\left[\sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i}\right] y_{k} \tag{3.6}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Then, for given $a=\left(a_{n}\right) \in w$, we write

$$
a_{n} x_{n}=\sum_{k=0}^{n}\left[\frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right] y_{k}=\sum_{k=0}^{n} d_{n k}^{r, s} y_{k}=\left(D^{r, s} y\right)_{n}
$$

for all $n \in \mathbb{N}$. By taking into account the equality above, we observe that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x=\left(x_{k}\right) \in b_{1}^{r, s}(G)$ or $x=\left(x_{k}\right) \in b_{p}^{r, s}(G)$ if and only if $D^{r, s} y \in l_{1}$ whenever $y=\left(y_{k}\right) \in l_{1}$ or $y=$ $\left(y_{k}\right) \in l_{p}$, respectively where $1<p<\infty$. So, we obtain that $a=\left(a_{n}\right) \in\left\{b_{1}^{r, s}(G)\right\}^{\alpha}$ or $a=\left(a_{n}\right) \in$ $\left\{b_{p}^{r, s}(G)\right\}^{\alpha}$ if and only if $D^{r, s} \in\left(l_{1}: l_{1}\right)$ or $D^{r, s} \in\left(l_{p}: l_{1}\right)$, respectively, where $1<p<\infty$. By connecting these results, Lemma 3.3(i) and Lemma 3.4(i), we deduce that

$$
a=\left(a_{n}\right) \in\left\{b_{1}^{r, s}(G)\right\}^{\alpha} \Leftrightarrow \sup _{k \in \mathbb{N}} \sum_{n}\left|\frac{1}{u} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right|<\infty
$$

and

$$
a=\left(a_{n}\right) \in\left\{b_{p}^{r, s}(G)\right\}^{\alpha} \Leftrightarrow \sup _{K \in \mathcal{F}} \sum_{k}\left|\frac{1}{u} \sum_{n \in K} \sum_{i=k}^{n}\binom{i}{k}\left(-\frac{v}{u}\right)^{n-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n}\right|^{q}<\infty
$$

where $1<p<\infty$. These yield us that $\left\{b_{1}^{r, s}(G)\right\}^{\alpha}=\xi_{2}^{r, s}(\mathrm{G})$ and $\left\{b_{p}^{r, s}(G)\right\}^{\alpha}=\xi_{1}^{r, s}(\mathrm{G})$, where $1<p<$ ∞. This completes the proof.

Theorem 3.6

Consider the sets $\xi_{3}^{r, s}(\mathrm{G}), \xi_{4}^{r, s}(\mathrm{G})$ and $\xi_{5}^{r, s}(\mathrm{G})$ defined by

$$
\begin{aligned}
& \xi_{3}^{r, s}(\mathrm{G})=\left\{a=\left(a_{k}\right) \in w: \frac{1}{u} \sum_{j=k}^{\infty} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j} \text { exists for all } k \in \mathbb{N}\right\} \\
& \xi_{4}^{r, s}(\mathrm{G})=\left\{a=\left(a_{k}\right) \in w: \sup _{k, n \in \mathbb{N}}\left|\frac{1}{u} \sum_{j=k}^{n} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j}\right|<\infty\right\}
\end{aligned}
$$

and

$$
\xi_{5}^{r, s}(\mathrm{G})=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|\frac{1}{u} \sum_{j=k}^{n} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j}\right|^{q}<\infty\right\}
$$

where $1<q<\infty$.
Then the following statements hold:
(I) $\left\{b_{1}^{r, s}(G)\right\}^{\beta}=\xi_{3}^{r, s}(G) \cap \xi_{4}^{r, s}(G)$,
(II) $\left\{b_{p}^{r, s}(G)\right\}^{\beta}=\xi_{3}^{r, s}(\mathrm{G}) \cap \xi_{5}^{r, s}(\mathrm{G})$, where $1<p<\infty$,
(III) $\left\{b_{1}^{r, s}(G)\right\}^{\gamma}=\xi_{4}^{r, s}(\mathrm{G})$,
(IV) $\left\{b_{p}^{r, s}(G)\right\}^{\gamma}=\xi_{5}^{r, s}(\mathrm{G})$, where $1<p<\infty$.

Proof. Since the proofs of the parts (II), (III) and (IV) may be obtained by using a same way, we prove the theorem for only the part (I). Let $a=\left(a_{n}\right) \in w$ be arbitrarily given. Consider the sequence $x=\left(x_{n}\right)$ defined by the relation (3.6). Then, we write

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n}\left[\frac{1}{u} \sum_{j=0}^{k} \sum_{i=j}^{k}\binom{i}{j}\left(-\frac{v}{u}\right)^{k-i}(-s)^{i-j}(r+s)^{j} r^{-i} y_{j}\right] a_{k} \\
& =\sum_{k=0}^{n}\left[\frac{1}{u} \sum_{j=k}^{n} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j}\right] y_{k} \\
& =\left(V^{r, s} y\right)_{n}
\end{aligned}
$$

for all $n \in \mathbb{N}$, where the matrix $V^{r, s}=\left(v_{n k}^{r, s}\right)$ is defined by

$$
v_{n k}^{r, s}=\left\{\begin{array}{cc}
\frac{1}{u} \sum_{j=k}^{n} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j}, & 0 \leq k \leq n \\
0 & , \quad k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$. So, $a x=\left(a_{n} x_{n}\right) \in c s$ whenever $x=\left(x_{k}\right) \in b_{1}^{r, s}(G)$ if and only if $V^{r, s} y \in c$ whenever $y=\left(y_{k}\right) \in l_{1}$. This yields us that $a=\left(a_{n}\right) \in\left\{b_{1}^{r, s}(G)\right\}^{\beta}$ if and only if $V^{r, s} \in\left(l_{1}: c\right)$. By connecting this result and Lemma 3.3 (iii), we obtain that $a=\left(a_{n}\right) \in\left\{b_{1}^{r, s}(G)\right\}^{\beta}$ if and only if

$$
\sup _{k, n \in \mathbb{N}}\left|\frac{1}{u} \sum_{j=k}^{n} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j}\right|<\infty
$$

and

$$
\frac{1}{u} \sum_{j=k}^{\infty} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{j} \text { exists for all } k \in \mathbb{N}
$$

This result shows us that $\left\{b_{1}^{r, s}(G)\right\}^{\beta}=\xi_{3}^{r, s}(\mathrm{G}) \cap \xi_{4}^{r, s}(\mathrm{G})$. This completes the proof.

4. Some Matrix Classes

In this section, we charecterize some matrix classes related to the sequence space $b_{p}^{r, s}(G)$, where $1 \leq p<$ ∞.

For simplicity in notation, we prefer to use following equality throughout the section 4.

$$
h_{n k}^{r, s, G}=\frac{1}{u} \sum_{j=k}^{\infty} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i} a_{n j}
$$

for all $n, k \in \mathbb{N}$.

Theorem 4.1

Given an infinite matrix $A=\left(a_{n k}\right)$, the following statements hold.
(i) $A=\left(a_{n k}\right) \in\left(b_{1}^{r, s}(G): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{k, n \in \mathbb{N}}\left|h_{n k}^{r, s, G}\right|<\infty \tag{4.1}
\end{equation*}
$$

(ii) $A=\left(a_{n k}\right) \in\left(b_{p}^{r, s}(G): l_{\infty}\right)$ if and only if

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \sum_{k}\left|h_{n k}^{r, s, G}\right|^{q}<\infty \tag{4.2}\\
& \left\{a_{n k}\right\}_{k \in \mathbb{N}} \in \xi_{5}^{r, s}(\mathrm{G}) \tag{4.3}
\end{align*}
$$

where $1<p<\infty$.
Proof. Let $p \in(1, \infty)$. We take any $x=\left(x_{k}\right) \in b_{p}^{r, s}(G)$ by assuming that the conditions (4.2) and (4.3) hold. Then, it is obtained that $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{p}^{r, s}(G)\right\}^{\beta}$. This result implies the existence of the A transform of x. From the relation (3.6), we have

$$
\begin{align*}
\sum_{k=0}^{m} a_{n k} x_{k} & =\sum_{k=0}^{m}\left[\frac{1}{u} \sum_{j=0}^{k} \sum_{i=j}^{k}\binom{i}{j}\left(-\frac{v}{u}\right)^{k-i}(-s)^{i-j}(r+s)^{j} r^{-i} y_{j}\right] a_{n k} \\
& =\sum_{k=0}^{m} \sum_{j=k}^{m}\left[\frac{1}{u} \sum_{i=k}^{j}\binom{i}{k}\left(-\frac{v}{u}\right)^{j-i}(-s)^{i-k}(r+s)^{k} r^{-i}\right] a_{n j} y_{k} \tag{4.4}
\end{align*}
$$

By taking limit (4.4) side by side as $m \rightarrow \infty$, we obtain that

$$
\begin{equation*}
\sum_{k} a_{n k} x_{k}=\sum_{k} h_{n k}^{r, s, G} y_{k} \quad(n \in \mathbb{N}) \tag{4.5}
\end{equation*}
$$

Then, we derive by taking l_{∞}-norm (4.5) side by side and by applying Hölder's inequality that

$$
\begin{aligned}
\|A x\|_{\infty} & =\sup _{n \in \mathbb{N}}\left|\sum_{k} h_{n k}^{r, s, G} y_{k}\right| \\
& \leq \sup _{n \in \mathbb{N}}\left(\sum_{k}\left|h_{n k}^{r, s, G}\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{k}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}<\infty
\end{aligned}
$$

As a result of this, we obtain that $A x \in l_{\infty}$, namely $A=\left(a_{n k}\right) \in\left(b_{p}^{r, s}(G): l_{\infty}\right)$.
Conversly, assume that $A=\left(a_{n k}\right) \in\left(b_{p}^{r, s}(G): l_{\infty}\right)$. This gives us to $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{p}^{r, s}(G)\right\}^{\beta}$ for all $n \in$ \mathbb{N}. Then, the necessity of (4.3) is immediate and $\left\{h_{n k}^{r, s, G}\right\}_{k, n \in \mathbb{N}}$ exists. On account of $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in$ $\left\{b_{p}^{r, s}(G)\right\}^{\beta}$, we can see that the condition (4.5) holds and the sequences $a_{n}=\left(a_{n k}\right)_{k \in \mathbb{N}}$ define the continuous linear functionals f_{n} on $b_{p}^{r, s}(G)$ by

$$
f_{n}(x)=\sum_{k} a_{n k} x_{k}
$$

for all $n \in \mathbb{N}$. Also, we know from the Theorem 2.2 that the sequence spaces $b_{p}^{r, s}(G)$ and l_{p} are norm isomorphic. By connecting this result and the condition (4.5), we obtain that

$$
\left\|f_{n}\right\|=\left\|\left(h_{n k}^{r, s, G}\right)_{k \in \mathbb{N}}\right\|_{q}
$$

which yields that the functionals f_{n} are pointwise bounded. Moreover, we derive from the BanachSteinhaus theorem that the functionals f_{n} are uniformly bounded, namely there exists a constant $M>0$ such that

$$
\left(\sum_{k}\left|h_{n k}^{r, s, G}\right|^{q}\right)^{\frac{1}{q}}=\left\|f_{n}\right\| \leq M
$$

for all $n \in \mathbb{N}$, which shows us that the condition (4.2) holds. The part (i) can be proved by using a similar method. This completes the proof.

Now, we quote a lemma from Stieglitz and Tietz [17], which is needed in the next proof.
Lemma 4.2 (see [17])
Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then, $A=\left(a_{n k}\right) \in\left(l_{1}: l_{p}\right)$ if and only if

$$
\sup _{k \in \mathbb{N}} \sum_{n}\left|a_{n k}\right|^{p}<\infty
$$

where $1<p<\infty$.

Theorem 4.3

Let an infinite matrix $A=\left(a_{n k}\right)$ be given. Then, $A=\left(a_{n k}\right) \in\left(b_{1}^{r, s}(G): l_{p}\right)$ if and only if

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \sum_{n}\left|h_{n k}^{r, s, G}\right|^{p}<\infty \tag{4.6}
\end{equation*}
$$

where $1 \leq p<\infty$.

Proof. Let a sequence $x=\left(x_{k}\right) \in b_{1}^{r, s}(G)$ be given. Assume that the condition (4.6) holds. Then, it is clear that $y=\left(y_{k}\right) \in l_{1}$ and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{1}^{r, s}(G)\right\}^{\beta}$ for all $n \in \mathbb{N}$, namely A-transform of x exists. As a result of this, the series $\sum_{k} h_{n k}^{r, s, G} y_{k}$ are absolutely convergent for all $n \in \mathbb{N}$ and $y=\left(y_{k}\right) \in l_{1}$. By applying the Minkowsky inequality to (4.5), we can write

$$
\left(\sum_{n}\left|(A x)_{n}\right|^{p}\right)^{\frac{1}{p}} \leq \sum_{k}\left|y_{k}\right|\left(\sum_{n}\left|h_{n k}^{r, s, G}\right|^{p}\right)^{\frac{1}{p}}
$$

which yields that $A x \in l_{p}$, namely $A=\left(a_{n k}\right) \in\left(b_{1}^{r, s}(G): l_{p}\right)$.
Conversly, we suppose that $A=\left(a_{n k}\right) \in\left(b_{1}^{r, s}(G): l_{p}\right)$, where $1 \leq p<\infty$, namely $A x \in l_{p}$ for all $x=$ $\left(x_{k}\right) \in b_{1}^{r, s}(G)$. So, $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{b_{1}^{r, s}(G)\right\}^{\beta}$ for all $n \in \mathbb{N}$, which shows us that the relation (4.5) holds. These results give us that $H^{r, s, G}=\left(h_{n k}^{r, s, G}\right) \in\left(l_{1}: l_{p}\right)$. By combining last result and Lemma 4.2, we obtain that the condition (4.6) holds. This completes the proof.

5. CONCLUSION

The domain of Binomial matrix $B^{r, s}=\left(b_{n k}^{r, s}\right)$ in the sequence space l_{p} has been introduced by Bişgin in [15]. Also, the domain of generalized difference(double band) matrix $G=\left(g_{n k}\right)$ in some sequence spaces was used and studied by many authors. Since $T^{r, s}=\left(t_{n k}^{r, s}\right)$ is composition of $B^{r, s}=\left(b_{n k}^{r, s}\right)$ and $G=$ $\left(g_{n k}\right)$, and $T^{r, s}=\left(t_{n k}^{r, s}\right)$ is stronger than $G=\left(g_{n k}\right)$, our results are more general.

REFERENCES

[1]. Choudhary B., Nanda S. Functional analysis with applications, Wiley, New Delhi,(1989).
[2]. Wilansky A. Summability through functional analysis, North-Holland Mathematics Studies, vol. 85. Elsevier, Amsterdam (1984).
[3]. Wang C-S., On norlund sequence spaces. Tamkang J. Math., 1978; 9: 269-274.
[4]. Ng P-N., Lee P-Y., Cesaro sequence spaces of non-absolute type. Comment. Math. (Prace Mat.), 1978; 20(2): 429-433.
[5]. Kızmaz H., On certain sequence spaces. Canad. Math. Bull., 1981; 24(2): 169-176.
[6]. Et M., On some difference sequence spaces. Turkish J. Math., 1993; 17: 18-24.
[7]. Altay B., Başar, F., Some Euler sequence spaces of non-absolute type. Ukr. Math. J., 2005; 57(1): 1-17.
[8]. Altay B., Başar, F., Mursaleen, M., On the Euler sequence spaces which include the spaces l_{p} and l_{∞} I. Inf. Sci., 2006; 176(10): 1450-1462.
[9]. Mursaleen M., Başar F., Altay B. On the Euler sequence spaces which include the spaces l_{p} and l_{∞} II. Nonlinear Anal., 2006; 65(3): 707-717.
[10].Altay B., Polat H. On some new Euler difference sequence spaces. Southeast Asian Bull. Math., 2006; 30(2): 209-220.
[11].Polat H., Başar F. Some Euler spaces of difference sequences of order m . Acta Math.Sci. Ser. B, Engl. Ed., 2007; 27B(2): 254-266.
[12].Kara E.E., Başarrı M. On compact operators and some Euler $B^{(m)}$-difference sequence spaces. J. Math. Anal. Appl., 2011; 379(2): 499-511.
[13].Kirişçi M., Başar F. Some new sequence spaces derived by the domain of generalized difference matrix. Comput. Math. Appl., 2010; 60(5): 1299-1309.
[14].Bisgin M.C. The Binomial sequence spaces of nonabsolute type. J. Inequal. Appl., 2016; 2016:309.
[15].Bişgin M.C. The Binomial sequence spaces which include the spaces l_{p} and l_{∞} and geometric properties. J. Inequal. Appl., 2016; 2016:304.
[16].Jarrah A.M., Malkowsky E., BK-spaces, bases and linear operators. Rend. Circ. Mat. Palermo, 1998; 52(2): 177-191.
[17].Stieglitz M., Tietz H., Matrix Transformationen von Folgenräumen eine ergebnisübersicht. Math. Z., 1977; 154: 116.

[^0]: * Corresponding author. Email address: mustafa.bisgin@erdogan.edu.tr
 http://dergipark.gov.tr/csj ©2016 Faculty of Science, Cumhuriyet University

