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Introduction 
 

The coupled partial differential equations such as 
Schrödinger-KDV equations [1], N-coupled nonlinear 
Schrödinger equations [2], and the coupled Gross-
Pitaevskii equations [3] play a crucial role in applied 
mathematics, engineering, and physics, many of which are 
the models of various nonlinear phenomena. In this 
paper, we consider the coupled nonlinear Schrödinger- 
Boussinesq (CNSB) equations  

𝑖𝑢𝑡 = −𝛾∆𝑢 + 𝜉𝑢𝑣,     𝑖
2 = −1, 

𝑣𝑡 = ∆𝜙,         (1)  
 𝜙𝑡 = −𝛼∆𝑣 + 𝑣 + 𝑓(𝑣) + 𝜔|𝑢|

2 

where the complex function 𝑢(𝒙, 𝑡) describes the 
electrical field of Langmuir oscillations, real valued 
function 𝑣(𝒙, 𝑡) represents low frequency density 
perturbation, 𝒙 = (𝑥1, … , 𝑥𝑑)

𝑇 ∈ Ω ⊂ ℝ𝑑, 𝑡 = [0, 𝑇]. 
The parameters 𝛾, 𝜉, 𝜔 and 𝛼 > 0 are constant, and 

 𝑓(𝑥) is sufficiently smooth real function with 𝑓(0) = 0. 
The equations (1) describe a coupling motion of acoustic 
and optical wave [4] and the dynamics behavior of 
Langmuir soliton formation [5]. We study the equations 
(1) with initial conditions  

𝑢(𝒙, 0) = 𝑢0(𝑥), 𝑣(𝒙, 0) = 𝑣0(𝒙), 𝜙(𝒙, 0) = 𝜙0(𝒙), 𝒙  𝛀    (2)    

and (𝑙1, … , 𝑙𝑑)- periodic boundary conditions  

𝑢(𝒙, 𝑡) = 𝑢(𝑥1 + 𝑙1, … 𝑥𝑑 , 𝑡), …,   
𝑢(𝒙, 𝑡) = 𝑢(𝑥1, … , 𝑥𝑑 + 𝑙𝑑 , 𝑡)  
𝑣(𝒙, 𝑡) = 𝑣(𝑥1 + 𝑙1, … 𝑥𝑑 , 𝑡), …,            (3) 

𝑣(𝒙, 𝑡) = 𝑣(𝑥1, … , 𝑥𝑑 + 𝑙𝑑 , 𝑡), 
𝜙(𝒙, 𝑡) = 𝜙(𝑥1 + 𝑙1, … 𝑥𝑑 , 𝑡), …,    
𝜙(𝒙, 𝑡) = 𝜙(𝑥1, … , 𝑥𝑑 + 𝑙𝑑, 𝑡), 

,  

which makes long time integration possible. The spatial 
domain Ω is truncated on a bounded interval in one 
dimension (𝑑 = 1), a rectangle in two dimensions (𝑑 =
2) or a box in three dimensions (𝑑 = 3). One of the main 
properties of the periodic- initial- value problem (1)-(3) is 
conservation of mass (or the Langmuir plasmon number)  

𝑀(𝑡) ≔ ∫ |𝑢(𝒙, 𝑡)|2
Ω

𝑑𝒙 ≡ 𝑀(0)      (4) 

and the total energy  

𝐸(𝑡) ≔  ∫ (
2𝛾𝜔

𝜉
|∇𝑢|2 + 𝛼|∇𝑣|2 + |∇𝜙|2 + 𝑣2 +

Ω

2𝐹(𝑣) + 2𝜔𝑣|𝑢|2  ) 𝑑𝒙 ≡ 𝐸(0)      (5) 

where 𝐹(𝑣) is the primitive function of 𝑓(𝑣). The CNSB 
equations (1) are conservative systems. Therefore, proper 
discretization is required to reflect the conservation 
properties (4)-(5). In general, conservative numerical 
scheme exhibits better numerical performance on long 
time integration than a nonconservative one [12]. 

        The CNSB equations (1) have been solved 
numerically by several authors. In [6], a multi-symplectic 
Hamiltonian formulation has been presented for the 
CNSB. Liao et al. proposed two conserved compact finite 
difference schemes for solving the nonlinear CNSB 
equations [20]. Bai et al. proposed a quadratic B-spline 
finite element scheme for the CNSB equations [7]. Zhang 
et al. studied the implicit conservative difference scheme 
and obtained an optimal error estimate [8]. Bai et al. 
studied the CNSB equations by the time-splitting Fourier 
spectral method [10]. All these numerical methods for the 
CNSB equations are obtained by constructing the 
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appropriate discretization. However, these methods for 
high dimensional CNSB equations (𝑑 ≥ 2) are time-
consuming and difficult since the resulting schemes are 
fully coupled and nonlinearly implicit. Few numerical 
methods are available in the literature for the numerical 
solution of multi-dimensional (𝑑 ≥ 2) CNSB equations. 
Liao et al. proposed a time-splitting exponential wave 
integrator method based on Gautschi-type quadrature 
and Fourier pseudo-spectral discretization for solving 
Boussinesq-like equation and then presented the time-
splitting Fourier spectral discretization for Schrödinger-
like equation [11]. Two efficient compact finite difference 
schemes are introduced in [25] and [26]. By a combination 
of the Crank-Nicolson method and Leap-Frog scheme for 
temporal discretization and second-order centered 
difference scheme for spatial approximations, a linear 
Energy and Mass Preserving Finite Difference Method 
(EMP-FDM) is devised for 1D CSBEs in [27]. Cai et al. [19] 
developed second and fourth-order energy-preserving 
wavelet collocation schemes for CNSB equations based on 
the Hamiltonian structure and composition technique. 
The proposed method is energy-preserving but does not 
preserve mass. In many cases, the conservation of energy 
is more important than the conservation of mass. 
Recently, extensive structure-preserving numerical 
methods have been carried out for the numerical solution 
of dispersive/dissipative partial differential equations in 
the literature (see [28] and references therein). For 
instance, a fourth-order compact and energy-
conservative difference scheme is proposed for solving 
the two-dimensional nonlinear Schrödinger equation, and 
convergence analysis of the method has been carried out 
in [29]. The numerical study of fractional differential 

equations is also a challenging problem for many authors 
(see [30] and reference therein).  For instance, The 
Schrodinger equation with the variable-order fractional 
operator has been solved numerically in [31]. In that 
study, an implicit fully discrete continuous Galerkin finite 
element method was developed to tackle this equation 
while the fractional operator was expressed with a 
nonsingular Mittag-Leffler kernel. Quispel et al. [13] 
developed the so-called Average Vector Field (AVF) 
method for ordinary differential equations (ODEs) which 
is energy preserving for the Hamiltonian vector field. 
Under most circumstances, the second-order AVF method 
yields a fully implicit numerical scheme that requires a 
nonlinear solver such as Newton’s iteration. Cai et al. [16] 
developed a more efficient AVF-based method and call 
this method a partitioned AVF (PAVF) method which can 
also automatically preserve arbitrary Hamiltonian energy 
of the Hamiltonian system. In [24] an explicit scheme has 
been developed for the Zakharov equation using the PAVF 
method. The main purpose of this study is to develop a 
new energy-preserving scheme for the CNSB equations (1) 
based on the PAVF method. Firstly, the equations (1) are 
written in an infinite Hamiltonian form. Then, the second-
order central difference is employed for the spatial 
discretization to cast the CNSB equations (1) into a finite-
dimensional Hamiltonian equation. We use the PAVF 
method for time integration to develop the energy-
preserving scheme. The proposed scheme is semi-implicit 
which has a significant advantage over the AVF method. In 
conjunction with the adjoint method, we further present 
the PAVF composition (PAVF-C) method and the PAVF plus 
(PAVF-P) method for the CNSB equations (1).   

 
Construction of a finite difference scheme 

Many evolution PDEs can be written as an infinite-dimensional Hamiltonian system of the form [23]  

𝑑𝑧

𝑑𝑡
= 𝒟

𝛿ℋ

𝛿𝑧
                 (6) 

where 𝑧 = 𝑧(𝑥, 𝑡) ∈ ℝ𝑑 × ℝ and 𝒟 is a constant linear differential operator. For example, if 𝑑 = 1 and 𝑧(𝑥, 𝑡) belongs 
to the Hilbert space 𝐿2(Ω), the Hamiltonian ℋ and the variational derivative is  

ℋ(𝑧) = ∫ 𝐻(𝑥, 𝑧, 𝑧𝑥 , 𝑧𝑥𝑥 , … )𝑑𝑥,Ω
               (7) 

𝛿ℋ

𝛿𝑧
=
𝜕𝐻

𝜕𝑧
+ 𝜕𝑥 (

𝜕𝐻

𝜕𝑧𝑥
) − 𝜕𝑥𝑥 (

𝜕𝐻

𝜕𝑧𝑥𝑥
) − ⋯              (8) 

where Ω ⊂ ℝ and 𝑧(𝑥, 𝑡) satisfies homogenous or periodic boundary conditions. For two dimensions 𝑑 = 2 , i.e. 𝑥 =

(𝑥, 𝑦)𝑇 , Ω = [𝑥𝐿 , 𝑥𝑅] × [𝑦𝐿 , 𝑦𝑅] the Hamiltonian  ℋ  and the variational derivative is  

ℋ(𝑧) = ∬ 𝐻(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦 , 𝑧𝑥𝑥 , … )𝑑𝑥𝑑𝑦Ω
,             (9) 

𝛿ℋ

𝛿𝑧
=
𝜕𝐻

𝜕𝑧
+ 𝜕𝑥 (

𝜕𝐻

𝜕𝑧𝑥
) + 𝜕𝑦 (

𝜕𝐻

𝜕𝑧𝑦
) − 𝜕𝑥𝑥 (

𝜕𝐻

𝜕𝑧𝑥𝑥
) − ⋯          (10) 

By decomposing 𝑢(𝑥, 𝑡) = 𝑝(𝑥, 𝑦, 𝑡) + 𝑖𝑞(𝑥, 𝑦, 𝑡) in real and imaginary components, the CNSB equations (1) in two 
space dimensions can be written as a first order system of equations  

𝑝𝑡 = −𝛾(𝑞𝑥𝑥 + 𝑞𝑦𝑦) + 𝜉𝑞𝑣 

𝑞𝑡 = 𝛾(𝑝𝑥𝑥 + 𝑝𝑦𝑦) − 𝜉𝑝𝑣                                     (11) 

 𝑣𝑡 = 𝜙𝑥𝑥 + 𝜙𝑦𝑦                      

 𝜙𝑡 = 𝑣 − 𝛼(𝑣𝑥𝑥 + 𝑣𝑦𝑦) + 𝑓(𝑣) + 𝜔(𝑝
2 + 𝑞2) 
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which can be written as infinite-dimensional Hamiltonian system (6) with the state variable 𝑧(𝑡) =
(𝑝(𝑥, 𝑦, 𝑡), 𝑞(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡), 𝜙(𝑥, 𝑦, 𝑡))𝑇 , the differential operator  

𝒟 = (

0
−𝜉/(4𝜔)

0
0

𝜉/(4𝜔)
0
0
0

0
0
0
1/2

0
0

−1/2
0

) 

and the Hamiltonian  

𝐻(𝑡) ≔  ∬ (
2𝛾𝜔

𝜉
|∇𝑢|2 + 𝛼|∇𝑣|2 + |∇𝜙|2 + 𝑣2 + 2𝐹(𝑣) + 2𝜔𝑣|𝑢|2  ) 𝑑𝑥

Ω
𝑑𝑦 .      (12) 

Remark: We can find that the Hamiltonian 𝐻(𝑡) is the total energy (5) of the system (1).  
 
In the following sections, we propose a nonlinear two-level, conservative and second-order accurate finite difference 
scheme for the problem (1)-(3). 

Spatial discretization 
For simplicity of notations, we shall consider the CNSB system (1) in one space dimension. Extension to higher 

dimensions is straightforward. The domain {(𝑥, 𝑡)|(𝑥, 𝑡) ∈  Ω × [0, 𝑇]} is discretized into grids  by the set (𝑥𝑗 , 𝑡𝑛) of 

nodes, in which 𝑥 = 𝑥𝐿 + 𝑗ℎ, 0 ≤ 𝑗 ≤ 𝑁 + 1, 𝑡𝑛 = 𝑛𝜏, 0 ≤ 𝑛 ≤ 𝑀 ,  where  ℎ = (𝑥𝑅 − 𝑥𝐿)/𝑁 ,  𝜏 = 𝑇/𝑀 ,  M and N are 
positive integers. Let 𝑝𝑗

𝑛 , 𝑞𝑗
𝑛, 𝑣𝑗

𝑛 and 𝜙𝑗
𝑛  be the approximations to 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡), 𝑣(𝑥, 𝑡) and 𝜙(𝑥, 𝑡) at the grid 

(𝑥𝑗 , 𝑡𝑛), respectively. For convenience, we introduce some notations: 

𝛿𝑡𝑧𝑗
𝑛 =

𝑧𝑗
𝑛+1 − 𝑧𝑗

𝑛

𝜏
,   𝛿𝑥

+𝑧𝑗
𝑛 =

𝑧𝑗+1
𝑛 − 𝑧𝑗

𝑛

ℎ
,   𝛿𝑥

−𝑧𝑗
𝑛 =

𝑧𝑗
𝑛 − 𝑧𝑗−1

𝑛

ℎ
,   𝑧

𝑗

𝑛+
1
2 =

𝑧𝑗
𝑛+1 + 𝑧𝑗

𝑛

2
   

𝛿𝑥
+−𝑧𝑗

𝑛 = 𝛿𝑥
+(𝛿𝑥

−𝑧𝑗
𝑛) =

𝑧𝑗+1
𝑛 −2𝑧𝑗

𝑛−𝑧𝑗−1
𝑛

ℎ2
  ,            (13) 

Discrete periodic boundary conditions are treated as  

𝑧𝑗 = 𝑧𝑁+𝑗,      𝑗 = ⋯ ,−2,−1,0,1,2, … 

Consider the spatial discretization of the equations (11) in one space dimension  

𝑑

𝑑𝑡
𝑝𝑗 = −𝛾(𝛿𝑥

±𝑞𝑗) + 𝜉𝑞𝑗𝑣𝑗 ,  
𝑑

𝑑𝑡
𝑞𝑗 = 𝛾(𝛿𝑥

+−𝑝𝑗) − 𝜉𝑝𝑗𝑣𝑗 ,  
𝑑

𝑑𝑡
𝑣𝑗 = 𝛿𝑥

+−𝜙𝑗 ,              (14) 
𝑑

𝑑𝑡
𝜙𝑗 = −𝛼(𝛿𝑥

+−𝑣𝑗) + 𝑣𝑗 + 𝑓(𝑣𝑗) + 𝜔(𝑝𝑗
2 + 𝑞𝑗

2)  

where 𝑗 = 1,… , 𝑁. The system of equations (14) can be written as a finite-dimensional canonical Hamiltonian system  

 
𝑑

𝑑𝑡
𝑍 = �̅�∇𝐻(𝑍)            (15) 

where 𝑍 = (𝑝𝑇 , 𝑞𝑇 , 𝑣𝑇 , 𝜙𝑇)𝑇 , 𝑝, 𝑞, 𝑣, 𝜙 ∈ ℝ𝑁 with entries 𝑝 = (𝑝1, … , 𝑝𝑁)
𝑇 , 𝑞 = (𝑞1, … , 𝑞𝑁)

𝑇 , 𝑣 = (𝑣1, … , 𝑣𝑁)
𝑇 , 𝜙 =

(𝜙1, … , 𝜙𝑁)
𝑇 , respectively,  

�̅� =

(

 

0

−
𝜉

4𝜔
𝐼

0
0

𝜉

4𝜔
𝐼

0
0
0

0
0
0
1

2
𝐼

0
0

−
1

2
𝐼

0 )

           (16) 

where 𝐼 = 𝑁 × 𝑁 identity matrix,  0 is the  𝑁 × 𝑁 zero matrix and  

𝐻 = ∑ (
2𝛾𝜔

𝜉
((𝛿𝑥

+𝑝𝑗)
2 + (𝛿𝑥

+𝑞𝑗)
2) + 𝛼(𝛿𝑥

+𝑣𝑗)
2 + (𝛿𝑥

+𝜙𝑗)
2 + 𝑣𝑗

2 + 2𝐹(𝑣𝑗) + 2𝜔𝑣𝑗|𝑢𝑗|
2) ℎ.𝑁

𝑖=1     (17) 

Is the discrete Hamiltonian. The system (15) conserves the discrete Hamiltonian (17) in the sense that  

𝑑�̅�(𝑍(𝑡))

𝑑𝑡
= ∇𝐻(𝑍(𝑡))

𝑑𝑍(𝑡)

𝑑𝑡
= ∇𝐻(𝑍(𝑡))�̅�∇𝐻(𝑍(𝑡)) = 0       (18) 

due to the skew-symmetric property of the matrix �̅�. Therefore, the flow of the semi-discrete system (15) preserves the 
Hamiltonian 𝐻(𝑍) exactly. The Hamiltonian system (15) also possesses symplecticity [21, 22]. The conservation of 
energy is as important as the conservation of symplectic structure in numerical simulations. Therefore, it is natural to 
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integrate (15) in time with a conservative method. In the following section, energy preserving PAVF methods have been 
developed for (15).  

 

Temporal discretization  
Here we briefly discuss the AVF and PAVF methods and their energy-preserving properties. We consider the 

Hamiltonian differential equation (15) with 𝑍 = (𝑎, 𝑏)𝑇 . The canonical Hamiltonian system (15) can be written as  

𝑑

𝑑𝑡
(
𝑎
𝑏
) = �̅� (

∇𝑎𝐻(𝑎, 𝑏)

∇𝑏𝐻(𝑎, 𝑏)
)                 (19) 

The energy preserving AVF integrator [13] for canonical Hamiltonian equation (19) is given by  

1

𝜏
(𝑎

𝑛+1 + 𝑎𝑛

𝑏𝑛+1 + 𝑏𝑛
) = �̅� (

∫ ∇𝑎𝐻(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑑𝜉

1

0

∫ ∇𝑏𝐻(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑑𝜉

1

0

)           (20) 

Theorem 1. [14] The scheme (20) is energy preserving, which possesses the discrete energy i.e.  

𝐻(𝑎𝑛 , 𝑏𝑛) = 𝐻(𝑎𝑛−1, 𝑏𝑛−1) = ⋯ = 𝐻(𝑎0, 𝑏0)           (21) 

Proof. Taking the scalar product on both sides of (20) with  
 

(∫ ∇𝑎𝐻(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑇 𝑑𝜉,

1

0

∫ ∇𝑏𝐻(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑇𝑑𝜉

1

0

)

𝑇

 

 
using the Fundamental Theorem of Calculus and the skew-symmetry of �̅�, we have  

1

𝜏
(𝐻(𝑎𝑛+1, 𝑏𝑛+1) − 𝐻(𝑎𝑛 , 𝑏𝑛)) = 0 

that is, the energy 𝐻 is precisely conserved at every time step. This completes the proof.  
For polynomial Hamiltonian, the integral can be evaluated exactly, and the implementation is comparable to that of 

implicit Runge-Kutta method such as the implicit mid-point rule. When Hamiltonian energy is a quadratic function, the 
resulting AVF scheme is linearly implicit and therefore can be efficiently solved. However, this is not the case to reflect 
the merit of the AVF method since any symplectic Runge-Kutta method can also achieve the energy conservation of the 
quadratic Hamiltonian [12]. Under most circumstances, the evaluation of the integration in (20) leads to nonlinear 
function of 𝑍𝑛+1 which further constitutes a fully implicit numerical scheme. The iterative processes are then inevitably 
required but this leads to an increase in computation complexity, especially for the application of Hamiltonian PDEs. Cai 
[16] et. al. defined the so-called PAVF method for the Hamiltonian system (19) which has a remarkable advantage over 
the AVF method (20). The one-step, first-order PAVF method for the Hamiltonian system (19) is written as  

1

𝜏
(𝑎

𝑛+1 + 𝑎𝑛

𝑏𝑛+1 + 𝑏𝑛
) = �̅� (

∫ ∇𝑎𝐻(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝑏𝑛)𝑑𝜉

1

0

∫ ∇𝑏�̅�(𝑎
𝑛+1, 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑑𝜉

1

0

)       (22) 

Theorem 2. [14] The scheme (22) is energy preserving in the sense that 

𝐻(𝑎𝑛, 𝑏𝑛) = �̅�(𝑎𝑛−1, 𝑏𝑛−1) = ⋯ = 𝐻(𝑎0, 𝑏0)        (23) 

Proof. Taking the scalar product on both sides of (22) with 

(∫ ∇𝑎𝐻(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝑏𝑛)𝑑𝜉

1

0

, ∫ ∇𝑏�̅�(𝑎
𝑛+1, 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑑𝜉

1

0

)

𝑇

                    

right-hand side of (22) vanishes by the skew-symmetry of �̅�. The left-hand side of (22) can be written as  
 

1

𝜏
(∫ ∇𝑎𝐻(𝜉𝑎

𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝑏𝑛)𝑑𝜉
1

0

) (𝑎𝑛+1 + 𝑎𝑛) +
1

𝜏
(∫ ∇𝑏�̅�(𝑎

𝑛+1, 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑑𝜉
1

0

) (𝑏𝑛+1 + 𝑏𝑛) = 0 

 
which can be written as 

 
1

𝜏
∫

𝑑

𝑑𝜉
[𝐻(𝜉𝑎𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝑏𝑛) + �̅�(𝑎𝑛+1, 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)]𝑑𝜉 = 0

1

0

. 

Using the Fundamental Theorem of Calculus, we have 
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1

𝜏
[𝐻(𝑎𝑛+1, 𝑏𝑛) − 𝐻(𝑎𝑛 , 𝑏𝑛) + �̅�(𝑎𝑛+1, 𝑏𝑛+1) − 𝐻(𝑎𝑛+1, 𝑏𝑛)] = 0 i.e. 

1

𝜏
[𝐻(𝑎𝑛+1, 𝑏𝑛+1) − 𝐻(𝑎𝑛 , 𝑏𝑛)] = 0. 

 
This completes the proof. 
Definition 1. [12] The adjoint 𝜑𝜏

∗ of the method 𝜑𝜏 is the inverse map of the original method with reversed time step 
−𝜏. 

The adjoint of the explicit Euler method is the implicit Euler method. The adjoint method of the implicit mid-point 
rule is the implicit mid-point rule itself, that is the implicit mid-point rule is symmetric. Accordingly, reversing the path 
order in (22), the adjoint method of the PAVF method (22) is written as [16] 

1

𝜏
(𝑎

𝑛+1 + 𝑎𝑛

𝑏𝑛+1 + 𝑏𝑛
) = 𝐽 (

∫ ∇𝑎�̅�(𝜉𝑎
𝑛+1 + (1 − 𝜉)𝑎𝑛 , 𝑏𝑛+1)𝑑𝜉

1

0

∫ ∇𝑏𝐻(𝑎
𝑛 , 𝜉𝑏𝑛+1 + (1 − 𝜉)𝑏𝑛)𝑑𝜉

1

0

)         (24) 

The adjoint method has the same order as the original method. In the following, we consider the composition of the 
PAVF method (22) and the adjoint method (24) with the same step size. This allows an order increase for the old order 
method. If Φ𝜏 is the method (22) and Φ𝜏

∗ is the adjoint method (24) then the composition method [16]  

Ψ̂ℎ = Φ𝜏

2
 ° Φ𝜏

2

∗             (25) 

is the second order method and conserves the Hamiltonian exactly. Analogously, taking the average of the  Φ𝜏 and Φ𝜏
∗, 

we can write the plus method [16] 

Ψ̂ℎ =
1

2
 (Φ𝜏+ Φ𝜏

∗)           (26) 

Average Vector Field for CNSB Equations 

 
      We first present the conventional second-order AVF method (20) for CNSB equations (1) [18]. To obtain the AVF 
integrator, we apply the AVF method to time integration for the semi-discrete system (15) as follows. 

𝛿𝑡 (𝑝𝑗
𝑛) = − 𝛾𝛿𝑥

+− (𝑞
𝑗

𝑛+
1

2) +  𝜉 (
1

3
𝑞𝑗
𝑛+1𝑣𝑗

𝑛+1 +
1

6
𝑞𝑗
𝑛+1𝑣𝑗

𝑛 +
1

6
𝑞𝑗
𝑛𝑣𝑗

𝑛+1 +
1

3
𝑞𝑗
𝑛𝑣𝑗

𝑛),  

𝛿𝑡 (𝑞𝑗
𝑛) =  𝛾𝛿𝑥

+−(𝑝𝑗
𝑛+1/2

) −  𝜉 (
1

3
𝑝𝑗
𝑛+1𝑣𝑗

𝑛+1 +
1

6
𝑝𝑗
𝑛+1𝑣𝑗

𝑛 +
1

6
𝑝𝑗
𝑛𝑣𝑗

𝑛+1 +
1

3
𝑝𝑗
𝑛𝑣𝑗

𝑛),  

𝛿𝑡 (𝑣𝑗
𝑛) =  𝛿𝑥

+−(𝜙𝑗
𝑛+1/2

)            (27) 

 𝛿𝑡 (𝜙𝑗
𝑛) =  −𝛼𝛿𝑥

+−(𝑣𝑗
𝑛+1/2

) + 𝑣𝑗
𝑛+1/2

+ 𝑓(𝑣𝑗
𝑛+1, 𝑣𝑗

𝑛) +
𝜔

3
 (
(𝑝𝑗
𝑛+1)

2
+ 𝑝𝑗

𝑛+1𝑝𝑗
𝑛 + (𝑝𝑗

𝑛)
2
    

+(𝑞𝑗
𝑛+1)

2
+ 𝑞𝑗

𝑛+1𝑞𝑗
𝑛 + (𝑞𝑗

𝑛)
2).  

where 𝑓(𝑣𝑗
𝑛+1, 𝑣𝑗

𝑛) = ∫ 𝑓(𝜉𝑣𝑗
𝑛+1 + (1 − 𝜉)𝑣𝑗

𝑛)𝑑𝜉
1

0
. We see that the scheme (27) is fully implicit, which requires a 

time consuming iterative method such as Newton-Raphson method. Now, we propose a more efficient energy-
preserving method for CNSB equations (1). 
 

Partitioned Average Vector Field for CNSB Equations 

Upon applying the PAVF method (22) to the semi-discrete system (15), we obtain  

𝛿𝑡 (𝑝𝑗
𝑛) =  −𝛾𝛿𝑥

± (𝑞
𝑗

𝑛+
1

2) +
𝜉

2
 (𝑞𝑗

𝑛+1𝑣𝑗
𝑛 + 𝑞𝑗

𝑛𝑣𝑗
𝑛),  

𝛿𝑡 (𝑞𝑗
𝑛) =  𝛾𝛿𝑥

+−(𝑝𝑗
𝑛+1/2

) −
𝜉

2
 (𝑝𝑗

𝑛+1𝑣𝑗
𝑛 + 𝑝𝑗

𝑛𝑣𝑗
𝑛), 

𝛿𝑡 (𝑣𝑗
𝑛) =  𝛿𝑥

+−(𝜙𝑗
𝑛+1/2

)              (28) 

𝛿𝑡 (𝜙𝑗
𝑛) =  −𝛼𝛿𝑥

+− (𝑣
𝑗

𝑛+
1
2) + 𝑣𝑗

𝑛+1/2
+ 𝑓(𝑣𝑗

𝑛+1, 𝑣𝑗
𝑛) + 𝜔 ((𝑝𝑗

𝑛+1)2 + (𝑞𝑗
𝑛+1)2) 

The PAVF method (28) is simpler than the AVF method (27). The first two equations of (28) are linearly implicit 
according to the variables 𝑝𝑛+1 and 𝑞𝑛+1. Once the values 𝑝𝑗

𝑛 , 𝑞𝑗
𝑛, 𝑣𝑗

𝑛  and 𝜙𝑗
𝑛are known, the values  𝑝𝑛+1 and 𝑞𝑛+1 can 

be solved from the first two equations of (28) and substituted into the last two equations. Then the values 𝜙𝑗
𝑛+1 and 

𝑣𝑗
𝑛+1 can be solved from the last two equations by using an iterative method such as Newton’s method. Although the 

PAVF method (28) for the CNSB is semi-implicit, the AVF method (27) is fully implicit which requires more cost per time 
step than PAVF method (28). 
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Remark: On the contrary to the semi-implicit structure of the PAVF method (28) for CNSB equations, Cai et. al. [16] have 
constructed the PAVF method to nonlinear Klien-Gordon-Schrödinger equations that requires to solve two sets of linear 
algebraic equations.  

In addition, to the conservation of energy, the conservation of mass (4), which is quadratic invariant, also plays an 
important role in physics. Therefore, it is natural to discuss the mass conservation of the method (28). 
Theorem 1. The difference scheme (28) is conservative, that is the mass  (4) is conserved in the sense  
  

𝑀𝑛 = ∑ ((𝑝𝑘
𝑛)2 + (𝑞𝑘

𝑛)2)ℎ = 𝑀𝑛−1 = ⋯ = 𝑀0,𝑁
𝑘=1           (29) 

where 𝑀𝑛 = 𝑀(𝑝𝑛, 𝑞𝑛).     

Proof. Multiplying both sides of the first line of equation (28) with (𝑝𝑗
𝑛+1 + 𝑝𝑗

𝑛)𝑇yields  

1

𝜏
(𝑝𝑗
𝑛+1 + 𝑝𝑗

𝑛)
𝑇
(𝑝𝑗
𝑛+1 − 𝑝𝑗

𝑛) = (𝑝𝑗
𝑛+1 + 𝑝𝑗

𝑛)
𝑇
(−𝛾𝛿𝑥

+−𝑞𝑗
𝑛 +

1

2
(𝑞𝑗
𝑛+1𝑣𝑗

𝑛 + 𝑞𝑗
𝑛𝑣𝑗

𝑛))      (30) 

Multiplying both sides of the second line of equation (28) with (𝑞𝑗
𝑛+1 + 𝑞𝑗

𝑛)𝑇yields  

1

𝜏
(𝑞𝑗
𝑛+1 + 𝑞𝑗

𝑛)
𝑇
(𝑞𝑗
𝑛+1 − 𝑞𝑗

𝑛) = (𝑞𝑗
𝑛+1 + 𝑞𝑗

𝑛)
𝑇
(𝛾𝛿𝑥

+−𝑝𝑗
𝑛 −

1

2
(𝑝𝑗
𝑛+1𝑣𝑗

𝑛 + 𝑝𝑗
𝑛𝑣𝑗

𝑛)).      (31) 

 

Adding (30) to (31), we have  

1

𝜏
∑ ((𝑝𝑗

𝑛+1)
2
+ (𝑞𝑗

𝑛+1)
2
) =𝑁

𝑖=1
1

𝜏
∑ ((𝑝𝑗

𝑛)
2
+ (𝑞𝑗

𝑛)
2
)𝑁

𝑖=1   

 
which completes the proof. 

The adjoint PAVF method of the scheme (27) is given as 

𝛿𝑡 (𝑝𝑗
𝑛) = − 𝛾𝛿𝑥

+− (𝑞
𝑗

𝑛+
1
2) +

𝜉

2
 (𝑞𝑗

𝑛+1𝑣𝑗
𝑛+1 + 𝑞𝑗

𝑛𝑣𝑗
𝑛+1), 

𝛿𝑡 (𝑞𝑗
𝑛) =  𝛾𝛿𝑥

+−(𝑝𝑗
𝑛+1/2

) −
𝜉

2
 (𝑝𝑗

𝑛+1𝑣𝑗
𝑛+1 + 𝑝𝑗

𝑛𝑣𝑗
𝑛+1), 

𝛿𝑡 (𝑣𝑗
𝑛) =  𝛿𝑥

+−(𝜙𝑗
𝑛+1/2

)            (32) 

 𝛿𝑡 (𝜙𝑗
𝑛)
𝑡
= −𝛼𝛿𝑥

+−(𝑣𝑗
𝑛+1/2

) + 𝑣𝑗
𝑛+1/2

+ 𝑓(𝑣𝑗
𝑛+1, 𝑣𝑗

𝑛) + 𝜔 ((𝑝𝑗
𝑛)2 + (𝑞𝑗

𝑛)2). 

We can see that the adjoint scheme (32) is semi-implicit due to the nonlinear term 𝑓(𝑣𝑗
𝑛+1, 𝑣𝑗

𝑛). The values 𝑣𝑗
𝑛+1and 

𝜙𝑗
𝑛+1 can be solved from the last two nonlinear equations of (32) using an iterative method. Then  𝑣𝑗

𝑛+1and 𝜙𝑗
𝑛+1 can 

be substituted into the first two equations of (32) and 𝑝𝑗
𝑛+1and 𝑞𝑗

𝑛+1can be obtained. Using the PAVF method (28) with 

the adjoint method (32), we can write the energy-preserving composition (PAVF-C) method (25) as follows: 

2

𝜏
(𝑝𝑗
∗ − 𝑝𝑗

𝑛) =  −𝛾𝛿𝑥
+−(𝑞𝑗

∗ + 𝑞𝑗
𝑛) + 𝜉(𝑞𝑗

∗𝑣𝑗
𝑛 + 𝑞𝑗

𝑛𝑣𝑗
𝑛)  

2

𝜏
(𝑞𝑗
∗ − 𝑞𝑗

𝑛) =  𝛾𝛿𝑥
+−(𝑝𝑗

∗ + 𝑝𝑗
𝑛) − 𝜉(𝑝𝑗

∗𝑣𝑗
𝑛 + 𝑝𝑗

𝑛𝑣𝑗
𝑛)  

2

𝜏
(𝑣𝑗
∗ − 𝑣𝑗

𝑛) =  𝛿𝑥
+−(𝜙𝑗

∗ + 𝜙𝑗
𝑛)   

2

𝜏
(𝜙𝑗

∗ − 𝜙𝑗
𝑛) =  −𝛼𝛿𝑥

+−(𝑣𝑗
∗ + 𝑣𝑗

𝑛) + (𝑣𝑗
∗ + 𝑣𝑗

𝑛) + 2𝑓(𝑣𝑗
∗, 𝑣𝑗

𝑛) + 2𝜔 ((𝑝𝑗
∗)
2
+ (𝑞𝑗

∗)
2
)      (33) 

2

𝜏
(𝑝𝑗
𝑛+1 − 𝑝𝑗

∗) =  −𝛾𝛿𝑥
+−(𝑞𝑗

𝑛+1 + 𝑞𝑗
∗) + 𝜉(𝑞𝑗

𝑛+1𝑣𝑗
𝑛+1 + 𝑞𝑗

∗𝑣𝑗
𝑛+1)  

2

𝜏
(𝑞𝑗
𝑛+1 − 𝑞𝑗

∗) =  𝛿𝑥
+−(𝑝𝑗

𝑛+1 + 𝑝𝑗
∗) − 𝜉(𝑝𝑗

𝑛+1𝑣𝑗
𝑛+1 + 𝑝𝑗

∗𝑣𝑗
𝑛+1)  

2

𝜏
(𝑣𝑛+1 − 𝑣∗) =  𝛿𝑥

+−(𝜙𝑗
𝑛+1 + 𝜙𝑗

∗)   
2

𝜏
(𝜙𝑛+1 − 𝜙∗) =  −𝛼𝛿𝑥

+−(𝑣𝑗
𝑛+1 + 𝑣𝑗

∗) + (𝑣𝑗
𝑛+1 + 𝑣𝑗

∗) + 2𝑓(𝑣𝑗
𝑛+1, 𝑣𝑗

∗) + 2𝜔 ((𝑝𝑗
∗)
2
+ (𝑞𝑗

∗)
2
)  

We can see that the PAVF-C method (33) inherits the semi-implicit property. If the values 𝑝𝑗
𝑛 , 𝑞𝑗

𝑛, 𝑣𝑗
𝑛 and 𝜙𝑗

𝑛 are 

known, the values 𝑝𝑗
∗ and 𝑞𝑗

∗ can be solved from the first two equations of (33) and substituted into the third and fourth 

equations which are nonlinear in terms of the unknowns 𝜙𝑗
∗ and 𝑣𝑗

∗. Thus, 𝜙𝑗
∗ and 𝑣𝑗

∗ can be obtained by using an 

iterative method. Here Newton’s method is used as a nonlinear solver. Then, 𝑝𝑗
∗, 𝑞𝑗

∗, 𝑣𝑗
∗ and 𝜙𝑗

∗ can be substituted into 

the last two equations in (33) and 𝜙𝑗
𝑛+1 and 𝑣𝑗

𝑛+1 can be obtained by using Newton’s method. Finally, 𝜙𝑗
𝑛+1 and 𝑣𝑗

𝑛+1 

can be substituted into the fifth and sixth equations and 𝑝𝑗
𝑛+1 and 𝑞𝑗

𝑛+1 can be obtained by using the semi-implicit 

property of these two equations. 
With the adjoint scheme (32), we can write down the corresponding plus scheme (PAVF-P) 

   𝛿𝑡 (𝑝𝑗
𝑛) =  −𝛾𝛿𝑥

+−(𝑞𝑗
𝑛) −

𝜉 

4
(𝑞𝑗
𝑛+1𝑣𝑗

𝑛 + 𝑞𝑗
𝑛𝑣𝑗

𝑛 +  𝑞𝑗
𝑛+1𝑣𝑗

𝑛+1 + 𝑞𝑗
𝑛𝑣𝑗

𝑛+1) 
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  𝛿𝑡 (𝑞𝑗
𝑛) =  𝛾𝛿𝑥

+−(𝑝𝑗
𝑛) −

𝜉

4
 (𝑝𝑗

𝑛+1𝑣𝑗
𝑛 + 𝑝𝑗

𝑛𝑣𝑗
𝑛 + 𝑝𝑗

𝑛+1𝑣𝑗
𝑛+1 + 𝑝𝑗

𝑛𝑣𝑗
𝑛+1), 

  𝛿𝑡 (𝑣𝑗
𝑛) =  𝛿𝑥

+−(𝜙𝑗
𝑛) ,                    (34) 

  𝛿𝑡 (𝜙𝑗
𝑛) =  −𝛼𝛿𝑥

+−(𝑣𝑗
𝑛) + 𝑣𝑗

𝑛+1/2
+ 𝑓(𝑣𝑗

𝑛+1, 𝑣𝑗
𝑛) +

𝜔

2
 ((𝑝𝑗

𝑛+1)2 + (𝑞𝑗
𝑛+1)2 + (𝑝𝑗

𝑛)2 + (𝑞𝑗
𝑛)2)  

The scheme (34) is implicit and nonlinear. To obtain the numerical solution 𝑝𝑗
𝑛+1, 𝑞𝑗

𝑛+1, 𝑣𝑗
𝑛+1 and 𝜙𝑗

𝑛+1in (34), we 

need an iterative algorithm which increases the computational time. Here Newton’s method is used as a nonlinear 
solver. 

Numerical Results 

In this section, we present some numerical experiments to verify the theoretical results and to demonstrate the 
effectiveness of the conservative schemes (28), (33), (34). 𝐿∞

𝑛 (𝜏) and 𝐿2
𝑛(𝜏) errors for temporal accuracy is defined by 

𝐿∞
𝑛 = max

1≤𝑗≤𝑁
{|𝑢( 𝑥𝑗 , 𝑡𝑛) − 𝑢𝑗

𝑛| + |𝑣(𝑥𝑗 , 𝑡𝑛) − 𝑣𝑗
𝑛|}, 

𝐿2
𝑛 = (ℎ∑ |𝑢(𝑥𝑗 , 𝑡𝑛) − 𝑢𝑗

𝑛|2𝑁
𝑗=1 )

1/2
+ (ℎ∑ |𝑣(𝑥𝑗 , 𝑡𝑛) − 𝑣𝑗

𝑛|2𝑁
𝑗=1 )

1/2
          (35) 

𝐿∞
𝑗
 and 𝐿2

𝑗
 errors for spatial accuracy can be defined analogously. The preservation of the energy and the mass are 

monitored by the relative errors  

𝐺𝐸 =
|𝐻𝑛 −𝐻0|

|𝐻0|
,             𝐺𝑀 =

|𝑀𝑛 −𝑀0|

|𝑀0|
 

where  

𝐻𝑛 = ∑ (
2𝛾𝜔

𝜉
((𝛿𝑥

+𝑝𝑗
𝑛)2 + (𝛿𝑥

+𝑞𝑗
𝑛)2) + 𝛼(𝛿𝑥

+𝑣𝑗
𝑛)2 + (𝛿𝑥

+𝜙𝑗
𝑛)2 + (𝑣𝑗

𝑛)
2
+ 2𝐹(𝑣𝑗

𝑛) + 2𝜔𝑣𝑗
𝑛|𝑢𝑗

𝑛|2) ℎ.  𝑁
𝑖=1   

denotes the discrete Hamiltonian corresponding to (17), and 𝑀𝑛 is the mass (29) evaluated at 𝑡 = 𝑡𝑛. The rate of 
convergence in time discretization is obtained by using  

𝑜𝑟𝑑𝑒𝑟 ≈ log(𝐿(𝜏1)/𝐿(𝜏2))/log (𝜏1/𝜏2) 

where 𝐿 represents  𝐿∞
𝑛 (𝜏) and 𝐿2

𝑛(𝜏) errors at the time steps 𝜏1 and 𝜏2. The rate of convergence in space discretization 
can be defined analogously. To demonstrate the long-time behavior of the energy-preserving schemes, we take periodic 
boundary conditions. For simplicity, we present the wave profiles of the PAVF scheme (28) in all computations, since 
the other schemes AVF (27), PAVF-C (33), and PAVF-P (34) produce the same profile. 

 

One-dimensional CSB equation  
In this section, we report some numerical results to exhibit the performance of the schemes (28), (33) and (34) and 

verify the energy and the mass conservations. Performance at the PAVF schemes (28), (33) and (34) are compared with 
the fully implicit AVF scheme (27) [18]. An analytical solution has been given in [17]. 

𝑢(𝑥, 𝑡) =
9

10
sech2 (

√15

10
(𝑥 −

√10

5
𝑡)) 𝑒𝑥𝑝 (𝑖 (

√10

10
𝑥 +

1

2
𝑡)) ,  

𝑣(𝑥, 𝑡) =
9

10
sech2 (

√15

10
(𝑥 −

√10

5
𝑡)) ,  

𝑣𝑡(𝑥, 𝑡) =
9

10
sech2 (

√15

10
(𝑥 −

√10

5
𝑡)) tanh (

√15

10
(𝑥 −

√10

5
𝑡)) ,         (36) 

Accuracy test: First, the correctness of the numerical schemes is examined. The spatial domain has been chosen 
large enough that solitary wave propagation does not affect the propagation of the wave. The initial conditions are 
taken from the exact solution (36). 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑣𝑡(𝑥, 0) = 𝑣𝑡,0(𝑥),          (37) 

Table 1 represents 𝐿∞
𝑗
 and 𝐿2

𝑗
 errors and convergence order in space. We note that all methods are both of second 

order in space.  
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Table 1. The 𝐿∞
𝑗
 and 𝐿2

𝑗
 errors and convergence orders in space of the proposed methods with 𝑀 = 4000,  and  

 −16 ≤ 𝑥 ≤ 16 at 𝑡 = 1. 
  𝒉 0.5                                     0.25                              0.125 

                         𝐿∞
𝑗  

AVF [18] 

                          𝐿2
𝑗

 

 

Error 
Order 
Error 
order 

1.174 × 10−2                  3.014 × 10−3             7.508 × 10−4 
    /                                     1.96                              2.00 
1.739 × 10−2                  4.371 × 10−3             1.094 × 10−4 
     /                                    1.99                              2.00 

                        𝐿2
𝑗  

PAVF  

                         𝐿2
𝑗

 

 

Error 
Order 
Error 
order 

1.175 × 10−2                  3.030 × 10−3             7.687 × 10−4 
    /                                     1.95                              2.00 
1.741 × 10−2                  4.392 × 10−3             1.101 × 10−4 
     /                                    1.99                              2.00 

                        𝐿∞
𝑗  

PAVF-C  

                         𝐿2
𝑗

 
 

Error 
Order 
Error 
order 

1.174 × 10−2                  3.014 × 10−3             7.527 × 10−4 
    /                                     1.96                              2.00 
1.135 × 10−2                  4.371 × 10−3             1.094 × 10−3 
     /                                    1.99                              2.00 

                        𝐿∞
𝑗  

PAVF-P 

                         𝐿2
𝑗

 
 

Error 
Order 
Error 
order 

7.501 × 10−3                  1.892 × 10−3             4.730 × 10−4 
    /                                     1.99                              2.00 
4.240 × 10−3                  1.122 × 10−3             2.796 × 10−4 
     /                                    1.91                              2.00 

 
Table 2 lists the  𝐿∞

𝑛  and 𝐿2
𝑛 errors and convergence 

order in time. From the table, we see that all methods 
reach the second order in time except the PAVF method 
which is only first-order. From Table 1 and Table 2, we can 
see that the PAVF-P method has higher accuracy than 
the PAVF and PAVF-C methods. Table 3 and Figure 1 
represent the CPU time of the four methods with different 
temporal steps. All computations were done on a custom 
computer with i7-1.80 GHz. To estimate how long a 
portion of our algorithm takes to run we used the Matlab 

stopwatch timer functions, tic and toc.  The Matlab 
(R2024b) built-in functions tic and toc are used to 
measure the performance of the algorithms. These 
functions return wall-clock time. Since the PAVF method 
and the PAVF-C method are semi-implicit, they require a 
solution of two linear systems of equations as well as the 
solution of two nonlinear systems of equations. On the 
other hand, fully implicit PAVF-P and AVF methods require 
the solution of four nonlinear systems  

Table 2. The 𝐿∞
𝑛  and 𝐿2

𝑛 errors and convergence orders in time of the proposed methods with ℎ = 0.01, −16 ≤ 𝑥 ≤ 16 
at 𝑡 = 1. 

 𝝉 0.5                                     0.25                              0.125 

                         𝐿∞
𝑛  

AVF [18] 
                         𝐿2

𝑛 

Error 
Order 
Error 
order 

2.889 × 10−3                  7.274 × 10−4             1.845 × 10−4 
    /                                     1.99                              1.98 
4.902 × 10−3                  1.243 × 10−3             3.210 × 10−4 
     /                                    1.98                              1.95 

                        𝐿∞
𝑛  

PAVF  
                         𝐿2

𝑛 
 

Error 
Order 
Error 
order 

1.966 × 10−2                  1.061 × 10−2             5.393 × 10−3 
    /                                     0.89                              0.98 
3.238 × 10−2                  1.725 × 10−2             8.788 × 10−3 
     /                                    0.91                              0.97 

                        𝐿∞
𝑛  

PAVF-C  
                         𝐿2

𝑛 
 

Error 
Order 
Error 
order 

2.078 × 10−3                  5.116 × 10−4             1.285 × 10−4 
    /                                     2.02                              1.99 
3.456 × 10−3                  8.685× 10−4             2.316 × 10−4 
     /                                    1.99                              1.91 

                        𝐿∞
𝑛  

PAVF-P 
                         𝐿2

𝑛 
 

Error 
Order 
Error 
order 

2.086 × 10−3                  5.409 × 10−4             1.397 × 10−4 
    /                                     1.99                              2.00 
3.277 × 10−3                  8.441 × 10−4             2.228 × 10−4 
     /                                    1.96                              1.92 

 

Table 3. Computation time for −32 ≤ 𝑥 ≤ 32 at 𝑡 = 1. 
 PAVF PAVF-C PAVF-P AVF [18] 

𝜏 ℎ = 0.1 ℎ = 0.05 ℎ = 0.1 ℎ = 0.05 ℎ = 0.1 ℎ = 0.05 ℎ = 0.1 ℎ = 0.05 
0.1 0.083 0.137 0.129 0.239 0.165 0.350 0.249 0.405 
0.05 0.121 0.240 0.217 0.263 0.220 0.479 0.240 0.509 
0.01 0.509 1.138 0.994 2.206 0.987 2.087 1.097 2.218 
0.005 1.002 3.123 2.027 6.132 1.995 5.528 2.026 4.590 
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(a) h=0.1 

 
(b) h=0.5 

Figure 1. Computation time for -32≤x≤32 at t=1. 

of equations. Accordingly, the PAVF method is more 
efficient than the AVF method. Figure 1 verifies this fact. 
Table 3 also shows that the computational costs of PAVF 
and PAVF-C are less than the fully implicit PAVF-P and AVF 
methods. In addition, we notice that the computational 
times of the PAVF-C and PAVF-P methods are slightly less 
than twice that of PAVF although the PAVF-C method is 
the composition of the PAVF method and its adjoint 
method, and the PAVF-P method is fully implicit. In 
addition, the PAVF-C and the PAVF-P methods have the 
same accuracy as the AVF method, but they are more 
efficient than the AVF method. Finally, we can say that the 
PAVF-P is the most efficient method.  

Next, we test the stability of the scheme concerning 
the initial data. We consider the perturbed initial data 

𝑢𝑛𝑜𝑖𝑠𝑒(𝑥, 0) = 𝑢0(𝑥)(1 + 𝜇𝜃), 𝑣𝑛𝑜𝑖𝑠𝑒(𝑥, 0) = 𝑣0(𝑥)(1 +
𝜇𝜃), 𝑣𝑡,𝑛𝑜𝑖𝑠𝑒(𝑥, 0) = 𝑣𝑡,0(𝑥)(1 + 𝜇𝜃), where 𝜇 is the 

percentage of the noise and 𝜃 is the random variable 
generated from a uniform distribution in the interval 
[−0.5,0.5]. We denote the perturbed solution as 
𝑈𝑝 and  𝑉𝑝.   Figure 2 represents the solitary wave 

obtained by the PAVF scheme (28) with noise using the 
perturbed initial condition with 𝜇 = 0.2. Similar results 
have been obtained for the PAVF-C and PAVF-P methods 
which are not shown here. From the figure, we see that 
the small perturbation in the initial data does not yield any 
significant effect on the wave propagation, which 
confirms the stability of the methods.  

 

 
(a) h=0.1 

 
(b) h=0.5 

Figure 2. Solitary wave propagation with noise. τ=0.001,h=0.5. 

 

Single solitary wave: In this subsection, we examine 
the long-time solitary wave simulation. We solve the SB 
equations (1) in the spatial interval [−64,64] and 
temporal interval [0,40]. We choose the spatial interval 
large enough so that solitary wave propagation and 
conservation properties are not affected by the boundary 
conditions. We can see that solitons move forward 
without any changes in shape as shown in Fig.3. The 
corresponding errors of total energy 𝐻𝑛 and mass 𝑀𝑛  are 

represented by Fig.4. From the figure, we see that the 
errors are small during long-time integration which 
confirms theoretical results. Fig 3(a) represents that all 
four methods preserve the discrete energy up to round-
off errors. From Fig. 3(b) we can see that, the AVF method 
cannot preserve the mass, but the relative error is 
bounded. On the other hand, we can see the excellent 
mass preservation of the other three methods during time 
integration. 
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(a) h=0.1 

 
(b) h=0.5 

Figure 3. Evolution of PAVF solution for τ=0.001,h=0.2 

 

Numerical results show that the proposed schemes have excellent conservation properties and stability even for long 
time integration. 

 

Two-dimensional Schrodinger-Boussinesq equation  
The advantage of the PAVF method becomes more evident in two-dimensional problems [16]. In this subsection, we 

consider the two-dimensional SB equations (1) with 𝑑 = 2, and 𝑓(𝑣) = sin (𝑣) [19,20]. We choose the parameters 
  

                                     

 
(a) h=0.1 

 
(b) h=0.5 

Figure 4. Relative errors in total energy H^n and the mass M^n for τ=0.01,h=0.2. 

 

Table 4. Computation time for ℎ𝑥 = ℎ𝑦 = 0.25, −10 ≤ 𝑥, 𝑦 ≤ 10 at 𝑡 = 1. 

𝝉 PAVF                  PAVF-C                    PAVF-P                      AVF [18] 

0.1 
0.05 
0.01 
0.005 

3.609                 6.575                      13.794                       8.552 
5.160                 9.670                      18.047                      15.798   
28.731               57.022                    97.931                      66.328 
58.076               116.404                  200.128                    131.089 

 

 𝛾 = 𝛼 = −1 and 𝜉 = 𝜔 = −1/10.  The analytical solution of two-dimensional SB equation is not available. The 
initial data are taken as [19]  

𝑢0(𝑥, 𝑦) =
2

𝑒𝑥
2+2𝑦2 + 𝑒−(𝑥

2+2𝑦2)
𝑒5𝑖/cosh (√4𝑥

2+𝑦2) 

𝑣0(𝑥, 𝑦) = 𝑒
−(𝑥2+2𝑦2) 

𝜙0(𝑥, 𝑦) =
1

2
𝑒−(𝑥

2+2𝑦2)               (38) 
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Table 4 indicates the computational time obtained by 
four energy-preserving methods in the spatial domain 
Ω = (−10 × 10) × (−10 × 10) with ℎ𝑥 = ℎ𝑦 = 0.1 for 

the different temporal step size. Here, ℎ𝑥  and ℎ𝑦 are step 

size in 𝑥 −direction and 𝑦 −direction, respectively. From 
the table, we see the PAVF method requires smaller 
computational time than the AVF method, as expected. 
Moreover, as in the one-dimensional case, the 
computational time of PAVF-C method is much less than 
twice that of PAVF. In addition, it can be seen that the 
PAVF-P method is a method with the most CPU time. 

Fig. 5 shows the surfaces of |𝑢|, 𝑣 and 𝜙 at the initial 
time 𝑡 = 0 and the final time 𝑡 = 1. The spatial interval is 
set to Ω = [−16 × 16] × [−16 × 16]. The step sizes are 
taken as 𝜏 = 0.01 and ℎ𝑥 = ℎ𝑦 = 0.25. 

From the left plot of the figure, one can see the initial 
hump collapses as time evolves many spikes appear at the 
end. From the middle plot, one can see that the initial 
hump collapses as time evolves, and a hole appears inside 
the hump. In addition, there are spikes from under the 
horizontal plane. The right graph displays the evolution of 
the plane 𝜙. From the right figure, one can see that again 
the initial hump collapses, but no hole appears. Moreover, 
spikes from under the horizontal plane. The energy and 
mass conservations are depicted in Fig.6. From the figure, 
one can find that PAVF-C preserves the total energy better 
than the other methods. Moreover, all PAVF methods 
preserve the mass better than the AVF method.                                      

 

   

   

Figure 5. Evolution of PAVF solution for τ=0.01,h_x=h_y=0.25  

 

  

Figure 6. Error in the total energy H^n and the mass L^n for τ=0.01,h=0.25. 

                                      

Conclusion 

In this study, we applied the energy-preserving PAVF 
method to the one-dimensional and two-dimensional 
CNSB equations. The method leads to semi-implicit 
algebraic equations for the CNSB equations. In addition, 
we find that the new energy-preserving scheme preserves 
the mass of the equations. In conjunction with the adjoint 
method of the PAVF method, we further introduce the 
conservative PAVF composition (PAVF-C) method and 
(PAVF-P) method. Some numerical results are presented  

to demonstrate the accuracy and efficiency of the method 
for the numerical solution of the CNSB equations. 
Numerical results confirm the theoretical results. Errors in 
the methods and computational times are compared with 
the AVF method. Numerical results verify that the applied 
schemes simulate both one- and two-dimensional CNSB 
system well. 
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