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Breast cancer remains one of the leading causes of mortality among women worldwide and represents a major 
global health challenge. Accurate classification of breast tumors as benign or malignant is therefore of critical 
importance for timely diagnosis and effective treatment. This study aims to enhance breast cancer risk 
classification by integrating machine learning (ML) techniques with a genetic algorithm-based feature selection 
method. Initially, multiple ML algorithms are applied to features extracted from digitized images obtained 
through fine-needle aspiration (FNA) of breast masses. Subsequently, a genetic algorithm-based feature 
selection approach is employed to identify a subset of the most discriminative features. The results demonstrate 
that ML models utilizing the feature subsets selected by the genetic algorithm consistently achieve higher 
classification accuracy compared to their baseline counterparts. This highlights the effectiveness of the proposed 
feature selection strategy in improving the discriminative capacity of ML models. Beyond the observed 
improvements in accuracy, the refined ML models developed in this study show potential for more precise and 
reliable breast cancer diagnoses. By enhancing the performance of ML-based decision support systems, the 
genetic algorithm-based feature selection approach may contribute to the advancement of personalized 
treatment strategies in breast cancer care. 
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Introduction 
 

Breast cancer stands as one of the most common 
malignant tumors globally, constituting 10.4% of all 
cancers. Notably, it holds the unfortunate distinction of 
being the primary cause of mortality among women aged 
between 20 and 50 years [1,2]. According to the World 
Health Organization (WHO), there were 2.3 million cases 
of breast cancer and 685,000 deaths worldwide in 2020. 
By the end of 2020, the number of women currently living 
who have been diagnosed with breast cancer within the 
previous five years amounted to 7.8 million, establishing 
it as the most widespread form of cancer globally [3]. 
Timely detection, prompt diagnosis, and early treatment 
are imperative in preventing the advancement of the 
disease and mitigating its mortality rate. Hence, the 
accurate classification of breast cancers as either benign 
or malignant is of vital importance [4]. 

Machine Learning (ML), a subset of artificial 
intelligence, operates on the principle that machines 
should be provided with access to data and allowed to 
autonomously learn and explore. Its focus lies in 
extracting meaningful patterns from extensive datasets. 
This field harnesses the power of algorithms and statistical 
models to enable machines to learn from experience, 
adapt to changing scenarios, and make informed decisions 
without explicit programming. The essence of ML lies in its 

capacity to uncover insights and patterns, enhancing its 
utility across various domains such as data analysis, 
pattern recognition, and predictive modeling [5]. 

Classification serves as a supervised learning approach 
where a computer program learns from provided data and 
subsequently generates new observations or 
classifications in both ML and statistics. The fundamental 
process entails training an algorithm on a labeled dataset, 
where the desired output is known, allowing the program 
to discern patterns and relationships within the data. 
Following this training phase, the classifier is equipped to 
predict class labels or categories for new, unseen data 
based on the patterns it has learned. Leveraging ML 
algorithms, this process empowers systems to identify 
intricate patterns within data, finding applications in 
diverse domains such as image recognition, natural 
language processing, and fraud detection. Classification 
plays a pivotal role in enhancing automated decision-
making by enabling systems to categorize and interpret 
data effectively. The accuracy of classification is heavily 
contingent on the nature of features within a dataset, 
where the presence of irrelevant or redundant data can 
impact performance. To enhance classification accuracy, 
the utilization of feature selection becomes crucial  [6]. 
This process aims to eliminate irrelevant or redundant 

http://csj.cumhuriyet.edu.tr/tr/
https://orcid.org/0000-0003-1248-7912
https://orcid.org/0000-0003-1681-9398
https://orcid.org/0000-0003-1574-3993
https://orcid.org/0000-0001-9841-1702


Cumhuriyet Sci. J., 46(1) (2025) 369-376 

370 

features, optimizing the dataset by retaining only the 
most significant attributes. Through feature selection, the 
model's efficiency is improved, contributing to more 
accurate and streamlined classification outcomes [7, 8].  

In recent years, researchers have proposed a wide 
range of feature selection techniques based on 
optimization and metaheuristic algorithms. Ye, Xu [9] 
introduced a feature selection approach utilizing adaptive 
particle swarm optimization with leadership learning. 
Ghosh, Datta [10] focused on hyperspectral image data 
and employed Self-adaptive Differential Evolution (SADE) 
for feature subset generation. Zhang, Mistry [11] 
presented  a modified version of the Firefly Algorithm (FA) 
specifically designed to select discriminative features in 
classification and regression models. Baig, Aslam [12] 
introduced  hybrid approach that combines a Differential 
Evolution (DE) optimization algorithm to seek out the 
feature space and yield an optimal subset of features. 
Sindhu and Ngadiran [13] proposed a Sine-Cosine 
Algorithm (SCA) with an Elitism strategy and the best new 
solution update mechanism to select features and 
enhance classification accuracy. Mafarja and Mirjalili [14] 
employed a wrapper feature selection model to 
simultaneously  decrease the quantity of features and 
improve classification accuracy. Abdel-Basset, El-Shahat 
[15] suggested a novel Grey Wolf Optimizer algorithm via 
a Two-phase Mutation to select optimal features.  

Beyond these techniques, the use of Genetic 
Algorithm (GA) has garnered considerable attention due 
to its simplicity, adaptability, and ability to effectively 
explore complex, high-dimensional search spaces. Recent 
studies have applied GA in various medical diagnostic 
tasks, including breast cancer detection. For instance, 
Sehgal et al. [16] employed GA to optimize 
hyperparameters in deep learning models, achieving 
significant improvements in AUC scores for breast cancer 
classification. Similarly, Yaqoob et al. [17] developed a 
hybrid GA–deep learning model using RNA-Seq gene 
expression data, successfully handling high-dimensional 
biological data. Boumaraf et al. [18] used GA for selecting 
BI-RADS features from mammogram images and applied a 
backpropagation neural network for classification. These 
studies emphasize the importance of integrating 
metaheuristic-based feature selection with ML to 
enhance diagnostic accuracy and efficiency in real-world 
clinical scenarios. 

Building on these developments, this study 
investigates the effect of GA-based feature selection on 
the performance of various ML classifiers in breast cancer 
diagnosis. Specifically, five ML algorithms—Decision Tree 
(DT), K-Nearest Neighbors (KNN), Logistic Regression (LR), 
Multi-Layer Perceptron (MLP), and Random Forest (RF)—
are used to classify samples based on features extracted 
from digitized images of fine-needle aspiration Fine-
Needle Aspiration (FNA) of breast masses. The 
classification is performed both before and after applying 
GA for feature selection. The effectiveness of each 
approach is evaluated using key performance metrics: 
accuracy, precision, recall, and F1-score. 

The aim of this study is to systematically assess how 
GA-based feature selection influences the performance of 
different ML classifiers in breast cancer classification. The 
findings are expected to contribute to the growing body 
of knowledge on intelligent diagnostic systems and offer 
practical insights into the design of more accurate and 
reliable clinical decision support tools. 

The remainder of this paper is organized as follows: 
Section 2 introduces the ML algorithms, GA-based feature 
selection strategy, and experimental setup. Section 3 
presents the application of classifiers to the breast cancer 
dataset and summarizes the classification results. Section 
4 discusses the findings of literature, and Section 5 
concludes the study. 

 

Material And Methods 
In this section, a concise overview of the dataset used, 

ML algorithms, feature selection strategy, and the GA 
employed in this study is presented. 

 

Dataset 
This study utilizes the Breast Cancer Wisconsin 

(Diagnostic) Dataset obtained from the University of 
California, Irvine (UCI) Machine Learning Repository [19]. 
The dataset consists of 30 numerical features that were 
extracted from digitized images of FNA of breast masses. 
These features describe characteristics of the cell nuclei 
present in the images. 

Specifically, for each cell nucleus, 10 real-valued 
attributes are computed: 

 
Radius: Mean of distances from the center to points on 
the perimeter 
Texture: Standard deviation of gray-scale values 
Perimeter: Perimeter of the cell nucleus 
Area: Area of the cell nucleus 
Smoothness: Local variation in radius lengths 
Compactness: (𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2/𝐴𝑟𝑒𝑎)  − 1 
Concavity: Severity of concave portions of the contour 
Concave points: Number of concave portions of the 
contour 
Symmetry: Degree of symmetry of the cell nucleus 
Fractal dimension: "Coastline approximation" (fractal 
measure of complexity) 
 

For each of the above attributes, the mean, standard 
error, and “worst” (mean of the three largest values) were 
calculated, resulting in a total of 30 features per instance. 
The dataset includes a total of 569 samples, comprising 
357 benign and 212 malignant tumor instances. 

Prior to model training and feature selection, a series 
of preprocessing steps were applied to the dataset to 
ensure data quality and improve model performance. 
First, the dataset was examined for missing values, and no 
missing observations were detected. All feature values 
were then normalized using min-max normalization to 
scale the data to the [0, 1] range, ensuring that features 
with different scales would not bias the learning 
algorithms. Since the dataset was relatively balanced, no 
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resampling methods such as the Synthetic Minority 
Oversampling Technique (SMOTE) or under sampling 
were required. Finally, the class labels (benign and 
malignant) were encoded as binary values (0 and 1) to 
allow compatibility with the classification algorithms. 

Although only a single dataset is used in this study, the 
Breast Cancer Wisconsin (Diagnostic) dataset is widely 
accepted as a benchmark in the biomedical ML literature. 
It offers a balanced class distribution, clinically relevant 
morphological features derived from diagnostic imaging, 
and enough instances for classification tasks. These 
characteristics justify its use for evaluating the 
effectiveness of the proposed feature selection method. 
Future studies may expand upon this work by applying the 
same methodology to additional datasets to assess 
generalizability. 

 

 Machine Learning Algorithms 
ML algorithms, which are tasked with classification, 

are computational techniques designed to categorize data 
into distinct classes or groups. These algorithms learn 
patterns from labeled training data and apply these 
learned patterns to new, unseen data for classification 
purposes. A brief overview of the algorithms used in this 
study, including LR, DT, KNN, MLP, and RF, is provided 
below. 

Logistic Regression (LR) 
LR is a linear model specifically developed for 

classification tasks, rather than regression. This model 

involves using a logistic function to represent the 

probabilities linked to various outcomes in a single trial. 

Despite its linear nature, logistic regression is particularly 

powerful in binary and multiclass classification problems, 

making it a widely employed algorithm in various fields 

such as statistics, machine learning, and epidemiology 

[20]. 

 Decision Tree (DT) 
DT is a type of non-parametric supervised learning 

method used for classification and regression 

applications. A DT algorithm is organized in a hierarchical 

manner, where each node corresponds to a test of a 

certain feature, each branch represents the outcome of 

that test, and each leaf represents either a class label or a 

distribution of classes [21]. 

K-Nearest Neighbors (KNN) Classifier 
The KNN method is the predominant Neighbors-based 

classification method. The ideal selection of the 'k' 

number relies significantly on the data: typically, a higher 

'k' value reduces the impact of noise but can also blur the 

classification boundaries [22]. 

Multi-Layer Perceptron (MLP) Classifier  
A supervised learning approach called the MLP 

classifier is utilized for learning a function. It makes use of 

stochastic gradient descent, or LBFGS, to optimize the log-

loss function. This algorithm can be used for a variety of 

classification tasks because it excels at identifying complex 

patterns and correlations in the data [23]. 

Random Forest (RF) 
RF is one of the ensemble classification approaches 

that builds multiple DT classifiers on different subsets of 
the dataset and uses averaging to improve prediction 
accuracy and reduce overfitting. Each tree in a random 
forest ensemble is built using a bootstrap sample selected 
with replacement from the training data. This 
methodology, known as bagging, contributes to the 
robustness and generalization capabilities of the overall 
model [24]. 

 

Feature Selection 
Feature selection involves eliminating unnecessary 

and unimportant features from a dataset to enhance the 
efficiency of a learning algorithm. However, this task 
poses significant challenges, primarily due to the vast 
search space involved. The dataset with n features has a 
total of 2n potential solutions. The complexity of this task 
is exacerbated as n increases, which is often the case with 
advancements in data collection techniques and the 
growing complexity of the problems being addressed. 

Feature selection methods are widely employed in 
studies to enhance the accuracy of classification. Among 
the commonly used methods for dimensionality reduction 
are Principal Component Analysis (PCA) [25], Independent 
Component Analysis (ICA)  [26], and Sequential Forward 
and Backward Searches [27]. However, these methods 
often encounter challenges such as local optimal traps or 
high computational costs. 

To address these issues, researchers have turned to 
evolutionary algorithms like GA [28, 29], Particle Swarm 
Optimization (PSO) [9, 30], DE [12,31] and Artificial Bee 
Colony (ABC) [32, 33] optimization. These algorithms have 
demonstrated success in handling tasks with large feature 
search spaces. In this study, GA is employed for feature 
selection, showcasing its effectiveness in optimizing 
classification outcomes. 

 

Genetic Algorithm (GA) 
GA, conceptualized by Holland [34], is widely 

recognized as a highly effective search method for 
approximating solutions in optimization problems. The 
algorithm kicks off by generating an initial population at 
random and iterates through a series of steps to facilitate 
population evolution. 

As a population-based method and a prominent class 
of evolutionary algorithms, GA eliminates concerns 
related to initial values. Typically, the GA commences with 
the creation of random initial population and proceeds 
through an iterative process known as a generation. Each 
generation encompasses stages such as selection, 
reproduction involving crossover and mutation operators, 
evolution, and replacement [35, 36]. The flowchart of GA 
is shown Figure 1. 

The GA was implemented for feature selection using a 
population size of 30 individuals and a maximum of 50 
generations. The algorithm utilized standard binary 
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tournament selection, single-point crossover with a 
probability of 0.8, and a mutation rate of 0.02.  

Initialization

Evaluate

Mutation

Crossover

Selection

Terminate

End

Yes

No

 

Figure 1. The flowchart of GA 

 
A fitness function based on classification accuracy 

obtained from a 3-Nearest Neighbor classifier was 
employed to evaluate feature subsets.  

 

Application and Experimental Results 
In the era of precision medicine, developing accurate 

and robust models for breast cancer plays a pivotal role in 
facilitating early diagnosis and improving patient 
outcomes. To contribute to this goal, the present study 
examines the impact of GA-based feature selection on the 
performance of several ML algorithms for classifying 
breast tumors as benign or malignant. 

The Breast Cancer Wisconsin (Diagnostic) dataset from 
the UCI ML Repository was utilized. A stratified 80:20 
train-test split was employed, with 80% of the samples 
allocated for training and the remaining 20% reserved for 
testing. Classification models were developed using 
several well-established ML algorithms, including LR, DT, 
KNN, MLP, and RF. These models were first evaluated 
using the full feature set, after which the same classifiers 
were re-trained on a subset of features selected via a GA-
based feature selection method. All implementations 
were carried out in Python, utilizing the scikit-learn and 
matplotlib libraries for training, evaluation, and 
visualization. 

All ML models were evaluated using 5-fold cross-
validation to ensure robustness and minimize overfitting. 
The dataset was partitioned into 5 equal subsets, with 4 
folds used for training and 1-fold for testing in each 
iteration. The average performance across all folds was 
recorded for each metric. 

Hyperparameter tuning for classifiers such as DT, KNN, 
and RF was conducted using grid search within a 5-fold 
cross-validation framework to determine optimal 
parameter configurations. For the DT classifier, the 
maximum tree depth (max_depth) was searched over the 
range of [3, 5, 10, 15, 20], and the optimal depth was 
found to be 10. For K-Nearest Neighbors, the number of 
neighbors (n_neighbors) varied between [1, 3, 5, 7, 9], 
with 3 neighbors yielding the best performance. In the 
case of RF, the number of trees (n_estimators) was 
explored within [50, 100, 200], and the maximum depth 
was selected from [None, 10, 20, 30]. The best results 
were obtained using 100 estimators and maximum depth 
= 20. The final hyperparameter configurations were 
selected based on the highest average accuracy achieved 
across five folds. 

To assess and compare the classification performance 
of the baseline and GA-enhanced models, four evaluation 
metrics were calculated: accuracy, precision, recall, and 
F1-score. In addition, confusion matrices were generated 
to provide a visual breakdown of correctly and incorrectly 
classified instances. The formulas used for these metrics 
are presented below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒 𝑐 𝑎𝑙𝑙

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒 𝑐 𝑎𝑙
 (4) 

 
Here, TP denotes true positives, TN true negatives, FP 

false positives, and FN false negatives. 
Figure 2 presents the confusion matrices of all 

classifiers, both with and without GA-based feature 
selection. These matrices reveal the distribution of TP, TN, 
FP, and FN predictions, allowing for a visual assessment of 
classification improvements. In most cases, GA leads to a 
reduction in FP and FN values, indicating enhanced 
precision and recall. 

For example, KNN and MLP show visible 
improvements after GA, with fewer misclassified 
instances. DT also benefits from GA by reducing 
misclassification rates. In contrast, RF displays minimal 
change in its confusion matrix, consistent with its inherent 
feature selection capability. 

These matrix-based observations align with the metric 
values in Table 1, confirming that GA contributes to more 
accurate and reliable classification by eliminating less 
relevant features and focusing on the most informative 
ones. 
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Figure 2. Confusion matrices of the classifiers before and after Genetic Algorithm-based feature selection, showing 

differences in TP, TN, FP, and FN rates. 
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The corresponding performance metrics for each 
model are summarized in Table 1, offering a clear 
comparison between the baseline ML models and those 
optimized through GA-based feature selection. 

 
Table 1. Performance comparison of ML algorithms  

Model Accuracy Precision Recall F1-score 

LR  0.9736 0.9824 0.9859 0.9790 

GA-LR 0.9754 0.9816 0.9830 0.9803 

DT  0.9350 0.9485 0.9492 0.9479 

GA_DT  0.9456 0.9555 0.9549 0.9562 

KNN 0.9473 0.9577 0.9577 0.9577 

GA_ KNN  0.9561 0.9713 0.9774 0.9652 

MLP  0.9701 0.9781 0.9802 0.9761 

GA-MLP  0.9719 0.9803 0.9830 0.9776 

RF 0.9631 0.9768 0.9830 0.9707 

GA_ RF  0.9631 0.9754 0.9802 0.9707 

 
The numerical results indicate that most classifiers 

benefit from GA in terms of improved predictive accuracy, 
recall, and F1-score. Among the classifiers, DT, KNN, and 
MLP demonstrated the most substantial improvements 
following feature selection. The accuracy of DT increased 
from 0.9350 to 0.9456, and its F1-score rose from 0.9479 
to 0.9562, indicating a more reliable and generalizable 
model. KNN also exhibited a consistent enhancement 
across all metrics, particularly in recall (from 0.9577 to 
0.9774), which is essential in medical contexts where false 
negatives must be minimized. MLP showed increased 
precision, recall, and F1-score, achieving a final F1-score 
of 0.9776, reflecting its improved balance between 
sensitivity and specificity after GA was applied. 

LR, which already exhibited strong baseline 
performance, experienced marginal gains in accuracy 
(from 0.9736 to 0.9754) and F1-score (from 0.9790 to 
0.9803). However, a slight decline in recall was observed, 
suggesting that GA may have limited impact on classifiers 
with inherently stable decision boundaries. 

In the case of RF, performance metrics remained 
unchanged after applying GA. This is consistent with its 
ensemble nature and built-in feature selection 
mechanism, where redundant or less informative features 
are implicitly down weighted during training. As a result, 
external feature selection techniques like GA may offer 
minimal added value for RF. 

These results suggest that GA can effectively enhance 
the performance of various ML classifiers, especially those 
more sensitive to feature dimensionality. By eliminating 
irrelevant or redundant features, GA helps improve 
classification robustness and focus on the most 
discriminative patterns in the data. This is particularly 
important in medical diagnostics, where high recall and 
precision are critical to ensuring accurate and safe 
decision-making. 

Therefore, integrating GA as a preprocessing step can 
be a valuable strategy in the development of more 
efficient and interpretable ML-based clinical decision 
support systems. Future research should consider testing 
the proposed methodology on larger and more diverse 
datasets, as well as comparing GA with other 

metaheuristic algorithms to further evaluate its 
adaptability and generalization capability in complex 
medical applications. 

 

Discussion 
 
The results of this study demonstrate that applying 

GA-based feature selection prior to ML classification 
significantly enhances diagnostic performance for breast 
cancer detection. Specifically, classifiers such as DT, KNN, 
and MLP exhibited notable gains in accuracy, recall, and 
F1-score after feature reduction. These findings confirm 
the critical role of eliminating redundant or non-
informative attributes in improving classification 
reliability. 

Recent literature also supports the integration of 
metaheuristic feature selection methods with ML models 
in cancer classification. For example, Tan et al. [37] 
applied genetic programming to oral cancer prognosis, 
reporting an average accuracy of 83.87%, while Sharma et 
al. [38] achieved 96.66% and 93.06% accuracy using 
Support Vector Machine (SVM) and Artificial Neural 
Network (ANN), respectively, on the WBCD dataset. Sidey-
Gibbons and Sidey-Gibbons [39] reached up to 96% 
accuracy using ensemble models. In comparison, our 
study reported 97.5% accuracy with LR and 97.1% with 
MLP after GA optimization, demonstrating the 
competitive performance of our proposed approach. 

A key strength of this study lies in its flexibility across 
multiple classifiers. Unlike many existing studies that 
evaluate feature selection within a single model, we 
assessed five classifiers, both linear (LR) and nonlinear 
(MLP, RF), and observed consistent performance 
improvements. This adaptability makes the framework 
broadly applicable in clinical diagnostic modeling. 
Additionally, reducing the feature set improves 
interpretability, an essential aspect in medical decision-
making. 

From a clinical perspective, enhancing classification 
performance directly supports more reliable decision 
support systems. Improving recall reduces the risk of false 
negatives, which is critical for detecting malignant cases 
early. Simultaneously, improved precision minimizes false 
positives, preventing unnecessary interventions and 
patient distress. 

Nonetheless, certain limitations must be 
acknowledged. The current study was conducted using a 
single, albeit well-established and clinically relevant, 
dataset (WBCD). While its quality and balance make it 
ideal for benchmarking, broader validation is required. 
Future studies should evaluate the proposed framework 
on additional datasets, including those from real-world 
clinical environments or public repositories. 

Moreover, while GA demonstrated strong 
performance, it also carries known limitations such as 
sensitivity to hyperparameters, risk of convergence to 
local optima, and higher computational cost. Future 
research may consider comparing GA with alternative 
metaheuristic or hybrid approaches—such as PSO, ABC, 



Cumhuriyet Sci. J., 46(1) (2025) 369-376 

375 

Grey Wolf Optimizer (GWO) or filter-wrapper 
ensembles—to enhance both robustness and efficiency. 

In summary, the integration of GA with ML classifiers 
proves to be an effective strategy for breast cancer 
classification. The proposed method achieves high 
predictive accuracy, promotes model interpretability, and 
holds promise for clinical application. However, continued 
evaluation on diverse data sources and comparative 
studies with alternative optimization strategies will be 
essential for building more generalizable and scalable 
diagnostic systems. 

 

Conclusions 
 

This study evaluated the effectiveness of GA-based 
feature selection in enhancing the performance of ML 
classifiers for breast cancer diagnosis. Using a dataset 
comprising 30 features derived from fine-needle aspirate 
images, GA was employed to identify the most 
informative subset before classification. 

The experimental findings confirmed that applying GA 
led to improvements in classification accuracy, recall, and 
F1-score, particularly for DT, KNN, and MLP. These results 
underscore the importance of dimensionality reduction 
and the role of relevant feature selection in improving 
diagnostic accuracy. 

While GA offers valuable advantages—such as 
adaptability and effective search capability—it also 
presents certain limitations. These include sensitivity to 
parameter tuning, potential convergence to local optima, 
and high computational cost. To overcome these 
challenges, future work should explore and compare 
alternative metaheuristic approaches in similar 
classification tasks. 

Additionally, validating the proposed approach on 
more diverse and larger datasets, beyond the WBCD, such 
as those publicly available, will be crucial in assessing 
generalizability and scalability. Overall, this study supports 
GA as a promising preprocessing technique for improving 
ML-based breast cancer diagnostic systems, while also 
highlighting the importance of comparative evaluations 
and broader dataset applications in future research. 
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