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This study compares the use of Long Short-Term Memory (LSTM) networks for predictive modeling with 
multiplicative calculus. We evaluate and quantitatively analyze both methodologies to determine their 
prediction performance. While LSTM networks are investigated for them power to learn and generalize patterns, 
the multiplicative calculus technique is analyzed for its ability to grasp complex connections within the data. This 
study attempts to shed light on the efficacy of each approach by carefully analyzing error measures including 
mean squared error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). The 
results aid in the comprehending of the subtleties related to LSTM networks and multiplicative calculus, assisting 
practitioners and researchers in choosing the best method for tasks involving predictive modeling. 
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Introduction 
 

The utilization of big data in computational biology 
research is on the rise due to the quick and practical 
creation of many data due to improvements in high-
throughput computing and biotechnology. The main 
objective is to analyze the growing corpus of biological 
data and offer a basis for tackling significant biological and 
medical problems. Although these techniques can 
precisely identify patterns and create models from data, 
they are dependable and efficient. One important use of 
this study is in the detection and treatment of life-
threatening conditions, such as diabetes mellitus (DM). [1-
3]. 

Diabetes is a well-known and serious issue that affects 
both industrialized and developing nations in the modern 
world [4]. The hormone responsible for facilitating the 
body's absorption of glucose from diet is insulin. This 
deficit, which is often brought on by pancreatic 
dysfunction, can lead to several significant symptoms, 
including coma, renal [5], heart disease [6], retinal failure, 
and cardiovascular problems [7]. Research has shown that 
the number of adult (18 and older) cases of diabetes 
increased significantly between 1980 and 2014 [1], and by 
2045, more cases are expected. Global estimates of 
diabetes patients in 2017 were 451 million; by 2045, that 
number is expected to climb to 693 million [8]. 

An extra statistical analysis [6] indicates that 
approximately 500 million individuals globally suffer from 
diabetes, highlighting the severity of the issue. 
Furthermore, the study projects a notable rise in diabetes 
prevalence, with estimations of 25% by 2030 and 51% by 
2045. However, there is still a significant need for research 
focused on improving the health and quality of life (QoL) 

of persons with diabetes, as well as reducing the start of 
disease complications and premature mortality. It's 
critical to remember that, even in the absence of long-
term treatment, effective management and prevention 
are still achievable, particularly in the case that accurate 
and early forecasts can be established. 

Recent technological developments, particularly the 
use of artificial intelligence methods, have shown to be 
extremely advantageous for the healthcare sector. The 
literature offers a variety of methods and approaches to 
enhance diabetes accuracy. In recent years, several of 
diabetes prediction techniques have been developed and 
published. A framework based on machine learning was 
introduced in [9]. Numerous classification algorithms 
were employed by the authors, including Naive Bayes (NB) 
[10], Support Vector Machine (SVM) [11],  AdaBoost (AB) 
[12], Decision Tree (DT) [13], Random Forest (RF) [14], 
Logistic Regression (LR) [15], Gaussian Process 
Classification (GPC) [10] and Artificial Neural Network 
(ANN) [11]. In addition, a logistic regression model was 
presented by Qawqzeh et al. [15] for the categorization of 
type 2 diabetes, and it achieved an impressive 92% 
accuracy. 

Nevertheless, a comparison study with known 
procedures was absent from their research. Further 
research that focused on the effectiveness of linear 
support vector machines (SVMs) also used SVMs to 
classify individuals with diabetes mellitus. However, this 
study only included scant information on parameter 
selection and lacked a comprehensive comparison with 
state-of-the-art technology [16]. Furthermore, although 
the study did not specify accuracy standards, the PIMA 
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Indian Diabetes Study was used as the basis for the 
investigation of the categorization of diabetes using naïve 
Bayes (NB) and Support Vector Machines (SVMs). 
Numerous additional studies have used a variety of 
machine learning methods and datasets to predict 
diabetes; some of these studies have produced 
encouraging results. Some of these research, too, lacked 
direct comparisons with cutting-edge techniques [17, 18]. 

Furthermore, a thorough assessment of machine 
learning algorithms for diabetes prediction from 2010 to 
2019 was carried out by Hussain et al. (2021). Based on 
the Matthews correlation coefficient, they discovered 
that Random Forests and naïve Bayes performed better 
overall [19]. 

Complex-valued function solutions involving complex 
variables have been addressed by Bashirov and Riza [20, 
21] and Uzer [22] through the expansion of geometric 
(multiplicative) calculus. Differential equation modeling 
has become a part of this discipline [23]. Due to its 
extensive applications in fields including applied and pure 
mathematics, engineering [24], applied mechanics, 
quantum physics, analytical chemistry, astronomy, and 
biology, nonlinear equations have attracted a lot of 
attention [24, 25]. Aniszewska et al. [26] investigated an 
alternate use of the Runge-Kutta technique in dynamical 
systems, and [27] created the bigeometric variant of the 
Runge-Kutta method. For approximating solutions to 
ordinary differential equations, temporal discretization 
makes considerable use of this approach, which belongs 
to an important family of implicit and explicit iterative 
methods in numerical analysis [28]. The Runge-Kutta 
family includes the popular RK4 technique, which is well-
known in numerical analysis for its efficiency in 
approximating solutions to ordinary differential 
equations. 

LSTM networks have been increasingly explored in the 
medical field for predicting and managing various diseases 
beyond diabetes. Researchers have applied LSTMs in the 
prediction and diagnosis of complex conditions such as 
heart disease [29], Alzheimer's [30], and skin diseases 
[31], where temporal patterns in patient data play a 
crucial role. 

Proposed Method 

According to this notion, individuals with diabetes are 
split into two categories based on their current health 
status: group C is for individuals with challenges, and 
group D is for those without issues. The paradigm treats 
acute and chronic disorders in the same way, without 
distinguishing between various types of consequences. 
Initially, individuals without difficulties in the diabetic 
population can advance to the complications group at the 
pace indicated by the symbol λ. This transition results in a 
reduction in group D's population by λ times the current 
number, while group C's population increases 
proportionately.  For individuals with diabetes-related 
problems, three probable outcomes are taken into 
account: disability, death, or recovery.  It is assumed that 
those who have recovered would remain in the diabetic 

category and keep their diabetes status. According to the 
diabetic complications model (DC), people with diabetes 
who encounter difficulties may be able to overcome them, 
pass away from them, or become disabled. It's 
noteworthy to notice that people who recover from 
diabetes are still considered to be diabetics, even if those 
who die or become crippled are no longer considered to 
be part of the community. The variables γ, δ, and v, in that 
order, indicate the rates of recovery, disability, and 
mortality due to complications. 

The number of people in the complications section 
fluctuates as a result.  The number of people experiencing 
difficulties connected to their recovery, the number of 
fatalities, and the number of people with impairments all 
drop by γ times, δ times, and v times, respectively, in the 
compartment. Patients with uncomplicated diabetes are 
becoming more prevalent at the same time as twice as 
many people are recovering from complications. 

Natural fatalities that occur in both compartments are 
also taken into consideration by the model; in this case, v 
represents the mortality rates. Natural mortality reduces 
the population by ν times the current number in the 
compartment (C) for complications and by v times the 
current number in compartment (D) for simple diabetes. 

Furthermore, it is predicted that the number of people 
with simple diabetes will rise along with the total 
incidence of diabetes, which is indicated by the letter. 

A proposed formulation of this DC model is as follows, 
according to [29]. Give the mathematical equations or 
expressions that match the formulation of the model as it 
appears in the cited publication. For a more in-depth 
explanation, you can insert any specific equations or 
expressions from the text here. 

( )    
dD

d
I D

t
C         (1) 

( )      D v
d

dt
µ

C
C         (2) 

where > 0 and λ, γ, µ, δ, and v > 0. 
Two different approaches were used in the 

examination of the DC model: long short-term memory 
(LSTM) technology and multiplicative Runge-Kutta. These 
techniques were evaluated and contrasted for their 
efficacy in modeling the dynamics of the comorbid 
diabetic population. 

 
Multiplicative Runge Kutta 

 

The fact that multiplicative calculus is limited to positive-
valued functions of real variables is one of its drawbacks. 
Complex multiplicative calculus can effectively address 
this constraint, though. Uzer's groundbreaking work [22] 
provided an initial introduction to complex multiplicative 
calculus, which was further developed by Bashirov and 
Riza's in-depth mathematical analyses in [20] and [32]. 
The key motivation for expanding to the complex domain 
is the knowledge that the derivative is a local property. 
Functions can be transformed into complex-valued 
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functions of real variables to escape the restriction to 
positive values. This transformation also eliminates the 
need for the Cauchy-Riemann criteria, allowing the real 
and imaginary components to be clearly separated from 
one another. 

1

0

( )
lim

( )

 h

h

f x h

f x
         (3) 

This definition becomes crucial since f (x) is a positive 
function on the interval A and has a well-defined 
derivative at x. In these cases, the relationship between 
the multiplicative and classical derivatives can be 
expressed as follows: 

𝑓∗(𝑥) = 𝑒𝑥𝑝 (
𝑓′(𝑥)

𝑓(𝑥)
)        (4) 

where (ln ◦f )(x) = ln f (x). 

Some basic rules of differentiation are: 

     

      





 
 
 

h x h

* *

* *

(x)*

h (x)*

* (

*

*

)h

(cf) (x) = f (x)

(fg) (x) = f (x)g * (x)

f f

f x ·f x

foh x  = f

(x)

h

(x) =
g g * (x)

f =

x
 

(5) 

The multiplicative Runge-Kutta techniques are applied 
in the above context, where c is a positive constant and 
functions f, g, and h are differentiable, to estimate 
solutions to the multiplicative differential equations of the 
following form: 

0 0( ) ( ) , ( ),  y x f x y y x y        (6) 

An equivalent derivation of the ordinary Runge-Kutta 
(RK) techniques may be made for the multiplicative 
Runge-Kutta (MRK) methods. In particular, the fourth-
order Runge-Kutta technique (RK4) is frequently used 
because it strikes a compromise between accuracy and 
simplicity. The Runge-Multiplicative obtained in [33] 
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By using the properties of multiplicative calculus we 
have to change the form of DC-model to multiplicative by 
using equation (4). The multiplicative version of DC-Model 
will be: 
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Long Short-Term Memory (LSTM) 

  Long input sequences may be processed efficiently by 
recurrent neural networks (RNNs) containing feedback 
connections, as the Long Short-Term Memory (LSTM) 
architecture created by Hochreiter and Schmidhuber in 
1997 [34]. A conventional LSTM system consists of an 
input gate, an output gate, a forget gate, and a cell. This 
enables it to manage the information flow via the gates 
and preserve values for arbitrary lengths of time [35]. This 
design is particularly well-suited for tasks requiring time 
series data because of its ability to handle delays in 
unforeseen events [36]. In many situations, LSTMs are 
preferable to RNNs, hidden Markov models, and other 
sequence learning approaches because they were 
specifically designed to address the vanishing gradient 
problem that typically happens during RNN training. 
Moreover, LSTMs are advantageous for handling 
sequences with varying length gaps [37]. 

Tensors of particular forms are essential to the 
construction of an LSTM, as seen in Figure 1, in order to 
facilitate effective information flow throughout the 
network. The dimensions of the cell state tensor ( ) often 
show up as (batch size, num units), which indicates the 
number of LSTM units and the simultaneous processing of 
samples. Potential values for addition to the cell state are 
stored in the candidate cell state tensor, which has a form 
similar to the cell state tensor. Similarly, the output of the 
LSTM cell, the hidden state ( ) tensor, is consistent in 
shape (batch size, num units) and guarantees smooth 
information transfer across the network. These tensor 
configurations are pivotal in facilitating the effective 
processing and retention of information across lengthy 
sequences, rendering LSTM networks highly suitable for 
diverse sequential data tasks. 

 

 
 

Figure 1.  The Architecture of LSTM Network 
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The provided TensorFlow/Keras code describes a 
Sequential model architecture with two Long Short-Term 
Memory (LSTM) layers and a Dense layer, designed for 
sequence prediction tasks. Each LSTM layer contains 64 
memory units and handles input sequences of shape 
(None, 2), offering flexibility in managing sequences of 
varying lengths while capturing complex temporal 
relationships. Efficient training and the introduction of 
non-linearity are crucial for learning intricate patterns. 
This can be achieved by using the 'relu' activation 
function, along with Glorot uniform initialization for both 
the kernel and recurrent weights. The way the returning 
sequences are configured in both LSTM layers makes it 
easier to generate output sequences at every time step, 
which improves the predictive power of the model. The 
Dense layer with two units then uses a linear activation 
function to provide predictions based on the sequences 
that have been analyzed. The model remains stable and 
consistent throughout thanks to the Glorot uniform 
initialization of kernel weights and the zero initialization 
of bias terms. This well designed architecture is a strong 
answer for a wide range of sequential data processing jobs 
because it makes use of the advantages of both the Dense 
layer's flexibility for precise predictions and the 
capabilities of LSTM layers for capturing temporal 
correlations. The offered code uses TensorFlow/Keras to 
assemble and train a sequential model. The mean squared 
error (MSE) loss function and the Adam optimizer are used 
to construct the model, and accuracy is included as a 
metric for assessment during training. Using a batch size 
of 32, the model is fitted to the training data for 200 
epochs during the training phase. Furthermore, validation 
data is supplied to evaluate the model's performance on 
data that was not encountered during training. The 
'history' variable contains the training history for further 
examination. 

Table 1. Model Summary 

Layer (type) Output Shape 

LSTM 

LSTM 

Dense 

(None, None, 64) 

(None, None, 64) 

(None, None, 2) 

Total params 
Trainable params Non-

trainable params 

50,306 

50,306 

0 

Two LSTM layers and a Dense layer make up the 
model. With 64 units in the output tensor, each LSTM 
layer's output form of (None, None, 64) denotes variable-
length sequences. The output form of the Dense layer is 
(None, None, 2), which represents predictions in two 
units. The model has 50,306 total parameters, all of which 
may be trained. The model does not contain any non-
trainable parameters. 

Error Analysis and Model Comparison  

This section conducts a comprehensive study of the 
model's performance, including a forecast for 992 time 

steps and a full error analysis. Two key error measures are 
used to assess the efficacy of the models: Mean Squared 
Error (MSE) and Mean Absolute Percentage Error (MAPE). 
These metrics quantify the variation between the 
expected values and the actual values (xi). For MSE, 
average squared differences are computed, providing a 
measure of overall prediction accuracy. On the other 
hand, MAPE gives information about the relative accuracy 
by computing the percentage difference between the 
actual and projected values. In order to determine the 
specific benefits and drawbacks of the models, it is 
necessary to have a complete understanding of the 
predictive capability of the models, which is provided by 
both measurements.  

The MSE formula and MAPE formula can be 
summarized as: 

2
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The predicted values are indicated by
ix , the actual 

values are denoted by
ix , and the total number of data 

points in the dataset is indicated by n. The error analysis 
that follows will offer a detailed comparison of the models 
and clarify how well each one captures the underlying 
patterns in the dataset. 

Simulation and Comparison Results 

The effectiveness of the Long Short-Term Memory 
(LSTM) networks and the conventional Runge-Kutta 
method of order 4 (RK4) has been assessed and 
contrasted with the Multiplicative Runge-Kutta method of 
order 4 (MRK4) utilizing three important error metrics: 
Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), and Mean Squared Error (MSE). 

The Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), and Mean Squared Error (MSE) for both D(t) 
and C(t) were computed in order to assess how well the 
RK4 and MRK4 approaches replicated the dynamics of the 
diabetic population model.  

The dynamics of two variables, D(t) and C(t), with their 
rates of change controlled by certain parameters, are 
modeled in this system of differential equations. The 
following is a definition of the parameters used in this 
model: With respect to λ=0.1, μ=0.2, γ=0.05, δ=0.3, and 
v=0.1, 𝐼=1.0 denotes a constant input. Important 
processes including growth, decay, and the relationships 
between the two variables are controlled by these factors. 
The system describes the evolution over time of D(t), 
which may correspond to a factor connected to diabetes, 
and C(t), which may represent a control mechanism. Since 
both variables begin at the same value, D (0) = 1.0 and C 
(0) = 1.0 are the beginning conditions. The simulation has 
a step size of 0.1 and runs from 1 to 200 units. The 
numerical solution to the issue is obtained using the 4th-
order Runge-Kutta (RK4) approach, which computes the 
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development of D(t) and C(t) at each step in time. This 
approach helps us study the relationships and changes in 
the variables over time, giving us important information 
about the behavior of the system, given these initial 
conditions and the parameters that have been provided. 

These metrics are crucial indicators of how accurately 
and consistently each numerical method represents the 
model's behavior across time. Figure 2 offers critical 
benchmarks for assessing how accurate the simulations 
are in comparison to the actual data. This graph 
demonstrates exactly how MRK4 and RK4 work together 
and in a similar manner. 

Table 2: Error Metrics for D(t) and C(t) 

Metric D(t)    R(t) 

MSE 6.9523x10-19 4.0598x10-18 

RMSE 8.3381x10-10 2.0149x10-9 

MAE 1.08997x10-10 3.5262x10-10 

 
All of the error metrics (MSE, RMSE, and MAE) in Table 

2 for both components D and C are extremely close to 
zero, suggesting that RK4 and MRK4 are essentially 
producing results that are almost similar with very little 
fluctuation. This might imply that MRK4 is a tweak that 
maintains accuracy on par with traditional RK4. 

The model is configured using the mean squared error 
(MSE) as its loss function and leverages the well-known 
Adam optimizer for neural network optimization.  

During a predetermined number of epochs (200 in this 
example), the training procedure involves regularly 
presenting the training set and its associated output to the 
model with a batch size of 32. Throughout this training 
process, vigilant monitoring is employed, and the 
progression of the validation loss as well as the training 
loss is graphically shown. An important tool for analyzing 
the convergence patterns and spotting any overfitting 
tendencies in the model is this chart. 

Plotting the training loss and validation loss over the 
duration of epochs, the resulting graphical representation 
provides important insights into the learning dynamics of 
the model. Following the training phase, predictions are 
created on the validation set, allowing for a direct 
comparison of the projected values with the actual data. 
To completely evaluate the model's predictive capacity, 
standard evaluation metrics including mean squared error 
(MSE), root mean square error (RMSE), and mean 
absolute percentage error (MAPE) are produced. When 
combined, these measures offer a quantitative 
assessment of the model's accuracy and give academics 
enlightening guidance on the reliability and efficacy of the 
predictions. 

 

(a) Validation loss 

(b) Validation loss with zoom in 

Figure 3.Validation loss during the training process 

 
The validation loss's evolution during the training 

process is seen in Figure 3. The graph shows how the 
model's performance changed throughout several epochs 
on the validation set. The y-axis displays the 
corresponding loss values, while the x-axis represents the 
training epochs. Examining the validation loss's 
convergence over epochs is crucial since it tells us 
something about how effectively the model adapts to new 
data. A consistent decrease in the validation loss indicates 
better performance; oscillations or a plateau, on the other 
hand, can signal potential issues like overfitting or 
convergence issues. The model's learning phase is shown 
by the early decline in validation loss in Figure 3, and the 

 

Figure 2.   Comparision of MRK4 and RK4 
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subsequent stability points to a balanced convergence. 
Researchers may determine how long to train the model 
for, what regularization strategies to employ, and whether 
the model is typically dependable in detecting the 
underlying patterns in the dataset by closely examining 
this graph. 

 
Figures 4a and 4b provide a comprehensive 

comparison between the prediction performance of LSTM 
approaches and the numerical approximation for the 
system's state functions D(t) and C(t). The figure illustrates 
how effectively an LSTM model works when predicting 
system behavior using the MRK4 integration strategy. The 
blue line, which represents the training data, shows how 
the system's behavior evolved over the model's training 
phase and shows how well the LSTM was able to recognize 
the underlying dynamics. The yellow line represents the 
validation data, which was not used for training but helps 
determine how well the model can generalize to new 
data. The model's ability to predict the behavior of the 
system based on inputs from the validation or test set is 
demonstrated by the green line, which represents the 
predicted data. Last but not least, the LSTM model's 
estimate of the system's future behavior over a certain 

period is shown by the red line, which is the anticipated 
data. 

 
The effectiveness of the LSTM in predicting the 

behavior of the system when an MRK4 is present is seen 
in Figure 5. show the absolute error resulting from the 
LSTM prediction results using the numerical 
approximation of the state functions D(t) and C(t), 
respectively. The computation of these errors is based on 
the absolute difference between the matching data 
obtained from the LSTM algorithm and the numerical 
approximation data. 

The numerical solution of our RC diabetes model, 
which serves as validation data, is compared with the 
absolute errors obtained via the Long Short-Term Memory 
(LSTM) technique in Figure 5. Particularly in terms of how 
well the LSTM performs on data that wasn't used for 
training, these errors serve as quantitative metrics that 
reveal information about the prediction accuracy of the 
model. The figures provide useful information on how 
effectively the LSTM approximates and captures the 
behavior of our RC diabetes model. 

The absolute errors shown in Figure 4c may be used to 
calculate a quantitative evaluation of the differences 
between the deep learning approaches (LSTM) 
predictions and the actual numerical solution obtained 
with Multiplicative Runge-Kutta (MRK). The results of this 
comparative research show that the MRK-based 
numerical approach and the LSTM method accord quite 
well. The findings show a substantial relationship between 
the reliability of the LSTM model and its accuracy in 
capturing and reproducing the dynamics of the RC 
diabetes model. 

Table 3: Performance Metrics 

Metric Value 

Mean Absolute Error (MAE) 0.004594215327693641 
Mean Squared Error (MSE) 2.151950235700345e-05 
Root Mean Squared Error 
(RMSE) 

0.004638911764304582 

Mean Absolute Percentage 
Error (MAPE) 

0.13433378151151 

 

 

(a) Trained, validated, predicted and forecasted for D 

 
(b) Trained, validated, predicted and forecasted for C 

 

Figure 4. Comparision Of  LSTM and Multiplicative Runge-
Kutta 

 

Figure 5.    Absolute Error for Each Element 
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The performance evaluation of the model reveals 
positive results for several metrics. With mean absolute 
error (MAE) of 0.0046 and average deviations from true 
values averaging at a minimal scale, our model 
demonstrates a high degree of accuracy in forecasting 
values. The Mean Squared Error (MSE) of around 
2.15×10−5, which indicates that the forecasts exhibit 
minute squared errors, further demonstrates the 
correctness of the model.  

The Root Mean Squared Error (RMSE) of 0.0046, which 
indicates how frequently projections differ from real data, 
supports these findings. Furthermore, the Mean Absolute 
Percentage Error (MAPE) of 0.1343 indicates an average 
percentage error of around 13.43%, which is rather low 
given the circumstances of our research but not 
insignificant. These results corroborate each other and 
show how well our model predicts outcomes. The final 
method employed is outstanding; it demonstrates an 
amazing ability to find intricate patterns in the data, 
leading to low error projections that are accurate. 

 

Conclusion 

In the end, this study thoroughly compared two 
distinct methodologies: multiplicative calculus and long 
short-term memory (LSTM) networks. We assessed the 
prediction performance of both methods using both 
quantitative analysis and close inspection. It was 
thoroughly examined if the proposed multiplicative 
calculus technique could extract complicated connections 
from the data, and the study looked into the learning and 
generalization capacities of LSTM networks. The 
comparison was facilitated by in-depth analyses of error 
metrics, including mean squared error (MSE), root mean 
square error (RMSE), and mean absolute percentage error 
(MAPE). By comparing the benefits and drawbacks of 
LSTM networks and multiplicative calculus, we hoped to 
provide significant insights into the relative effectiveness 
of each in predictive modeling. 
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