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mathematical properties and practical implications. Asymptotic formulas have been derived for the solutions,
eigenvalues, and nodes of the problem, providing a deeper understanding of the behavior of the system under
varying conditions. These asymptotic results form the basis for analyzing the spectral characteristics and node
distribution of the system. In addition, an algorithm is developed that effectively solves the inverse nodal
problem and reconstructs the system coefficients from the nodal data.
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Introduction

The Dirac operator is a mathematical operator that
appears in quantum mechanics and quantum field theory.
It was introduced by the physicist Paul Dirac in 1928 as a
way to describe the behavior of electrons in relativistic
quantum mechanics [1]. The first important and
comprehensive results regarding these operators were
discussed in Levitans’s work [2]. Inverse problems for
Dirac operators have been addressed and studied in detail
by many researchers (see for example [3-5]).

The fractional calculus has gained considerable
attention in various scientific disciplines due to its wide
range of applications and its effectiveness in dealing with
complex systems. Fractional calculus extends the
traditional integer-order calculus to include derivatives
and integrals of non-integer orders [6-9]. In 2014, Khalil et
al. presented a new but easy definition of the fractional
derivative, called the compatible fractional derivative
[10]. The new definition seems to be a natural extension
of the traditional differentiation and seems to agree with
known fractional derivatives on polynomials (up to a
constant multiple).

This derivative was defined as follows:

Let f:[0,00) >R be a given function.
conformable fractional derivative of f of order a is:

The

DEf(x) = lim L0, pag (o) = lim DEf (),
€-0 € x-0%

forall x > 0, a € (0,1]. If this limit exist and finite at x,,
we say f is a —differentiable at x,. If f is differentiable,
then DZf (x) = x*~%f'(x).

In the past few years, fractional calculus has been
investigated by several author ([11], [12] and references
therein). In recent years,there has been a growing interest

|b-3 bkeskin@cumbhuriyet.edu.tr {Q‘) https://orcid.org/0000-0003-1689-8954

among scholars in exploring fractional generalizations of
well-known mathematical problems, including those
related to Sturm-Liouville, diffusion and Dirac operators
[13-21].

The nodal set consists of points where the
eigenfunction vanishes. In 1988, the concept of the
inverse nodal problem for the Sturm-Liouville operator
was first discussed by MclLaughlin [22], and later Hald and
McLaughlin showed that it was sufficient to know only the
nodal points to determine the potential function with
more general boundary conditions [23].Yang proposed a
solution in 1997 to reconstruct the potential and the
boundary condition of the Sturm-Liouville operator from
its nodes. [24]. Inverse nodal problems continue to be
studied by many researchers [25-34].

The inverse nodal problem for Dirac operators involves
determining the coefficients of the Dirac operator and
other parameters of the problem from the knowledge of
the nodal set of the corresponding eigenfunctions. For
certain types of Dirac operators with various boundary
conditions, it has been demonstrated that a dense subset
of the nodal points of the eigenfunctions alone is sufficient
to uniquely determine the coefficients of the Dirac
operator [35-37].

Eigenvalue problems with eigenvalue-dependent
boundary conditions is an important application area in
applied sciences. Fulton’s [38-39], studies and the
references in this study can be cited as examples of
studies conducted on this subject until 1980. The most
recent examples of its applications in physics can be found
in [40]. We refer to [41-42] and references therein
regarding studies in this field.
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Nowadays, studies on the integro-differential operator
have gained significant popularity and interest by many
authors and have gained an important place in the
literature [43-46].The inverse nodal problem for Dirac
type integro-differential operators was first considered in
[47]. It is shown in this study that the coefficients of the

the authors have addressed a similar problem where the
boundary conditions depend linearly on the spectral
parameter.

The conformable fractional derivative was first
discussed in [10-11]. Some other definitions and basic
properties can be found in these works.

operator can be determined by using nodal points. In [48],
Main Results

Consider the following BVP L(8, 8, p(x), q(x)):

(0_1 (1))Dgy(x) + (g(x) 2(x)) YO + [F M(x, Y (Ddgt = Y ,x € (0,7) (1)
with
(AcosB + a)y,(0) + (Asinb + b)y,(0) =0

(AcosP + c)y; () + (Asinf + d)y,(n) =0

(2)
(3)

where, M (x,t) = (%285: 3 %Zg: 3), Y(x) = @;gg) and p(x), q(x), and M;;(x,t) (i,j = 1,2) are real-valued

conformable fractional differentiable functions and x*~p(x) and x*~1r(x) are continuous on (0,7),0 < 8,8 < mare
real numbers, A is the spectral parameter.

Let @(x,1) = (@1(x,2),9,(x, )T be the solution of (1) satisfying ¢(0,1) = (Asinf + b, —Acos8 — a)". ¢(x, 1)
satisfies the following asymptotic relations for |1| — oo,

@1(x,4) = Asin (9 + /1% - p(x)) + asin </1% - p(x))

a

+hcos (/1% _ p(x)) + %,u(x)sin (9 + ,1% _ p(x)>

+ 2 p(@sin (15 - p() + Zuocos (15 - p())

+2u(0)sin (A%~ p(x) — 8) + L u(0)sin (A% - p(x))

— 2 p(O)cos (25 = p()) — eos (0425 = p() ) [} 12 (D)t
_%cos (A% - p(x)> foxuz(t)dat + %sin (A? - p(x)> foxuz(t)dat
~1KGosin (8 + 2% — p(x)) — LK ()sin (A% - p(x))

- %K(x)cos (/1% - p(x)) + %L(X)COS <9 + /1% - P(x))

|T|ﬁ
a

+-~ L(x)cos (/’l% - p(x)) - %L(x)sin (/1% - P(x)> +o (9 2

N——

9206, 2) = —Acos (8 + 2% — p(x)) — acos (,1% - p(x))

+bsin (a% - p(x)) + 2 p(x)cos (9 TP Lag p(x))

42 ue)cos (A%— p(x)> — - uGo)sin (A%— p(x))

~u(0)cos (35— p(x) = 0) = 5 u(0)cos (2% = p(x) )

— 2 ()sin (A% = p()) = 3sin (0 + 2% = p() [} W3 (O)dat
—sin (15— p0O) [} 12 (@dat = rcos (15 = p()) 7 W (Ot
+2KG)cos (6 + 25— p(x) ) + LK (@)cos (A% - p(x))

_ %K(x)sin (A% - p(x)) + %L(x)sin (9 + /1% - p(x))

(5)

790



Cumhuriyet Sci. J., 45(4) (2024) 789-795

+%L(x)sin (/1% - P(x)> + Zb—AL(x)cos (A% - p(x)) to (er)

uniformly in x € [0, ], where, u(x) = %(p(x) —rx)), p(x) = %fox (p(t) + r(t))dqyt,
K(0) = [y (Myy(t,£) = Maa(t,))dat, L) = [§ (Myz(t,1) = Ma (8, D) dgt

and T = ImA.

A(A) is called the characteristic function of L and defined by as follows

AQ) = @, (m, V) (AcosB + ¢) + @, (m, 1) (Asinf + d), (6)

The zeros {1, },ez of A(A) coincide with the eigenvalues of the problem L. Using (4) and (5), we get
A(A) = A%sin (/1"7 —p(m)— B + 9) + Aasin (/1”7 —p(n) — ﬁ)

+bacos (15— p(m) — ) + L asin (1%~ p() + B +6)
“(O)Asm( 7—p(7r) g - 9) — > cos (A——p(n) B+ e)f {2 (t)d,t (7)

— 22K (mwysin (15— p(m) = B +8) + > 2L(m)cos (1% — p(m) — B +6)

171
+cAsin (/17;—“ —p(m) + 9) — dAcos (/17;—“ —p(m) + 9) +o (eT)

for sufficiently large |4].
By using A(1,) = 0, we get

_ (n-Dra | (p(m)+B-0)a D 1
An - % + % + (n-1)n% (n) nz2 (8)
and
_ (+ra | (p(m)+B-0)a D 1 _
An - % + f1add (n+1)n% (n) ns-2

for sufficiently large n,

where, D = asinf — bcos6 — Q sin2f8 + @sinZB + %fon ui(t)d,t — L(Z—n) — csinf8 + dcospf

Lemma 1 For sufficiently large n, the first component ¢, (x, A,) of the eigenfunction ¢(x, ;) has exactly n — 2 nodes
{x,{:j =01,-,n— 3} in the interval (0,m): 0 < x2 < x} <...< x"3% < 7. The numbers {x,fl} satisfy the following
asymptotic formula:

L (m)+B-6 @ (m)+B-6
(xn) LA LAL nn +p(xn) - gn p(xn £ nnz me?
$9PEO pam | T O oy g T L(x)) (9)
n2 2n2a e o M n

p(m)+p-6 _ p(m)+B-6 ) x p(m)+B-8 . 1
_rPTPTY 23 fon #Z(t)dat—TL(xTJl) +O(E)'

n3a nd3a

Where, T = 2asinf — 2bcos8 + u(0)sin26

Proof. From (4), the following equation is valid
@1(x, 1) = Ausin (9 + An — - p(x)) + asin ( (x))
+bcos (An % — p(x)) + %u(x)sin (9 + A, % — p(x))
+ 3 uCOsin (2, 5 = p0)) + 57 kGx)cos (2 = () )

+§/,t(0)sin (An% —p(x) — 9) + iu(O)sin (ln§ - p(x))
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2 uo)eos (,111% _ p(x)) ~Lcos (9 + 25— p(x)) Jy K (t)dqt

% cos (a% _ p(x)) Jy H2(@®)dgt +51-sin (Ang = p(x)) Jy w2 (@©)dgt
—2K@sin (0 + 4,5 = p)) - S KCosin (1,5 - P(x)>

— 2 K(x)cos (xng_ p(x)) +L(x)cos (9 - p(x))

+ 55 L) cos (An = p(x)) — ;- LCosin (An - pm) +o()

for sufficiently large n. If we put ¢, ((x,{)a,ﬂn) = 0, we get

(x1)

Aysin (An —— p(xr{) + 9) + asin (An @ - p(x,{) + 6) cosé

a L\
a a

%

_ () - (n)
acos | 1, o p(x;) + 6 |sin@ + becos | A, p(x;) + 6 | cosb

a

a a

P NN D U N N ) I
+bsin| A,~———p(x;) + 6 51n9+5,u(xn)sm An —p(x,) + 6

a N4

; J . , J .
+ %u(x{l)sin (An (xz) —p(x)) + 9) cosf — %u(x,{)cos <An @ —p(x)) + 9) sinf
b rceos (i B S
+H,u(x,i)cos In == p(x)) + 6 | cos + H,u(x,’l)sin In == p(x)) + 6 | sinf
) () ] )
+-pu(0)sin | A, ——— p(x)) + 6 ) cos28 — - 1u(0)cos (A, = — p(x)) + 6 |sin26
AN . AN .
+ %u(O)sin (An (xz) —p(x) + 9) cosf— %M(O)cos <An (x:l) —p(x) + 9) sinf

b (=) : b () :
— 23 #(0)cos | An " — p(x)) + 6 ) cosd — 2 #(O)sin | An "= — p(x)) + 6 ) sinf

a

a a

- (% cos (An (xi) —p(x) + 9) + %COS <An @

(1)

. - . b
- (% sin (An = p(x)) + 9) sinf — 2 sin </1n

(1)

. ; _ j .
—z%ncos (ln P p(xy) + 9) sinf foxnx p()dqt — %K(xé)sin (ln@ —p(xa) + 9)

(xﬂl) (’41)

_ %K(xr{)Sin (ln o)+ 9) cosf + iK(x,{)cos (An .

a
(1)
a

J Xiux 2
—p(x) + 6 | cosO | [ wF(t)dgt

(1)

a

a

. Jj
p(x) + 9) cosf foxnx ur(t)d,t

N4

a a

- p(x,{) + 9) sinf
()"

b .
P p(x) + 9) cosf — ZK(x)sm (ln

(:h)° )

+%L(x,{)cos (An P p(x,{) + 6) + %L(x,{)cos </1n(% - p(x,{) + 9) cosé
(x2)
o

(x4)

a

- %K(x,{)cos (ln - p(x)+ 9) sinf

a

a S\

, J ,
p(x) + 9) sinf — %L(x,’l)sin </1n (x%) —p(x)) + 9) cosé

21 (xDYsi
+ o L(x;)sin (ln

a

b j - . 1
+EL(x,]l)cos (/In —p(x)) + 9) sinf + o (Z) =0

N4 N4

(x2) (xn) :
Aptan| Ay ~———p(x) + 6 |+ atan| A,~——— p(x) + 6 | cosf — asinf

a a
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a

J
+bcosf + btan (An @ —p(x)+ 9) sinf + %u(x)tan <An

(x2)

a

)

a

p(x) + 9)

a

. b
+ 5 k()tan (/'ln —p(0) + 9) cosf) = g u(x)sind + 7 u(x)cos

A i

X X]
+ %u(x)tan (An ﬁ —-p(x)+ 9) sinf + %u(O)tan (An % —-p(x)+ 9) cos26 — %u(O)sinZG

a

X])

+ %u(O)tan (An () _ p(x) + 9) cosf — %u(O)sinG

a

a

S\

b b x) : 1 x) ]
—mu(o)cose - mu(o)tan <An% —p(x) + 6 )sing — Efgc pr(t)dgt — icos@ fgc A (t)dyt

(x2)

a

. a a

a

——tan| 4 () _ x)+06 sintxi‘ 2(t)d,t + —tan | A
24, n=, p o H a 24, n

Jj
—p() + 6) cosf foxn ui(t)d,t

(x1)

a

a

xxj xgl ¢
—%sine Jo () dat — %K(x)tan <An (n) _ p(x) + 9) — %K(x)tan (An p(x) + 9) cosf

(x2)

a

a

a . b 1 a b .
+ mK(x)sm@ - mK(x)cosH + EL(X) + EL(x)cosG - mK(x)tan (An p(x) + 9> sinf

(1)

a

b i 1
+ mL(x,i)sm@ +o0 (;) + iL(x)tan (/1,1

(=2)

a

—p(x) + 9) sinf

a

—%L(x)tan (An —p(x) + 9) cosd =0

a

(x2)

tan (xln P p(x) + 9) {1 + Aicose + %sin@

1 j 1 Y 1)) _
F M0 + 5n(0) — - Kx) +o ()} =

a . b 1 . 1 lex 2 1 j 1
Zsm@ - ZCOSQ + mu(0)51n29+af0 ue(t)dyt — EL(X”) +o (Z)

Taylor’s expansion formula gives,

or

(:8)"

A== p((x3)) + 6

Jj ,
=jm+ i(Zasine — 2bcos + u(0)sin20+ [ 2 (t)dgt — L(x,]l))

0
+o0 (i)

(x,’;)a = a/l,‘ll(p((x,{)) -0+ jn

1 , . o , .
+E<2asm9 — 2bcosB + u(0)sin26+ fo mu?(t)d,gt — L(xi))) +o (Z)

We arrive (9) by using the asymptotic formula

-1 _ % (p(m+p-6)n” (L)
I = nna n2n2q to n?

Let X be the set of nodal points. For each fixed x € (0,7) and a € (0,1], choose a sequence (x,’l) C X such that x,];
converges to x. Then the following limits are exist and finite:

lim ((xr{)a - %) nmr = —x(p(m) — 0 + B) + p(x)r* — On® = f(x)

In|-oc
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where
and
. j a jrzd jnd p(n’)+ﬁ—9 p(x,{l)na—1 ora—1 ,

,lll_ri}o (xn) ot " +——|n* = g(x),
where

gx) =—p)(B - O +0(B —0)n* 2

202 x 5 22 22
5ty W Odat +——LO) +T—— (1)

Therefore, proof of the following theorem is clear. Let u(m) = 0, and X be the dense subset of the nodal points.

Theorem 1 Given the set X uniquely determines the coefficients 8 and 8 of the problem L and if L(x) is known, the
potential 2(x) a.e. on (0, ) can be also determined by X . Moreover, p(x) and r(x), 8 and 8 can be reconstructed as

follows

Step-1: For each fixed x € (0, ) and @ € (0,1], choose (x,’;(n)) c X such that (xrj;(n)) — X as n— oo;

Step-2: Find f(x) from (10) and calculate
0=—-f0)r*
g = F@-fm-fOmt~*

T

Dip(x) = (DY f(x) -0+ p)m™*
Step-3: From (11), find g(x) and calculate

P2 (x) = (DFg(x) + (DEf(x) — 6 + B)(B — O)m™?)
Step-4: From (10) and (11) calculate

w2

2a
a-2

+ DZL(x) (12)

2a
2a-2

a _ _ 1-a
p(x) = 2@ | SOOI gy 2\/

pres rl+a

Dy g(x) + Dgp(x)(B — O)m*~?) + D¥L(x)

2a

a _ _ 1—
x) = DEf(x) n F(0)=f(m)—f(0)n'~ % + £(0) _2\/n2u_2 (D2g(x) + DEp(x)(B — O)T*2) + DEL(x)

pures rl+a
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