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Guine-worm disease (GWD) is considered one of the most fascinating infectious diseases that almost no one is 
aware of. On the other hand, unfortunately, there is no medicine or vaccine to treat this tropical disease 
transmitted through drinking water. However, GWD is about to be miraculously eradicated. This feature makes 
it the first parasitic disease to be eradicated without biomedical interventions. Accordingly, this situation 
brings the question: How can a disease be eradicated without medicine, vaccine or immunity? In light of this 
question, the current study offers recommendations on how to stop the spread of infectious diseases. One of 
the best ways to eliminate existing diseases is to benefit from the strategies followed for diseases that have 
been eradicated. Our results obtained by utilizing the fractional Caputo derivative show that behavior change 
programs aimed at reducing or stopping the spread of infectious diseases are effective tools in eradicating the 
disease. 
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Introduction 
 

In the mathematical biology literature, many disease 
models have been theoretically and numerically 
investigated using various definitions of non-local 
fractional operators. As a result of the analyzes and 
simulations, it is mentioned whether the fractional 
operators used are advantageous for the model under 
consideration [1,2]. For example, in [3] the disease model 
of dengue fever was examined with different types of 
fractional operators. Also, the behavior of the disease was 
evaluated by performing comparative analysis, and it was 
stated that the fractional-order model produced better 
results than the classical model. In this and many other 
studies as can be seen in [4-7], diseases have been 
analyzed in the classical sense or with fractional derivative 
operators, and discussions have been made on 
simulations in the light of the parameters affecting the 
course of the disease. However, in this study, in addition 
to investigating a disease that has never been investigated 
before using fractional derivatives, a novel approach to 
eradicating today's dangerous diseases is given by utilizing 
a disease that is on the verge of extinction. 

Guinea-worm disease (GWD) is one of the most 
remarkable diseases that nearly no one has heard of [4]. 
For the treatment of this neglected disease, which is 
spread through drinking water, there is no drug or 
vaccination. Regardless, GWD is about to disappear 
miraculously. Hence, it is the first parasitic disease to be 
eradicated, as well as the first parasitic disease to be 
eradicated without the need for biomedical intervention. 
Also, GWD is a disease that has been going on since 

ancient times. GWD afflicted 50 million people in most of 
Africa, Asia, and the Middle East in the 1950s. However, it 
is now on the verge of extinction, with only three African 
countries reporting less than 25 human cases in 2016. 
Therefore, this scourge has almost disappeared, and 
considering the factors that caused its extinction is a guide 
for how to eradicate diseases transmitted through 
contaminated water. 

In [8,9] which contains some lessons that can be taken 
from the eradication process of smallpox for malaria 
eradication studies, the importance of determining the 
ways and methods to be followed to achieve this goal is 
mentioned by making use of smallpox eradication. 
Similarly, another study [10] has presented a malaria 
eradication strategy that incorporates lessons learned 
from the Global Polio Eradication Initiative (GPEI). For this 
reason, this present study proposes solutions using some 
popular mathematical tools such as Caputo fractional 
derivative, fractional numerical method for the 
eradication of contagious diseases we are still struggling 
with, using GWD, which is on the verge of extinction and 
is little-known. The eradication of diseases requires 
internationally coordinated approaches. Ensuring 
continuous participation from communities, politicians 
and funders, efficient organizations and well-managed 
programs have a very important place in eradication 
efforts. State and global disease communities should be 
informed about the experience of other disease 
eradication programs, including the smallpox eradication 
program, as they seek to achieve these goals. That is, it is 
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important to benefit from disease eradication and 
elimination programs that have been successfully 
concluded. Problems such as encouraging international 
support for eradication studies, coordinating the 
programs organized, and providing the necessary 
financing should be taken into account. In addition to 
these, it may be considered a useful approach to review 

the literature of diseases that have disappeared or are 
about to disappear to evaluate how the difficulties that 
are likely to be encountered are overcome. On the other 
hand, various diseases have been examined using the 
fractional operators in the literature [11-27]. 

 

 

Figure 1. The fractional Guinea-worm disease model diagram. 

The remainder of this study is presented as follows. In 
Section 2, we introduce the formulation of the classical 
GWD model and its fractional version under non-local 
Caputo operator including singular kernel. Then, in 
Section 3, a detailed mathematical analysis of the 
fractional GWD model is introduced in order to 
comprehend the dynamical behavior of the system 
handled. Finally, we present the numerical simulation and 

discussions section for the GWD model. 
 

Mathematical Formulation of the Guinea-Worm 
Disease 

In this section, we present two subsections wherein 
we describe the classical (integer-order) and fractional 
(non-integer order) versions of the GWD model. Thereby, 
it will be possible to compare the classical and fractional-
type models by presenting them separately. Also, 
fundamental information about the GWD model is given 
to comprehend the results of the current study. In 
addition, the advantages of the fractional-order model are 
emphasized. 

 

Classical GWD Model 
We need to follow what comes in and what goes out 

in order to develop a mathematical model. The human 
population for GWD is divided into three groups. The first 
subgroup is susceptible individuals, and there are three 
possibilities for this group: birth, death, or infection. 

Individuals who are infectious recover or die, while those 
who are infected become infectious or die. There is, on 
the other hand, a worm population. When infected people 
put their feet in drinking water, the parasite is born as 
freshwater provides relief, and they die soon after. For 
model formulation, let S(t) represent susceptible 
individuals, E(t) represent exposed individuals, I(t) 
represent infected individuals, and G(t) represent the 
number of larvae in the water. Also, λ is the human birth 
rate, δ is the infection rate, β is the worm emergence rate, 
ρ is the recovery rate, and θ is the death rate. On the other 
hand, while infected individuals produce new larvae at the 
μ rate, the larvae are naturally cleared from the water at 
the 𝜃𝐺  ratio  [4]. 

Interventions to change the course of the disease are 
carried out in 3 ways: filtration of the water supply, 
education given to the individuals, and chlorination. Here, 
the term "education" refers to teaching  

individuals not to put infected limbs in the water. As a 
result, it is clear that the increase in education has a direct 
decreasing effect on the parasite birth rate, namely μ. 
Moreover, filtering is a technique for decreasing the 
parasite's capacity to infect humans-host and thus it has a 
reducing effect on δ. Also, chlorination has the effect of 
increasing the parasite death rate 𝜃𝐺  [4]. 

Now, let us give the mathematical model in the light of 
the information given above [4]: 
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𝑑𝑠

𝑑𝑡
= 𝜆 − 𝛿𝑆(𝑡)𝐺(𝑡) − 𝜃𝑆(𝑡) + 𝜌𝐼(𝑡), 

𝑑𝐸

𝑑𝑡
= 𝛿𝑆(𝑡)𝐺(𝑡) − 𝛽𝐸(𝑡) − 𝜃𝐸(𝑡),         (1) 

𝑑𝐼

𝑑𝑡
= 𝛽𝐸(𝑡) − 𝜌𝐼(𝑡) − 𝜃𝐼(𝑡),                

𝑑𝐺

𝑑𝑡
= 𝜇𝐼(𝑡) − 𝜃𝐺𝐺(𝑡).                            

 
It should be noted here that state variables S, E, I, and 

G are not negative. Furthermore, because the quantities 
given are averages, it is not correct to assume that each 
person is infected with only one worm at a time. Because 

there have been instances where people have had seven 
worms at once. Mass-action transmission is employed 
because the interaction between aquatic parasites and 
people is present when humans drink parasite-containing 
water. Thus, each person's exposure to the parasite is 
approximately equal, as everyone in the village usually 
drinks from a single source. Also, we shall emphasize that 
in some areas, regular disease control can be difficult due 
to limited resources and infrastructure. In particular, 
chlorinating water regularly can be difficult or even 
impossible. The description of all parameters and the 
values used for this study can be seen in Table 1. 

 

Table 1. Parameter values of GWD model [4]. 
Parameter Definition Sample Value Units 

    
S Susceptible individuals   S(0)=λ/θ  people 

E Exposed individuals E(0)=0 people 

I Infectious individuals I(0)=0 people 

G Water-borne larvae G(0)=200 larvae 

λ Birth rate 37 people/years 

δ 
 

Transmissibility   0.0255                                       1/larvae.years 

θ Death rate   0.0142 1/years 

ρ  Recovery rate   8.760 1/years 

β Rate of worm emergence 1 1/years 

μ Parasite birth rate 100.000 larvae/people.years 

θG Parasite death rate     26 1/years 

 
 
θ's average transmissibility can be calculated using (7 

drink water per day) ×(365 days)/(100,000 
larvae)=0.0255. This calculation shows the ratio of the 
total annual water ingested to the number of parasites. 
Also, the average life span of individuals, 1/θ, is assumed 
to be 70 years while the average infectious time 1/ρ is 
taken as 1 hour such that ρ=24× 365=8760 𝑦𝑒𝑎𝑟𝑠−1. The 
birth rates per 1000 population in the four endemic 
countries Mali, Ethiopia, Sudan, and Ghana are 46.09, 
43.34, 33.25 and 28.09 with an average of 37, respectively 
[4]. 

 

Fractional GWD Model with Caputo Operator 
This subsection provides the fractional version of the 

GWD system (1) under Caputo operator. Systems 
examined through fractional operators often give more 
reliable results than systems defined by classical 
derivatives. Fractional derivatives are used to examine the 
course of the disease in more detail and to obtain more 

sensitive results. We define the model as follows, using 
the Caputo derivative, which is known to be very 
advantageous in application. 

 

𝐷0,𝑡
𝜒

𝑆(𝑡) =
1

1 − 𝜒
∫

𝑆′(𝑡)

(𝑡 − 𝜏)𝜒
= 𝜆𝜒 − 𝛿𝜒𝑆(𝑡)𝐺(𝑡)

−𝜃𝜒𝑆(𝑡) + 𝜌𝜒𝐼(𝑡),

𝑡

0
𝐶  

𝐷0,𝑡
𝜒

𝐸(𝑡) =
1

1−𝜒
∫

𝐸′(𝑡)

(𝑡−𝜏)𝜒
= 𝛿𝜒𝑆(𝑡)𝐺(𝑡) − 𝛽𝜒𝐸(𝑡) − 𝜃𝜒𝐸(𝑡),

𝑡

0𝐶  (2)    

𝐷0,𝑡
𝜒

𝐼(𝑡) =
1

1 − 𝜒
∫

𝐼′(𝑡)

(𝑡 − 𝜏)𝜒
= 𝛽𝜒𝐸(𝑡) − 𝜌𝜒𝐼(𝑡) − 𝜃𝜒𝐼(𝑡),

𝑡

0
𝐶                    

𝐷0,𝑡
𝜒

𝐼(𝑡) =
1

1 − 𝜒
∫

𝐼′(𝑡)

(𝑡 − 𝜏)𝜒
= 𝜇𝜒𝐼(𝑡) − 𝜃𝐺

𝜒
𝐺(𝑡).

𝑡

0
𝐶                                      

 
Now, we present the basic mathematical analysis of 

the GWD system by using the fractional Caputo derivative 
and make comments on the process of the disease under 
consideration. 



Cumhuriyet Sci. J., 45(2) (2024) 343-351 

346 

Fractional Mathematical Analysis of Fractional 
GWD Model with Caputo Operator 

 
In this section, we introduce some basic information 

on the proposed fractional system. A positive set of the 
presented fractional model is given. Also, the disease-free 
equilibrium (DFE) point is determined for computing the 
reproduction number (RN). Moreover, we analyze the 
stability of the system. On the other hand, the fractional 
model under examination is investigated for 
understanding the system behavior in detail by means of 
the Caputo operator. To comment on the eradication or 
persistence of the GWD, we determine the RN. For this 
purpose, some basic features of the fractional-order GWD 
model is presented. For obtaining invariant region of the 
fractional GWD model, let us consider the following 
theorem: 

Theorem 1. The closed set 𝛺 = {(𝑆, 𝐸, 𝐼, 𝐺) ∈ 𝑅+
4 : 0 ≤

𝑆 + 𝐸 + 𝐼 + 𝐺 ≤ 𝐾} is a positive set of the fractional-
order GWD model. 

Proof. In order to prove the desired result, we follow 
that 

𝐷0,𝑡
𝜒

𝐶 𝑆(𝑡)|𝑆(𝑡)=0 = 𝜌𝜒𝐼(𝑡) ≥ 0,           

𝐷0,𝑡
𝜒

𝐶 𝐸(𝑡)|𝐸(𝑡)=0 = 𝛿𝜒𝑆(𝑡)𝐺(𝑡) ≥ 0, 

𝐷0,𝑡
𝜒

𝐶 𝐼(𝑡)|𝐼(𝑡)=0 = 𝛽𝜒𝐸(𝑡) ≥ 0,        

𝐷0,𝑡
𝜒

𝐶 𝐺(𝑡)|𝐺(𝑡)=0 = 𝜇𝜒𝐼(𝑡) ≥ 0,          

and this means that the solutions of the suggested 
model are non-negative. Furthermore, from the sum of 
the equations of the GWD model, we obtain 

 

𝐷0,𝑡
𝜒

𝐶 𝑁(𝑡) ≤ 𝜆𝜒 − 𝜃𝜒𝑁(𝑡), 

 
where N(t) is the total population size. Utilizing the 
property of fractional operator, one can have 

 

𝑁(𝑡) ≤ (𝑁(0) −
𝜆𝜒

𝜃𝜒)𝑬𝛘(−𝜃𝜒𝑡𝜒) +
𝜆𝜒

𝜃𝜒,                          (3)              

 
where 𝑬𝛘(. ) is Mittag-Leffler (M-L) function. Also, if we 

use the properties of the ML function, the expression (3) 
can be written as  
 

   𝑁(𝑡) ≤
𝜆𝜒

𝜃𝜒 ≅ 𝐾, 

 
and so we get 𝑁(𝑡) ≤ 𝐾. Finally, it can be said that 𝛺 is 
the positive invariant region of the fractional GWD model 
including the Caputo differential operator. 

On the other hand, we shall note that 
 

𝐷0,𝑡
𝜒

𝐶 (𝑆 + 𝐸 + 𝐼) = 𝜆𝜒 − 𝜃𝜒(𝑆 + 𝐸 + 𝐼), 

 
and thus 

   

𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) ≤
𝜆𝜒

𝜃𝜒.                                                          (4)       

                 

Using (4), we have 
 

𝐷0,𝑡
𝜒

𝐶 𝐼 ≤
𝛽𝜒𝜆𝜒

𝜃𝜒
− (𝜌𝜒 + 𝜃𝜒)𝐼, 

 
and from the properties of the fractional derivatives, it can 
be readily obtained the following result 
 

𝐼(𝑡) ≤ (𝐼(0) −
𝛽𝜒𝜆𝜒

𝜃𝜒(𝜌𝜒 + 𝜃𝜒)
) 𝑬𝝌(−(𝜌𝜒 + 𝜃𝜒)𝑡𝜒)

+
𝛽𝜒𝜆𝜒

𝜃𝜒(𝜌𝜒𝜃𝜒)
. 

Because of the fact that ρ is large, the M-L function term 
is small. So, we reach 
 

𝐼(𝑡) ≤  
𝛽𝜒𝜆𝜒

𝜃𝜒(𝜌𝜒𝜃𝜒)
. 

 
Hence 

 

𝐷0,𝑡
𝜒

𝐶 𝐺 ≤
𝜇𝜒𝛽𝜒𝜆𝜒

𝜃𝜒(𝜌𝜒+𝜃𝜒)
− 𝜃𝐺

𝜒
𝐺, 

 
and so we get 

 

𝐺 ≤
𝜇𝜒𝛽𝜒𝜆𝜒

𝜃𝜒𝜃𝐺
𝜒(𝜌𝜒+𝜃𝜒)

. 

 
The above inequalities may cause the number of 

parasite in the water to be overestimated. However, they 
help us to estimate them without solving the fractional 
system of GWD. 

Now, we discuss the dynamical properties of the 
fractional-order GWD model. DFE point is obtained in 
order to investigate the RN. Moreover, we analyze the 
stability of the fractional model under examination. Let 
𝐸0(𝑆

∗, 𝐸∗, 𝐼∗, 𝐺∗) be the equilibrium points of the 
proposed model. By setting the right-hand side of all 
differential equations of the system equal to zero, we get 
a steady state of the GWD model as follows: 

 
 

 𝜆𝜒 − 𝛿𝜒𝑆(𝑡)𝐺(𝑡) − 𝜃𝜒𝑆(𝑡) + 𝜌𝜒𝐼(𝑡) = 0,   
 

 𝛿𝜒𝑆(𝑡)𝐺(𝑡) − 𝛽𝜒𝐸(𝑡) − 𝜃𝜒𝐸(𝑡) = 0,          
 

𝛽𝜒𝐸(𝑡) − 𝜌𝜒𝐼(𝑡) − 𝜃𝜒𝐼(𝑡) = 0,                   
 

𝜇𝜒𝐼(𝑡) − 𝜃𝐺
𝜒
𝐺(𝑡) = 0.                                     

 
For obtaining the DFE points, we consider the system in 
the absence of the GWD. Hence, the suggested model 
reduces to 

 
𝜆𝜒 − 𝜃𝜒𝑆 = 0, 

 

and if we solve, we have 𝑆∗ =
𝜆𝜒

𝜃𝜒 Thus, the DFE is 
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𝐸0(𝑆
∗, 𝐸∗, 𝐼∗, 𝐺∗) = (

𝜆𝜒

𝜃𝜒
, 0,0,0). 

 
Now, we calculate the reproductive ratio 𝑅0 of the 

fractional GWD model by means of the next-generation 
method (NGM). Here, 𝑅0 = 𝜌(𝐹𝑉−1) such that ρ is the 
spectral radius of 𝐹𝑉−1 called next-generation matrix. The 

matrix F includes new infections terms and the matrix V 
including the remaining terms of the fractional GWD 
model are 

 
 

𝑭 = [
𝛿𝜒𝑆𝐺

0
0

] ,                     𝑽 = [

𝛽𝜒𝐸 + 𝜃𝜒𝐸
𝛽𝜒𝐸 + 𝜌𝜒𝐼 + 𝜃𝜒𝐼

−𝜇𝜒𝐼 + 𝜃𝐺
𝜒
𝐺

], 

 
and so we have 

𝐹 = [
0 0 𝛿𝜒𝑆
0 0 0
0 0 0

] ,          𝑉 = [

𝛽𝜒 + 𝜃𝜒 0 0
𝛽𝜒 𝜌𝜒 + 𝜃𝜒 0

0 −𝜇𝜒 𝜃𝐺
𝜒
] 

 
 
Thereby, we can readily obtain that 

 

𝐹𝑉−1 = [
0 0 𝛿𝜒𝑆
0 0 0
0 0 0

]

[
 
 
 
 
 
 

1

𝛽𝜒 + 𝜃𝜒
0 0

𝛽𝜒

(𝛽𝜒 + 𝜃𝜒)(𝜌𝜒 + 𝜃𝜒)

1

𝜌𝜒 + 𝜃𝜒
0

𝛽𝜒𝜇𝜒

𝜃𝐺
𝜒(𝛽𝜒 + 𝜃𝜒)(𝜌𝜒 + 𝜃𝜒)

𝜇𝜒

𝜃𝐺
𝜒(𝜌𝜒 + 𝜃𝜒)

1

𝜃𝐺
𝜒
]
 
 
 
 
 
 

 

 

 =

[
 
 
 

𝛿𝜒𝛽𝜒𝜇𝜒𝑆∗

𝜃𝐺
𝜒(𝛽𝜒 + 𝜃𝜒)(𝜌𝜒 + 𝜃𝜒)

𝛿𝜒𝜇𝜒𝑆∗

𝜃𝐺
𝜒(𝜌𝜒 + 𝜃𝜒)

𝛿𝜒𝑆∗

𝜃𝐺
𝜒

0 0 0
0 0 0 ]

 
 
 

 
Owing to the property of upper triangular matrix, the 

eigenvalues of the above matrix are on the diagonal. Thus, 
if we use the properties of the next-generation method, 
the largest eigenvalue is obtained as 

 

   𝑅0 =
𝜆𝜒𝛽𝜒𝜇𝜒𝛿𝜒

𝜃𝜒(𝛽𝜒+𝜃𝜒)(𝜌𝜒+𝜃𝜒)𝜃𝐺
𝜒.                                                      (5) 

 
Now, let us interpret the resulting 𝑅0 value. If 𝑅0 < 1, 

then it can be said that DFE is stable and is the only 
equilibrium. If 𝑅0 > 1, then DFE is unstable and endemic 
equilibrium exists. On the other hand, it is useful to note 
that the value of 𝑅0 increases with 𝜆𝜒, 𝛽𝜒, 𝜇𝜒, and 𝛿𝜒 , and 

decreases with 𝜃𝜒 , 𝜃𝐺
𝜒
, and Furthermore, the education 

given to individuals is aimed at preventing people from 
placing their limbs in drinking water. So, this decreases the 
value of 𝜇𝜒. Additionally, filtering drinking water reduces 

𝛿𝜒  while 𝜃𝐺
𝜒

 increases with continuous chlorination of 

water. Hence, all these interventions cause a decrease in 
𝑅0 [4]. 

It is worth mentioning that continuous chlorination in 
the water is neither possible nor desirable, so chlorination 
is assumed to occur at different t times. During these 
times, the number of larvae in the water decreases and 
this gives rise to an impulsive differential equation. Also, 
in some regions, regular disease control can be quite 
difficult due to limited resources of infrastructure. In 

particular, it may be difficult or impossible to chlorinate 
water at certain times. 

To examine the three important control parameters 
for the GWD model in more detail, fix all the other 
parameters to the sample values and take 𝑅0 = 1. The 
equation (5) can be solved for the parameter 𝛿𝜒 (which is 

trivial) and then 𝜇𝜒 and 𝜃𝐺
𝜒

 can be taken as independent 

variables. This situation allows us to obtain a 3D surface 
plotted in Figure 2. Combinations of parameters below 
the surface can be said to induce eradication. 
Furthermore, the disease persists due to a combination of 
parameters above the surface. Changes in 𝜇𝜒 have a 
significant impact on the outcomes. On the other hand, 

we can not eliminate the disease even if we increase 𝜃𝐺
𝜒

 

100 times, but due to the log scale, we have to drop 𝛿𝜒 to 
very low levels. In Figure 2, it can be observed that 
eradication occurs if the infection rate is greatly reduced 
by filtration of drinking water and the parasite death rate 
is increased by more than 100 times by chlorination or the 
parasite birth rate is reduced to about 1 percent of its  
 
current value through education. Moreover, Figure 2 
shows the eradication thresholds for the three separate 
parameters that most affect 𝑅0. Accordingly, eradication 
will occur if the infection rate is reduced to well below its 
current value by filtering drinking water, and if the 
parasite mortality rate is increased more than a 
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hundredfold by chlorination, or if the parasite birth rate is 
reduced to 1 percent through education. 

 
 

 

Figure 2. The eradication threshold for the three parameters affects 𝑅0 the most 

 
On the other hand, the endemic equilibrium (EE) is 

presented for predicting the long-term outcome of the 
GWD. If the disease continues, we can say that there is an 

endemic equilibrium, which is shown as �̅� = (𝑆̅, �̅�, 𝐼,̅ �̅�). 
Also, the DFE is stable when EE does not exist, and hence, 
we do not have any infection. However, the GWD persists 
if the EE exists. The EE of the fractional GWD model is as 
follows: 

 

𝑆̅ =
𝜃𝐺

𝜒

𝛿𝜒𝜇𝜒
(𝜌𝜒 + 𝜃𝜒 +

𝜌𝜒𝜃𝜒

𝛽𝜒
+

𝜃2𝜒

𝛽𝜒
) , 

�̅� =
𝜌𝜒 + 𝜃𝜒

𝛽𝜒
𝐼,̅ 

�̅� =
𝜇𝜒

𝜃𝐺
𝜒 𝐼,̅ 

𝐼 ̅ =
𝜆𝜒𝛿𝜒𝜇𝜒𝛽𝜒 − 𝜃𝜒𝜃𝐺

𝜒
(𝜌𝜒𝛽𝜒 + 𝜃𝜒𝛽𝜒 + 𝜌𝜒𝜃𝜒 + 𝜌𝜒𝜃2𝜒)

(𝛽𝜒 + 𝜌𝜒 + 𝜃𝜒)𝛿𝜒𝜇𝜒𝜃𝜒
 

 

Numerical Simulation and Discussions 
 
Biological and technical feasibility, costs and benefits, 

societal and political considerations are listed as 
distinguishing criteria for eradicating a contagious 
disease. The model we have presented meets these 
criteria. It is very important to know which of the ways to 
be followed may be optimal for the eradication of the 
disease. Despite the prospects for the extinction of 
diseases such as malaria, yaws, and yellow fever in the 
20th century, and the eradication programs currently 

underway, such as polio and leprosy, smallpox remains 
the only disease that has been eradicated. On the other 
hand, hepatitis A and B, measles, rubella diseases are seen 
as suitable candidates for eradication. In other words, if 
necessary efforts are made for these diseases, which are 
technically and biologically possible to disappear, they will 
disappear just like smallpox. This study aims to offer 
solutions by presenting in detail the ways followed for 
GWD, which has already come to the threshold of 
eradication. While suggesting these solution proposals, it 
is aimed to shorten and facilitate the process by making 
use of the Caputo fractional derivative. 

It can be observed that the most effective way to 
eliminate GWD is to reduce the parasite birth rate. This is 
possible by training people not to put their infected limbs 
in water. Although changing people's behavior is generally 
difficult, GWD eradication programs have been successful 
in this regard. If 99 percent of people can be persuaded 
not to put their infected feet in water, GWD will disappear 
completely. Chlorination, on the other hand, can 
theoretically control the disease, but numerical 
simulations clearly show that education is much more 
effective. Therefore, this study points to the importance 
of education in the last move towards the eradication of a 
disease. Although the results show that education is the 
most important intervention method, a combination of 
education with chlorination and filtration will be 
necessary to reach the final steps in a long eradication 
journey. By bringing together scientific and cultural 
resources, it will be possible to eradicate one of the oldest 
diseases in history. 
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Figure 3. Persistence of the disease as a result of annual chlorination. 

The effect of annual chlorination is shown in Figure 3 
by using the values in Table 1. Although a significant 
reduction in larvae numbers is observed after 
chlorination, the population increases rapidly. While the 
number of susceptible individuals remains low, nearly all 
individuals continue to be infected. Additionally, it can be 
observed that chlorination is applied annually under the 
assumption that it is 90 percent successful. It is worth 

mentioning that infection levels are low, as individuals are 
contagious for a short time when their feet are submerged 
in water. On the other hand, the parasite birth rate is 
reduced by 99 percent, as seen in Figure 4. In this 
situation, the number of people who are exposed and 
infectious is almost zero, and no one is infected. All values 
except μ are the same as in Table 1. 

 

 

Figure 4. Eradication of the disease in case of reduced parasite birth rate when μ=1000.. 

Concluding Remarks 
 
Some important results of this study are listed below: 

 In the mathematical biology literature, 
theoretical and numerical results of some 

diseases have been analyzed using various 
fractional derivative definitions. As a result of the 
analyzes and simulations, it is mentioned 
whether the fractional derivative is 
advantageous for the model examined. In light of 
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these studies, GWD, which has not been 
examined through a fractional derivative before, 
was analyzed with the Caputo derivative. It is 
thought that this analysis may be guiding in 
eradication studies of various diseases. 

 The present study's methodology demonstrates 
that education about disease prevention is the 
most successful method of intervention. 
However, depending on the type of disease, a 
combination of education and certain additional 
interventions may be needed to reach the final 
stages of a prolonged eradication process. 

 It is necessary to carry out internationally 
coordinated studies to eliminate the diseases 
that exist today. It has been emphasized that 

efficient organizations and well-managed 
programs are important in disease eradication 
studies. Therefore, it is crucial to review the 
literature on diseases that have been or are 
about to be eradicated to examine how the 
challenges likely to be faced by disease 
eradication efforts are addressed. 

 Continuous chlorination to eliminate GWD is 
neither possible nor desirable. Therefore, if it is 
assumed that chlorination takes place at 
different 𝑡𝑘 times, the following fractional 
impulsive differential equation system emerges, 
with the number of larvae in the water 
decreasing at the rate r: 

 

𝐷0,𝑡
𝜒

𝑆(𝑡) =
1

1 − 𝜒
∫

𝑆′(𝑡)

(𝑡 − 𝜏)𝜒
= 𝜆𝜒 − 𝛿𝜒𝑆(𝑡)𝐺(𝑡) − 𝜃𝜒𝑆(𝑡) + 𝜌𝜒𝐼(𝑡),       𝑡 ≠ 𝑡𝑘

𝑡

0
𝐶  

𝐷0,𝑡
𝜒

𝐸(𝑡) =
1

1−𝜒
∫

𝐸′(𝑡)

(𝑡−𝜏)𝜒
= 𝛿𝜒𝑆(𝑡)𝐺(𝑡) − 𝛽𝜒𝐸(𝑡) − 𝜃𝜒𝐸(𝑡),

𝑡

0𝐶           𝑡 ≠ 𝑡𝑘         

 𝐷0,𝑡
𝜒

𝐼(𝑡) =
1

1 − 𝜒
∫

𝐼′(𝑡)

(𝑡 − 𝜏)𝜒
= 𝛽𝜒𝐸(𝑡) − 𝜌𝜒𝐼(𝑡) − 𝜃𝜒𝐼(𝑡),

𝑡

0
𝐶        𝑡 ≠ 𝑡𝑘                 

𝐷0,𝑡
𝜒

𝐼(𝑡) =
1

1 − 𝜒
∫

𝐼′(𝑡)

(𝑡 − 𝜏)𝜒
= 𝜇𝜒𝐼(𝑡) − 𝜃𝐺

𝜒
𝐺(𝑡),

𝑡

0
𝐶           𝑡 ≠ 𝑡𝑘                               

  ∆𝐺 = −𝑟𝐺(𝑡),            𝑡 ≠ 𝑡𝑘                                                                           

 
It should be noted that in some regions, regular 

disease control may be difficult due to limited resources 
and infrastructure. In particular, it may be difficult or 
impossible to chlorinate water at constant period. Also, 
numerical simulations clearly show that education is a 
much more effective factor in eradicating the disease 
under investigation. 

 As a result, one of the most important 
conclusions to be drawn from this study is that 
the precautionary training provided to the public 
during the eradication studies of a disease can be 
considered the most important factor. On the 
other hand, using an effective fractional operator 
like Caputo derivative can speed up the process 
of disease eradication. 
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