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Abstract − This research applies fractional time derivatives to fluid flow through a horizontal microchannel. It uses fractional time 

derivatives with the Laplace transform technique and method of undetermined coefficient to analyze and obtain solutions of the 

governing equations in the Laplace domain. To this end, the solutions are reversed in the time domain using Riemann-sum 

approximation methods. In order to obtain the solutions for the pressure-driven flow, the time factional derivative in the Caputo 

sense is employed. Here, the influence of each governing parameter is explained with a line graph. Results show that with the 

decreases in fractional order (𝛼), the velocity decreases within the interval 0 < 𝛼 < 1. The fluid velocity increases and decreases as 

the Knudsen number (𝑘𝑛) changes. Besides, transient wall-skin frictions for different times (𝑡) and Knudsen number (𝑘𝑛) with a 

fixed value of fractional order (𝛼) are observed. 
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1. Introduction 

Fractional calculus is a generalization of ordinary differential and integral of non-integer order 𝛼. It was first 

introduced by L’Hospital and Leibnitz in 1695 after they proposed what would happen if the ordinary 

derivative of integer order was changed to fractional order by L’Hospital. Then, Leibnitz first used the 

notation 𝑑(
1
2⁄ )𝑦 in 1697. Many mathematicians have suggested their interest in its application, as Lacroix 

1819 mentioned fractional derivatives in his text on differential and integral calculus. Euler and Fourier 

mentioned fractional derivatives but did not give any application or example. The first and popular 

definition, the Riemann-Liouville definition, was proposed by Riemann and Liouville, after which Caputo 

proposed a second popular definition called the Caputo Fractional Derivative. There are many definitions of 

Fractional calculus, such as Jumarie, Wely, Eudelyikober, Hadamard, and the Riesz fractional derivative 

(see, for example, Srivastava and Saxena [1] and Kaur [2]).   

In recent decades, many researchers have been devoted to its applications in science and engineering. 

Fractional calculus has been recognized as a practical modeling approach in fields such as electrical 

networks, electrochemistry, and viscoelastic deformation, solving linear, nonlinear partial fractional 

differential equations (see Farid et al. [3]). According to Ali et al. [4], Newtonian and non-Newtonian fluids 

depend on their deformation. Newtonian fluids are fluids that obey Newton’s law of viscosities. In contrast, 
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non-Newtonian fluids do not follow Newton’s law of viscosities, having many applications in fields such as 

industries, medical treatment, and engineering worldwide. 

A micro-channel is defined in Djordjevic [5] as a flow channel with a hydraulic diameter of less than 1 mm 

and characterized by the rarefaction effect, which includes the Knudsen number 𝑘𝑛 = 𝜆/𝑙, where 𝜆 is the 

mean free path of the molecules and l is the characteristic length scale (height h of the channel or the radius 

an of the tube), then the Knudsen number is the quantity that helps to know which fluid dynamic formula to 

use to model a situation in both statistical mechanics or continuum mechanics for the continuum hypothesis 

to be valid, the Knudsen number must be less than 0.1 for pressure driven. Saqib et al. [6] explain that the 

temperature and velocity fields can be reduced for any value of α between the interval 0 < 𝛼 < 1 with 

memory and heredity profile, which are more generally flexible and reliable, in the presence of variation in 

the thermal boundary layer when increasing volume fraction of carbon nanotubes (CNTs) the temperature 

profile increases and decreases with increases of fractional order α in both cases.  

Ellahia et al. [7] change more than one parameter in the channel and find that the fluid velocity decreases as 

𝛽 increases the fixed value of the channel length 𝐿. In the same paper, they also found that for a fixed value 

of 𝛽 and growing 𝐿, the velocity also increases. Farooq et al. [8] studied the generalized Couette flow by 

varying the various parameters of temperature distribution and velocity, where it was observed that as the 

fluid moved from a fixed plate to a movable plate, the velocity and temperature increased. Arif et al. [9] open 

channel for Couple Stress Fluid (CSF) using integral transform (Laplace and Fourier) for the comparative 

analysis of Caputo (C), Caputo-Fabrizio (CF), Atangana Baleanu (AB), and classical CSF where it is 

observed the velocity of the CSF of  C, CF has less influence of fluid dynamics than the velocity of the CSF 

concerning AB, which clearly shows that AB fractional derivatives has a better memory effect than C, CF 

and increasing the constant pressure gradient of CSF improves the velocity. Maitia et al. [10] discovered the 

impact of the Caputo-Fabrizio derivative of the fractional order model on blood flow, where they found that 

increasing the value of the fractional parameter value decreased velocity and temperature when memory 

counters average speed of blood flow medium effect to drive faster. The velocity profile improves as the 

stress jump coefficient increases. When the stress jump coefficient 𝛽 is close to zero, non-Newtonian 

characteristics become more effective, and 𝛽 approaches infinity, the model becomes a Newtonian when 

viscosity increases. Blood flow decreases with a decrease in 𝛽. In the same paper, they also find that the 

shear stress increases in the wall due to chemical reactions.  

The governing equation for this present study is in fractional order, focusing on pressure-driven flow through 

a horizontal channel with many applications in applied science and engineering, such as biological research, 

geophysical engineering, DNA sequencing for drug delivery, and micro-electro-mechanical systems 

(MECSs). In the presence of pressure gradient and upper plate motion of the boundary layer (generalized 

Couette flow), the steady and unsteady flow has been studied related to skin friction on the pressure gradient 

and dependence on the interface velocity (see Kaurangini and Jha [11]). 

2. Analytical Solution 

The governing equations [12] are derived from the classical equations and modified by replacing the 

ordinary time derivatives with the fractional calculus operators. This generalization allows us to define non-

integer order integrals or derivatives precisely. Figure 1 manifests the fluid flow in the microchannel is 

induced by pressure-driven flow.  
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Figure 1. Schematic diagram of pressure-driven flow 

The governing equation [12] for the flow is as follows: 

𝐷𝑡
𝛼𝑢(𝑦, 𝑡) =  𝛾

𝜕2𝑢(𝑦, 𝑡)

𝜕𝑦2
+ 𝑝 (2.1) 

with initial and boundary conditions and 𝐷𝑡
𝛼𝑢(𝑦, 𝑡) is the Caputo fractional derivative, 

𝑡 ≤ 0: 𝑢 = 0, for all 𝑦 (2.2) 

and  

𝑡 > 0: 𝑢(𝑦, 𝑡) =

{
 

 +𝛽𝑣𝑘𝑛
𝑑𝑢

𝑑𝑦
, 𝑦 = 0

−𝛽𝑣𝑘𝑛
𝑑𝑢

𝑑𝑦
, 𝑦 = 𝐻

 (2.3) 

with the analysis technique mentioned above, we have the following solution approach: 

Taking the Laplace transform of both sides of (2.1) together with (2.2), we have 

𝑑2𝑈(𝑦, 𝑠)

𝑑𝑦2
−
𝑠𝛼𝑈(𝑦, 𝑠)

𝛾
= −

𝑝

𝛾𝑠
 (2.4) 

Solving (2.4) by the method of undetermined coefficient to obtain the general solution, 

𝑈(𝑦, 𝑠) = 𝑐1 cosh𝑘1𝑦 + 𝑐2 sinh𝑘1𝑦 + 𝑘2 (2.5) 

Similarly, we apply the Laplace transform to (2.3), the boundary conditions become 

1

𝑠2
> 0:𝑈(𝑦, 𝑠) =

{
 

 +𝛽𝑣𝑘𝑛
𝑑

𝑑𝑦
𝑈(𝑦, 𝑠), 𝑦 = 0

−𝛽𝑣𝑘𝑛
𝑑

𝑑𝑦
𝑈(𝑦, 𝑠), 𝑦 = 𝐻

 (2.6) 

Using (2.5) on (2.6), we obtained the following solutions:  

𝑈(𝑦, 𝑠) = 𝑘7 cosh𝑘1𝑦 + 𝑘6 sinh𝑘1𝑦 + 𝑘2 (2.7) 

where 
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𝑘1 = (
𝑠𝛼

𝛾
)

1

2

𝑘2 =
𝑃

𝑠𝛼+1

𝑘3 = cosh𝑘1𝐻 + 𝛽𝑣𝑘𝑛𝑘1 sinh𝑘1𝐻  
𝑘4 = sinh𝑘1𝐻 + 𝛽𝑣𝑘𝑛𝑘1 cosh𝑘1𝐻

𝑘5 = 𝛽𝑣𝑘𝑛𝑘1𝑘3 + 𝑘4 

𝑘6 =
𝑘2(𝑘3 − 1)

𝑘5
𝑘7 = 𝛽𝑣𝑘𝑛𝑘1𝑘6 − 𝑘2

 (2.8) 

3. Skin Friction for Pressure Driven Flow 

From (2.7), the skin frictions at the wall of the channel are obtained 

𝜏̂0 =
𝑑𝑈(𝑦, 𝑠)

𝑑𝑦
|
𝑦=0

= (𝑘1𝑘7 sinh𝑘1𝑦 + 𝑘1𝑘6 cosh𝑘1𝑦)|𝑦=0 = 𝐾1𝐾6 (3.1) 

𝜏̂1 =
𝑑𝑈(𝑦, 𝑠)

𝑑𝑦
|
𝑦=1

= (𝑘1𝑘7 sinh𝑘1𝑦 + 𝑘1𝑘6 cosh𝑘1𝑦)|𝑦=1 = 𝑘1𝑘7 sinh𝑘1 + 𝑘1𝑘6 cosh𝑘1 (3.2) 

4. Results and Discussions 

4.1.  Numerical Results 

This was done to simulate numerical solutions for transient skin friction at different walls using the 

computational software MATLAB R2014a. We obtained the following results. 

Table 1. Transient skin frictions at the walls for different time 𝑡 and Knudsen number 𝑘𝑛 of Pressure driven flow 

 
𝛽𝑣 = 0.5, 𝑎 = 0.5 

𝑝 = 2, 𝛾 = 1, 𝑘𝑛 = 0.0 
 

𝛽𝑣 = 0.5, 𝑎 = 0.5 

𝑌 = 1, 𝑘𝑛 = 0.04 
 

𝛽𝑣 = 0.5, 𝑎 = 0.5, 𝑝 = 2 

𝑌 = 1, 𝑘𝑛 = 0.08 
 

t 𝜏0 𝜏1 𝜏0 𝜏1 𝜏0 𝜏1 

0.1 0.0140 −0.0140 0.0134 −0.0134 0.0129 −0.0129 

0.2 0.0310 −0.0310 0.0299 −0.0299 0.0289 −0.0289 

0.3 0.0487 −0.0487 0.0473 −0.0473 0.0460 −0.0460 

0.4 0.0670 −0.0670 0.0652 −0.0652 0.0636 −0.0636 

0.5 0.0856 −0.0856 0.0835 −0.0835 0.0815 −0.0815 

0.6 0.1044 −0.1044 0.1020 −0.1020 0.0998 −0.0998 

0.7 0.1234 −0.1234 0.1208 −0.1208 0.1183 −0.1183 

0.8 0.1425 −0.1425 0.1397 −0.1397 0.1370 −0.1370 

0.9 0.1618 −0.1618 0.1587 −0.1587 0.1558 −0.1558 

1.0 0.1812 −0.1812 0.1779 −0.1779 0.1747 −0.1747 
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4.2.  2D-Plots Presentation 

Figures 2-5 describe the velocity profiles for various parameters, such as fractional 𝛼, pressure 𝑝, Knudsen 

number 𝑘𝑛, and time 𝑡, caused by the pressure gradient. Figure 2 shows that the reduction of fractional order 

reduces the velocity of the fluid, which implies that the velocity can be slowed down by decreasing the 

fractional order. In addition, it shows the advantages of fractional derivatives over integer derivatives. Figure 

3 shows that the transient velocity increases with time, which implies that with a constant driving force, the 

velocity can increase as time goes on. Figure 4 shows that as the Knudsen number increased, the fluid 

velocity increased, indicating that enlarging the length scale allowed the mean free path to enlarge and the 

velocity to increase. Similarly, Figure 5 shows the velocity profiles for different Knudsen numbers 𝑘𝑛. 

Figure 6 depicts the variation of fractional order 𝛼 with velocity 𝑈, which that the velocity of the fluid 

decreases when the fractional order decreases with the interval of 0.3, and between 0.6 and 0.3, the velocity 

reduces unlike from 0.9 to 0.6, which clearly shows the effect of the fractional order. Figure 7 shows the 

variation of velocity 𝑈 with time 𝑡, which shows that increasing time makes velocity also increase and 

converge at both walls, which leads the velocity to decrease between 0.5 to 0.8, and as time goes on, the 

velocity will be steady. It should be noted that the fluid velocity slows down as the Knudsen number 

decreases. Table 1 shows that skin friction increases evenly on both walls but in opposite directions with 

increasing time and Knudsen number. 

 
Figure 2. Variation of fractional order 𝛼 against velocity 𝑈when the fluid flow as a result of pressure gradient 

 

Figure 3. Variation of time 𝑡 against velocity 𝑈 when the fluid flows as a result of pressure gradient 
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Figure 4. Variation of Knudsen number 𝑘𝑛 against velocity 𝑈 as a result of pressure gradient 

 

Figure 5. Variation of Knudsen number 𝑘𝑛 against velocity 𝑈 as a result of pressure gradient 

 

Figure 6. Variation of fractional order 𝛼 against velocity 𝑈 when the fluid flows as a result of pressure gradient 
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Figure 7. Variation of time 𝑡 against velocity 𝑈 when the fluid flows as a result of pressure gradient 

5. Conclusion 

In this paper, the effect of varying the governing parameters was considered to study the velocity profile 

induced by pressure-driven flow in the microchannel. The transient skin friction uniformly increases at both 

walls but in opposite directions. It has been discovered that the velocity of a fluid flow can be controlled by 

adjusting the fractional order (𝛼). The advantages of fractional derivatives over integer derivatives have been 

studied. It has been observed that the velocity can increase with a constant driven force as time goes on. 

Enlarging the length scale enlarged the mean free path and increased velocity. It can be seen that with a 

continuous decrease of the Knudsen number 𝑘𝑛, at 𝛽𝑣 = −0.5, the velocity increases but remains constant at 

𝛽𝑣 = 0.0 while at 𝛽𝑣 =  0.5, the velocity decreases. The results obtained from this study are significant for 

industries, as they contribute to a better comprehension of various applications such as oil reservoirs, nuclear 

reactors, groundwater flow, filtration, and geothermal systems. Furthermore, these findings present 

opportunities for further investigation through the inclusion of porous mediums, suction, and injection 

velocities. 

Abbreviations 

𝐷 fractional derivative 

𝛼 fractional order 

𝑡 time 

𝑢 velocity of fluid flow 

𝑦 dimensionless y coordinate 

𝑝 dimensionless pressure gradient 

𝑘𝑛 Knudsen number 

𝛽 stress jump coefficient 

𝜌 fluid density 

𝜆 molecular mean free path 

𝜐𝑓 kinematics viscosity of the fluid 

𝑦′ dimensional y-coordinate 

𝑢𝑓 dimensionless velocity in the clear fluid region 

𝑢𝑓
′  dimensional velocity in the clear fluid region 

𝑢𝑡 transient velocity 

𝛿𝑝′

𝛿𝑧′
 dimensional pressure gradient 

𝛽𝑣 dimensionless variable 
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