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Effects of Quartic Wave-Vectors on Continuum Model of Phosphorene
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Abstract: Phosphorene is the monolayer structures of black phosphorous. Its low-energy physics can be
described by continuum model in the scheme of k-p theory. Validity of energy range for this model can be
improved by extra terms as trigonal warp effect in graphene. We construct a new continuum model by
expanding the tight-binding Hamiltonian of phosphorene up to the order of k* The new quartic model increases
the energy range where the eigenvalues of continuum and tight-binding Hamiltonian are matched. Moreover,
we examine the Landau levels of phosphorene by the influence of quartic terms. While quartic terms have
insignificant effects on the lower Landau levels of phosphorene, they have non-negligible contributions to the
higher levels. In this study, we propose a new continuum model which brings better description to the dynamics
of phosphorene charge carriers.
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Fosforenin Siirekli Modeli Uzerine Dérdiincii Mertebeden Dalga
Vektoriiniin Etkisi

Ozet: Fosforen siyah fosforun tek tabakali yapisidir. Diisiik enerji fizigi k-p teorisi cergevesinde siirekli model
ile tasvir edilebilir. Siirekli modelin gegerli oldugu enerji araligi grafendeki tiggensel egrilikte oldugu gibi ek
terimler ile artirilabilir. Burada fosforenin siki-bag Hamiltonyeni k* mertebesine kadar seri agilarak yeni bir
stirekli model olusturulmustur. Dordiinci mertebeden yeni model siirekli ve siki-bag Hamiltonyenlerinin
Ozdegerlerinin Ortiistiigli enerji araligini artirmistir. Dahast dordiincii mertebeden terimin katkisi géz 6niinde
bulundurularak fosforenin Landau seviyeleri incelenmistir. Dordiincii mertebeden terimin diisiik Landau
seviyeleri tizerinde goz ardi edilebilir etkiye sahipken, yiiksek Landau seviyelerine ihmal edilemeyen katkilar
getirir. Bu ¢alismada fosforenin yilk tastyicilarinin dinamigini daha iyi tasvir eden yeni bir siirekli model
onerilmistir.

Anahtar Kelimeler: Fosforen, siirekli model, Landau seviyeleri

1. INTRODUCTION

With the discovery of graphene [1], two-
dimensional structures have become one of the
active research area for the condensed matter
physicist. Even graphene shows promising
physical properties [2], its gapless electronic
structure limits the technological application of

* Corresponding author. Email address:
http://dergipark.gov.tr/csj

this fascinating material. Due to the lack of
band gap in graphene, researchers have been
focused on the other two-dimensional (2D)
structures, i.e., silicene, germanene, stanene.
Recently, with the synthesis of a few-layer black
phosphorus by the several methods including
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chemical vapor deposition [3], mechanical and
liquid exfoliation [4-7], interest on this new
material has been increased extensively related
with its unique physical properties, i.e.,
relatively higher charge carrier mobility [6-8],
tunable band gap with the number of layer
[9,10], and structural anisotropy [10-12].
While the monolayer black phosphorus (namely
phosphorene) has a direct band gap of 1.5-2eV
at the ' point of the Brillouin zone [6,13,14],
band gap of black phosphorus can be tuned by
the number of layer between 0.3-2.0 eV [9.10].
Moreover, the phonon spectrum based on the
density functional theory ensures the thermal
stability of phosphorene [15].

To understand the band structure and charge carrier
dynamics of the materials, several theoretical
approaches have been developed such as density
functional theory, tight-binding model and
continuum model. Among these approaches,
continuum model (or k-p model) is an
important tool which perfectly describes the
low-energy  physics of  two-dimensional
structures. In graphene, the low-energy spectrum
was constructed by the Dirac Hamiltonian [16]
which  also  describes some relativistic
phenomenas in graphene, i.e., Klein paradox [2-
17]. The conic spectrum of graphene arising
from Dirac Hamiltonian is valid only for the low
energy region of band structure which describes
the isotropic electronic properties of the charge
carriers. However, by considering trigonal warp
effect [2,18] which extends the continuum
approach to the higher energies, the band
structure becomes non-linear which yields some
anisotropic properties in graphene [19,20]. Even
the continuum model of phosphorene was
constructed by considering the quadratic wave-
vectors [21,22], the contributions of higher

Ho = ug + ﬁxpi + ﬁupz
8 + Vel + Yyl — 1XDy

By considering the tight-binding description of
phosphorene in Ref. 21, we can expand the

order wave-vectors that increase the validity of
continuum approach for the higher energies
have never been discussed before.

In this paper, we construct a new continuum
model by considering quartic terms (k*) in tight-
binding expansion around I" point. The theory
part of the paper consists of two sections as, A.
Continuum model with quartic correction and B.
Landau levels with quartic correction. At the first
section, we formulate the quartic continuum
Hamiltonian and find the energy eigenvalues of
the system. In the presence of perpendicular
magnetic field, Landau levels of phosphorene are
examined by considering the quartic correction in
Sec. B.

2. THEORY
A. Continuum model with quartic correction

The energy spectrum of phsophorene can be
formulated by a four-band tight-binding model
[13,14,23]. Moreover, C,, group invariance of
the phosphorene enables us to describe the
system by two-band model [21-23]. The low-
energy physics of phosphorene can be described
by k-p model in the long wave-length limit. It
can be extracted by expanding the tight-
binding Hamiltonian around I' point. In the
framework guadratic ~ wavevectors,  the
continuum Hamiltonian shows good agreement
with the tight-binding model between —2.0 to
1.5 eV [21,22]. Moreover, the continuum
Hamiltonian of phosphorene  can be
constructed by considering k* terms at the
expansion of tight-binding Hamiltonian around
I' point. In the long-wavelength limit, the
guadratic continuum Hamiltonian of MBP can
be written as [21],

O + Vel + VP, + iXDy
ug + ﬁvupi + ﬁypf/

@)

tight-binding Hamiltonian up to the p* terms,
and the total Hamiltonian becomes,
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Ho Uo + nxpm + nypy + szx + Typy 6+ Fup2 + wpy + prx + F»ypy + zxpy )
Here, 7; = n;/h* (n, = 0.58 eV A? and n, = | amchair ()

1.01eV &%), 7, = y;/h? (y, = 3.93 eV A? and
¥y =3.83eVA?),  y=x/h(xy =5.25eVA?),
T, =1;/h* (1,=-013eVA* and 7,=
—0.40 eV &%), &; = x;/h* (k, = —0.89 eV A*
and k, =—2.08eV A*), uy =—0.42eV and
6 = 0.76 eV. The corresponding eigenvalues of  Figure 1. Puckered structure of phosphorene, (a) side view

(@) side view (b) top view

total Hamiltonian in Eq.(2) can be found and (b) top view.
as,
9 1/2
BT = g + Z (nik? + ki) + A (5 + Z yik + mkf) + (xky)? . (3)
1=,y 1=x,y

In absence of quartic terms, energy eigenvalues of Hamiltonian in Eq.(1) yield well-known quadratic
expression in Ref. 21, i.e.

1/2

2
Eg““dm“c = ug + Z nik? + A ((5 + Z %k2> (xky )

i=x,Yy 1=,y

Furthermore, square root term in Eq.(3) can be expanded for the small values of wave-vector which
gives,

E;}\uartic ~ (UO + )\5) + (’17z + )\’Yx) ka + (ny + )\'Yy + /\>2(5> k?/

4
WX /\> K @
202 803

+ (7o + Akg) K2 4 <Ty + Ay — A

Here the analytical expression in Eq.(4) is valid direction for electrons (holes). It is easy to claim
only the vicinity of I' point. The coefficients that the effect of k* term is more pronounced
(tx + Ak, and T, + Ak, — Ay, x?/26% — along the armchair direction for the low-energy
Ax*/853) of k*erms determine the spectrum of phosphorene. In the framework of
contribution of quartic terms to the eigenvalues quadratic continuum model, Hamiltonian in
of phosphorene. While it takes —1.03 eV A*(0.76  EQ.(1) have Schrodinger-like and Dirac-like
&%) along the zigzag direction, it becomes character related with quadratic and linear

~310.19 eV A*(309.4 eV A*) along the armchair terms, respectively, which is shown at Fig.2(a).
As it is seen, linear term has non-negligible effect
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along the armchair direction. Moreover, it shows
good agreement with tight-binding results
between —2.0 to 1.5 eV. By inclusion of quartic
terms, the range of overlap with tight-binding
spectrum is increased up to 3.0 eV (—3.0 eV) for
conduction (valance) band. It can be easily
claimed that the quartic continuum model
describe the low-energy physics better than the
quadratic model for phosphorene. Moreover,
density of states (DOS) per unit-cell can be
calculated by the following formula,

dkydk
DOS = =_Y5(E—-E
0S / 2 5 ( N

To calculate DOS, we consider the Gaussian
broadening as an approximation to the Dirac
function, i.e., 8(E —Ej) ~ (1/ovn)exp[—(E —
E;)?/0?], with o is the broadening parameter
taken to be ¢ = 5 meV/. We also present the DOS
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Figure 2. (a) Low energy spectrum of phosphorene for tight-binding, quadratic and quartic continuum models. (b)
DOS of phosphorene for quadratic and quartic continuum models. Shaded area corresponds to band gap between CBM
and VBM at T point. (The tight-binding curve is generated by using tight-binding Hamiltonian in Ref. 21).

curve of phosphorene for both quadratic and
guartic energy eigenvalues in Fig.2(b). As it is
seen, while both model match for the low
energies around energy gap, by the increasing of
energies, quartic model has more contribution to
the electronic states. On the other hand, Van Hove
singularity at valance band of phosphorene
arising from the quartic term was showed in Ref.
24 by using density functional theory scheme. In
Ref. 24, the continuum model of phosphorene
is extracted from the results of the density

functional theory which yields a new valance
band maximum (VBM) closed to the T point.
That saddle point around VBM is responsible
from the Van Hove singularity at valance band
of phosphorene. Since the quartic continuum
energy eigenvalues extracted from tight-
binding model do not have a new VBM or
conduction band minimum (CBM), Van Hove
singularity cannot be captured in this model,
thus we see the smooth curves for the DOS of
phosphorene in Fig.2(b).
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B. Landau levels with quartic correction

In the presence of perpendicular magnetic field, the
quartic continuum Hamiltonian of phosphorene in
Eq.(2) can be written as,

Ho — { U + ToTs + Ty Mo + TaTy + TyTy 0+ FaTs 4+ Yy To + ReTa + Ry +iXTy } ©)

=~ 2 5 -2 = 4z 4 _ o =2 = 2 = 4 = 4
5+’yl.7rm+7y7ry+m7rm+ny7ry—zxﬁy u0+nw7rm+ny7ry+7w7rm+ry7ry

Eq.(5) can be divided in terms of non-linear and linear terms, respectively, as

gynon-—tin _ [ W0 - TeTE 4 ym) + Fymy £ Ry s+ Ty + Ramy + oy ©)
0 Vo2 + FyT2 + Ruma + RyTy g + a2 + N2 + Tyma + 7y |
and
lin __ 0 5 + ’L)_(Tfy
Ho" = [5—iXﬂy 0 } ' )

where mj is the 2D canonical momentum. In where A is the band index taking +1 (-1) for
symmetric gauge, m, = p, — (eB/2)y,and m, =  conduction (valance) bands, i refers to x and
p, + (eB/2)x where p; is the momentum  Y.wy =eB//mymy,, and takes w, =
operator. It is possible to represent p; and r; in 2.668w, (w_ = 2.195w,) for electrons (holes),
terms of the creation bfand annihilation b; @ IS the electron cyclotron frequency, my; are

operators as the effective masses: m,, = 0.846m, and
me, = 0.166m, for conduction band, m, =
i — (wuihw)\)lﬂ o+ b 1.140m, and m, = 0.182m, for valance
' 2 L band, with m, is the free electron mass. By
. ( h >1/2 o ) diagonalizing HZ°"~1" eigenvalues of the non-
2my;wx . linear Hamiltonian yield

Eﬁon_lm = ug + (N + Mz) (neny] ™ [nany) + (Ty + Ay) (nany| 77; [ngmy) (®)

+ (Te + ARg) <nwny| Wi |nwny> + (%y + )‘Ry) <nxny| 773 |nrny>

where
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On the other hand, the linear term, H)™ can be diagonalized by taking its square as,
(BZ")? = 6+ X2 (ngny| m, [ngny) (10)

Assuming n, =n, =n by considering the gauge independent degeneracy of Landau levels, the
eigenvalues of H}™ Hamiltonian are given by

quartic __ pnmon—lin lin
En/\ - En + En

2
+ [(Fe + ARy)m3, + (Fy + ARy )m3, ] (wy)? (602 + 6n + 3)

1
— 0+ A+ X3 e [, + 33 ma e (4 3 )
(1)

1

2

+A [62 + XMy hwy (n + ;)}

Notice that, similar method was followed in Ref. 25 for the Landau levels of phosphorene. In the
absence of quartic terms, Eq.(11) becomes

quadratic — _ _ _ 1
B — o 4 [+ M) s -+ 103, + 33 sy o (43 )
N (12)
+ A |:52 + )ZQm)\th,\ <n + 2>:| .

Here, the last term in Egs.(11) and (12) can be expanded as,

5 [1+ (may /62 hws (n+ 1/2)] % & [6 + (2miay/20) hs (n + 1/2)]

and finally we arrive at
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; 1
E.Zi;\adratzc — (UO + )\(5) —+ /\th (n + 2)

i 1
EIMC = (ug + A) + Miwy (n + 2) + & (hwy)? (602 + 60+ 3) .

Here, &, takes 0.014 for electrons (A =1) and
0.018 for holes (1 = —1). Square root and linear
energy expressions in Egs.(12) and (13), are
plotted in Fig.3(a). It is clear that below the B =
30T, both expression of quartic model are
perfectly matched for the whole values of Landau
level index, n. According the energy expression
in Egs.(3) and (4) in the presence of magnetic
field, linear term is less effective on Landau levels
of phosphorene. Similar behavior of quadratic
continuum energy was also discussed in Refs. 21
and 25. It can be also concluded that electron-
hole asymmetry is present at Landau level
spectrum due to the anisotropic structure of
phosphorene having different effective masses of
charge carriers. As it can be followed from the
second term in EQq.(13), the quartic terms yield
non-linearity at the Landau level spectrum with
the magnetic field. Even the non-linearity has
small effect on Landau levels of phosphorene, it
is demonstrated in an experimental study for
few-layer black phosphorus.?® The relative
energies AE,){ — Eg}fadratic _ E;ql;tartic of Landau
levels with magnetic field are plotted in Figs.3(b)
and (c). It is obvious that non-linearity can be
seen clearly from the behavior of curves for the
different Landau level index. Even the
contribution of non-linear term arising from the
guartic model has negligible effect on lower

(13)

Landau levels, the behavior of the Landau levels
shows different trend according to the Landau
level index, n. While the energies of quadratic
model are decreased with quartic terms for the
lower Landau level index, they are enhanced for
the higher index. In other words, it can be easily
claimed that by inclusion of k*terms the energy
of ground state (ground and first-excited states)
is increased for electron (holes), on the other part,
quartic terms reduce the energy of the Landau
levels for the excited states (excited states above
n = 1) for electron (hole). Moreover, there are
some critical magnetic field values where both
energy expressions of quadratic and quartic
model are equal. Under these critical values,
quartic terms decrease the energy of whole
Landau levels insignificantly. It is also clear from
the Figs.3 (b) and (c) that these critical values are
decreased with the increasing values of Landau
level index. Even trend of curves is similar,
difference between electron and hole state arises
from their effective masses which is based on the
anisotropy of phosphorene. If we compare the
scales of relative energies belong to electron and
hole in Figs.3(b) and (c), quartic terms also
induce asymmetry between electron and hole
states due to the effective mass dependent
contribution of quartic term (see last term in

Eq.(13)).
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Figure 3. (a) Landau levels of MBP, red dashed line corresponds to a linear expression in Eq. (13), black line corresponds
to Eq. (12), relative energies (AE7) for (b) electrons and (c) holes.

3. CONCLUSIONS

In summary, we extract a new continuum
model based on quartic wave-vectors (k*) from
the tight-binding model of phosphorene. We
examine the energy eigenvalues of quartic
Hamiltonian in the presence and absence of
magnetic field. We see that quartic model brings
better description according to the well-known
quadratic model for the behavior of charge
carriers in phosphorene. In the absence of
magnetic field, quartic model increases the range
of energy where eigenvalues of continuum model
match with tight-binding results. We also see
from the DOS curve, quadratic model
underestimates the contribution arising from the
electronic  states. In the  presence  of
perpendicular magnetic field to phosphorene
plane, quartic terms yield non-linearity at the
energy spectrum of the system. We also analyze
the Landau levels of phosphorene in the

framework of quartic continuum model. We
conclude that quartic terms in continuum model
have insignificant effect on lower (n = 0 and 1)
Landau levels of phosphorene. However, they
have non-negligible contribution to the higher
Landau levels of phosphorene at the order of
~meV. Similarly, the extension of continuum
model in graphene was achieved by the trigonal
warp effect which increases the energy regime of
Dirac Hamiltonian to bring better description
for the dynamics of graphene charge carriers
[2,18]. As a conclusion, it can be maintained
that the presented continuum model in here will
lead better understanding for the electronic and
transport properties of phosphorene in the
framework of k - p theory.
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