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Abstract: Phosphorene is the monolayer structures of black phosphorous. Its low-energy physics can be 

described by continuum model in the scheme of k∙p theory. Validity of energy range for this model can be 

improved by extra terms as trigonal warp effect in graphene. We construct a new continuum model by 

expanding the tight-binding Hamiltonian of phosphorene up to the order of k4. The new quartic model increases 

the energy range where the eigenvalues of continuum and tight-binding Hamiltonian are matched. Moreover, 

we examine the Landau levels of phosphorene by the influence of quartic terms. While quartic terms have 

insignificant effects on the lower Landau levels of phosphorene, they have non-negligible contributions to the 

higher levels. In this study, we propose a new continuum model which brings better description to the dynamics 

of phosphorene charge carriers. 

Keywords: Phosphorene, continuum model, Landau levels 

Fosforenin Sürekli Modeli Üzerine Dördüncü Mertebeden Dalga 

Vektörünün Etkisi 

Özet: Fosforen siyah fosforun tek tabakalı yapısıdır. Düşük enerji fiziği k∙p teorisi çerçevesinde sürekli model 

ile tasvir edilebilir. Sürekli modelin geçerli olduğu enerji aralığı grafendeki üçgensel eğrilikte olduğu gibi ek 

terimler ile artırılabilir. Burada fosforenin sıkı-bağ Hamiltonyeni k4 mertebesine kadar seri açılarak yeni bir 

sürekli model oluşturulmuştur. Dördüncü mertebeden yeni model sürekli ve sıkı-bağ Hamiltonyenlerinin 

özdeğerlerinin örtüştüğü enerji aralığını artırmıştır. Dahası dördüncü mertebeden terimin katkısı göz önünde 

bulundurularak fosforenin Landau seviyeleri incelenmiştir. Dördüncü mertebeden terimin düşük Landau 

seviyeleri üzerinde göz ardı edilebilir etkiye sahipken, yüksek Landau seviyelerine ihmal edilemeyen katkılar 

getirir. Bu çalışmada fosforenin yük taşıyıcılarının dinamiğini daha iyi tasvir eden yeni bir sürekli model 

önerilmiştir. 

Anahtar Kelimeler: Fosforen, sürekli model, Landau seviyeleri 

 

1. INTRODUCTION 

With the discovery of graphene [1], two-

dimensional structures have become one of the 

active research area for the condensed matter 

physicist. Even graphene shows promising 

physical properties [2], its gapless electronic 

structure limits the technological application of 

this fascinating material. Due to the lack of 

band gap in graphene, researchers have been 

focused on the other two-dimensional (2D) 

structures, i.e., silicene, germanene, stanene. 

Recently, with the synthesis of a few-layer black 

phosphorus by the several methods including 
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chemical vapor deposition [3], mechanical and 

liquid exfoliation [4-7], interest on this new 

material has been increased extensively related 

with its unique physical properties, i.e., 

relatively higher charge carrier mobility [6-8], 

tunable  band  gap with the number  of layer 

[9,10], and structural  anisotropy [10-12]. 

While the monolayer black phosphorus (namely 

phosphorene) has a direct band gap of 1.5–2 eV 

at the Γ point of the Brillouin zone [6,13,14], 

band gap of black phosphorus can be tuned by 

the number of layer between 0.3–2.0 eV [9.10].  

Moreover, the phonon spectrum based on the 

density functional theory ensures the thermal 

stability of phosphorene [15]. 

To understand the band structure and charge carrier 

dynamics of the materials, several theoretical 

approaches have been developed such as density 

functional theory, tight-binding model and 

continuum model. Among these approaches, 

continuum model (or 𝑘 ∙ 𝑝 model) is an 

important tool w h i c h  perfectly describes the 

low-energy physics of two-dimensional 

structures. In graphene, the low-energy spectrum 

was constructed by the Dirac Hamiltonian [16] 

which also describes some relativistic 

phenomenas in graphene, i.e., Klein paradox [2-

17]. The conic spectrum of graphene arising 

from Dirac Hamiltonian is valid only for the low 

energy region of band structure which describes 

the isotropic electronic properties of the charge 

carriers. However, by considering trigonal warp 

effect [2,18] which extends the continuum 

approach to the higher energies, the band 

structure becomes non-linear which yields some 

anisotropic properties in graphene [19,20]. Even 

the continuum model of phosphorene was 

constructed by considering the quadratic wave-

vectors [21,22], the contributions of higher 

order wave-vectors that increase the validity of 

continuum approach for the higher energies 

have never been discussed before. 

In this paper, we construct a new continuum 

model by considering quartic terms (𝑘4 ) in tight-

binding expansion around Γ point. The theory 

part of the paper consists of two sections as, A. 

Continuum model with quartic correction and B. 

Landau levels with quartic correction. At the first 

section, we formulate the quartic continuum 

Hamiltonian and find the energy eigenvalues of 

the system. In the presence of perpendicular 

magnetic field, Landau levels of phosphorene are 

examined by considering the quartic correction in 

Sec. B. 

2. THEORY 

A. Continuum model with quartic correction 

The energy spectrum of phsophorene can be 

formulated by a four-band tight-binding model 

[13,14,23]. Moreover, 𝐶2ℎ group invariance of 

the phosphorene enables us to describe the 

system by two-band model [21-23]. The low-

energy physics of phosphorene can be described 

by 𝑘 ∙ 𝑝 model in the long wave-length limit. It 

can be extracted by expanding the tight-

binding Hamiltonian around Γ point. In the 

framework quadratic wavevectors, the 

continuum Hamiltonian shows good agreement 

with the tight-binding model between −2.0 to 

1.5 eV [21,22]. Moreover, the continuum 

Hamiltonian of phosphorene can be 

constructed by considering 𝑘4 terms at the 

expansion of tight-binding Hamiltonian around 

Γ point. In the long-wavelength limit, the 

quadratic continuum Hamiltonian of MBP can 

be written as [21],

 

(1) 

 

By considering the tight-binding description of 

phosphorene in Ref. 21, we can expand the 

tight-binding Hamiltonian up to the 𝑝4 terms, 

and the total Hamiltonian becomes, 
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(2) 

Here, �̅�𝑖 = 𝜂𝑖/ℏ2 (𝜂𝑥 = 0.58 𝑒𝑉 Å2 a n d   𝜂𝑦 =

1.01 𝑒𝑉 Å2), �̅�𝑖 = 𝛾𝑖/ℏ2 (𝛾𝑥 = 3.93 𝑒𝑉 Å2 a n d  

 𝛾𝑦 = 3.83 𝑒𝑉 Å2), �̅� = 𝜒/ℏ(𝜒 = 5.25 𝑒𝑉Å2), 

�̅�𝑖 = 𝜏𝑖/ℏ4 (𝜏𝑥 = −0.13 𝑒𝑉 Å4 a n d   𝜏𝑦 =

−0.40 𝑒𝑉 Å4), �̅�𝑖 = 𝜅𝑖/ℏ4 (𝜅𝑥 = −0.89 𝑒𝑉 Å4 

a n d   𝜅𝑦 = −2.08 𝑒𝑉 Å4), 𝑢0 = −0.42 𝑒𝑉 and 

𝛿 = 0.76 𝑒𝑉. The corresponding eigenvalues of 

total Hamiltonian in Eq.(2) can be found 

 

Figure 1. Puckered structure of phosphorene, (a) side view 

and (b) top view. 

 

as, 

 

(3) 

In absence of quartic terms, energy eigenvalues of Hamiltonian in Eq.(1) yield well-known quadratic 

expression in Ref. 21, i.e. 

 

Furthermore, square root term in Eq.(3) can be expanded for the small values of wave-vector which 

gives, 

 

(4) 

Here the analytical expression in Eq.(4) is valid 

only the vicinity of Γ point. The coefficients 

(𝜏𝑥 + 𝜆𝜅𝑥 and 𝜏𝑦 + 𝜆𝜅𝑦 − 𝜆𝛾𝑦𝜒2/2𝛿2 −

𝜆𝜒4/8𝛿3) of 𝑘4terms determine the 

contribution of quartic terms to the eigenvalues 

of phosphorene. While it takes −1.03 𝑒𝑉 Å4 (0.76 

 Å4 ) along the zigzag direction, it becomes 

−310.19 𝑒𝑉 Å4 (309.4 𝑒𝑉 Å4 ) along the armchair 

direction for electrons (holes). It is easy to claim 

that the effect of 𝑘4 term is more pronounced 

along the armchair direction for the low-energy 

spectrum of phosphorene. In the framework of 

quadratic continuum model, Hamiltonian in 

Eq.(1) have Schrodinger-like and Dirac-like 

character related with quadratic and linear 

terms, respectively, which is shown at Fig.2(a). 

As it is seen, linear term has non-negligible effect 
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along the armchair direction. Moreover, it shows 

good agreement with tight-binding results 

between −2.0 to 1.5 eV. By inclusion of quartic 

terms, the range of overlap with tight-binding 

spectrum is increased up to 3.0 eV (−3.0 eV) for 

conduction (valance) band. It can be easily 

claimed that the quartic continuum model 

describe the low-energy physics better than the 

quadratic model for phosphorene. Moreover, 

density of states (DOS) per unit-cell can be 

calculated by the following formula, 

 

To calculate DOS, we consider the Gaussian 

broadening as an approximation to the Dirac 

function, i.e., 𝛿(𝐸 − 𝐸𝜆) ≈ (1/𝜎√𝜋)exp[−(𝐸 −

𝐸𝜆)2/𝜎2], with σ is the broadening parameter 

taken to be 𝜎 = 5 𝑚𝑒𝑉. We also present the DOS 

 
 

Figure 2. (a) Low energy spectrum of phosphorene for tight-binding, quadratic and quartic continuum models. (b) 

DOS of phosphorene for quadratic and quartic continuum models. Shaded area corresponds to band gap between CBM 

and VBM at Γ point.  (The tight-binding curve is generated by using tight-binding Hamiltonian in Ref. 21). 

 

curve of phosphorene for both quadratic and 

quartic energy eigenvalues in Fig.2(b). As it is 

seen, while both model match for the low 

energies around energy gap, by the increasing of 

energies, quartic model has more contribution to 

the electronic states. On the other hand, Van Hove 

singularity at valance band of phosphorene 

arising from the quartic term was showed in Ref. 

24 by using density functional theory scheme. In 

Ref. 24, the continuum model of phosphorene 

is extracted from the results of the density 

functional theory which yields a new valance 

band maximum (VBM) closed to the Γ point. 

That saddle point around VBM is responsible 

from the Van Hove singularity at valance band 

of phosphorene. Since the quartic continuum 

energy eigenvalues extracted from tight-

binding model do not have a new VBM or 

conduction band minimum (CBM), Van Hove 

singularity cannot be captured in this model, 

thus we see the smooth curves for the DOS of 

phosphorene in Fig.2(b). 
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B. Landau levels with quartic correction 

In the presence of perpendicular magnetic field, the 

quartic continuum Hamiltonian of phosphorene in 

Eq.(2) can be written as, 

 

 

(5) 

Eq.(5) can be divided in terms of non-linear and linear terms, respectively, as 

 

(6) 

and 

 

(7) 

 

where πi is the 2D canonical momentum. In 

symmetric gauge, 𝜋𝑥 = 𝑝𝑥 − (𝑒𝐵/2)𝑦, and 𝜋𝑦 =

𝑝𝑦 + (𝑒𝐵/2)𝑥 where 𝑝𝑖 is the momentum 

operator. It is possible to represent 𝑝𝑖 and 𝑟𝑖 in 

terms of the creation 𝑏𝑖
†
and annihilation 𝑏𝑖   

operators as 

 

 

 

where 𝜆 is the band index taking +1 (−1) for 

conduction (valance) bands, i refers to x and  

y.𝜔𝜆 = 𝑒𝐵/√𝑚𝜆𝑥𝑚𝜆𝑦, and takes 𝜔+ =

2.668𝜔𝑒  (𝜔− = 2.195𝜔𝑒  ) for electrons (holes), 

𝜔𝑒  is the electron cyclotron frequency, 𝑚𝜆𝑖  are 

the effective masses: 𝑚𝑒𝑥 = 0.846𝑚𝑜  and 

𝑚𝑒𝑦 = 0.166𝑚𝑜 for conduction band, 𝑚ℎ𝑥 =

1.140𝑚𝑜 and 𝑚ℎ𝑦 = 0.182𝑚𝑜 for valance 

band,  with 𝑚𝑜 is the free electron mass. By 

diagonalizing 𝐻0
𝑛𝑜𝑛−𝑙𝑖𝑛, eigenvalues of the non-

linear Hamiltonian yield 

 

(8) 

where 
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(9) 

On the other hand, the linear term, 𝐻0
𝑙𝑖𝑛 can be diagonalized by taking its square as, 

 
(10) 

Assuming 𝑛𝑥 = 𝑛𝑦 = 𝑛 by considering the gauge independent degeneracy of Landau levels, the 

eigenvalues of 𝐻0
𝑙𝑖𝑛 Hamiltonian are given by 

 

(11) 

 

Notice that, similar method was followed in Ref. 25 for the Landau levels of phosphorene. In the 

absence of quartic terms, Eq.(11) becomes 

 

(12) 

Here, the last term in Eqs.(11) and (12) can be expanded as, 

 

 

and finally we arrive at 
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(13) 

Here, 𝜉𝜆 takes 0.014 for electrons (𝜆 = 1) and 

0.018 for holes (𝜆 = −1). Square root and linear 

energy expressions in Eqs.(12) and (13), are 

plotted in Fig.3(a). It is clear that below the 𝐵 ≈

30 𝑇, both expression of quartic model are 

perfectly matched for the whole values of Landau 

level index, n.  According the energy expression 

in Eqs.(3) and (4) in the presence of magnetic 

field, linear term is less effective on Landau levels 

of phosphorene. Similar behavior of quadratic 

continuum energy was also discussed in Refs. 21 

and 25. It can be also concluded that electron-

hole asymmetry is present at Landau level 

spectrum due to the anisotropic structure of 

phosphorene having different effective masses of 

charge carriers. As it can be followed from the 

second term in Eq.(13), the quartic terms yield 

non-linearity at the Landau level spectrum with 

the magnetic field. Even the non-linearity has 

small effect on Landau levels of phosphorene, it 

is demonstrated in an experimental study for 

few-layer black phosphorus.26 The relative 

energies Δ𝐸𝑛
𝜆 = 𝐸𝑛𝜆

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐
− 𝐸𝑛𝜆

𝑞𝑢𝑎𝑟𝑡𝑖𝑐
 of Landau 

levels with magnetic field are plotted in Figs.3(b) 

and (c). It is obvious that non-linearity can be 

seen clearly from the behavior of curves for the 

different Landau level index. Even the 

contribution of non-linear term arising from the 

quartic model has negligible effect on lower 

Landau levels, the behavior of the Landau levels 

shows different trend according to the Landau 

level index, n. While the energies of quadratic 

model are decreased with quartic terms for the 

lower Landau level index, they are enhanced for 

the higher index. In other words, it can be easily 

claimed that by inclusion of 𝑘4 terms the energy 

of ground state (ground and first-excited states) 

is increased for electron (holes), on the other part, 

quartic terms reduce the energy of the Landau 

levels for the excited states (excited states above 

𝑛 = 1) for electron (hole). Moreover, there are 

some critical magnetic field values where both 

energy expressions of quadratic and quartic 

model are equal.  Under these critical values, 

quartic terms decrease the energy of whole 

Landau levels insignificantly. It is also clear from 

the Figs.3 (b) and (c) that these critical values are 

decreased with the increasing values of Landau 

level index. Even trend of curves is similar, 

difference between electron and hole state arises 

from their effective masses which is based on the 

anisotropy of phosphorene. If we compare  the 

scales of relative energies belong to electron and 

hole in Figs.3(b) and (c), quartic terms also 

induce asymmetry between electron and hole 

states due to the effective mass dependent 

contribution of quartic term (see last term in 

Eq.(13)).
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Figure 3. (a) Landau  levels of MBP, red dashed line corresponds to a linear expression in Eq. (13), black line corresponds 

to Eq. (12), relative energies ( Δ𝐸𝑛
𝜆)  for (b) electrons  and (c) holes. 

 

3. CONCLUSIONS 

In summary, we extract a new continuum 

model based on quartic wave-vectors (𝑘4 ) from 

the tight-binding model of phosphorene. We 

examine the energy eigenvalues of quartic 

Hamiltonian in the presence and absence of 

magnetic field. We see that quartic model brings 

better description according to the well-known 

quadratic model for the behavior of charge 

carriers in phosphorene. In the absence of 

magnetic field, quartic model increases the range 

of energy where eigenvalues of continuum model 

match with tight-binding results. We also see 

from the DOS curve, quadratic model 

underestimates the contribution arising from the 

electronic states. In the presence of 

perpendicular magnetic field to phosphorene 

plane, quartic terms yield non-linearity at the 

energy spectrum of the system. We also analyze 

the Landau levels of phosphorene in the 

framework of quartic continuum model. We 

conclude that quartic terms in continuum model 

have insignificant effect on lower (𝑛 = 0 and 1) 

Landau levels of phosphorene. However, they 

have non-negligible contribution to the higher 

Landau levels of phosphorene at the order of 

~𝑚𝑒𝑉. Similarly, the extension of continuum 

model in graphene was achieved by the trigonal 

warp effect which increases the energy regime of 

Dirac Hamiltonian to bring better description 

for the dynamics of graphene charge carriers 

[2,18]. As a conclusion, it can be maintained 

that the presented continuum model in here will 

lead better understanding for the electronic and 

transport properties of phosphorene in the 

framework of 𝑘 ∙ 𝑝 theory. 
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