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The concept of "functional data" allows for the representation of data collected repeatedly over a period of time 
as a continuous function within a specific range on the time axis, rather than as discrete measurement points. 
Traditional statistical analysis has been adapted to accommodate functional data. This paper discusses the 
adaptation of one-way analysis of variance for functional data, covering parameter estimations and obtaining 
test statistics. As a numerical example, stock exchange values from various countries across different continents 
are used. The aim is to discern potential differences among countries based on these stock exchange values 
during the Covid-19 pandemic, utilizing one-way analysis of variance for functional data. 
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Introduction 
 

Functional data analysis (FDA) is a statistical technique 
employed to infer the features of an underlying function 
from data collected at multiple time points within the 
same observation. It facilitates statistical analysis and 
enables the comparison of entire functions with one 
another. Furthermore, FDA allows for parameter 
estimation during the analysis phase, noise reduction 
through curve smoothing, and the utilization of data 
collected at different times. The emergence of new 
technology over the years has underscored the necessity 
for FDA, which enables the modeling of data collected at 
various times, eliminating the need for evaluating 
observations simultaneously, as required in classical 
repeated measurement analyses. 

When data is continuously gathered over a duration 
and represented as a continuous function on a specific 
interval on the time axis, rather than as discrete points, it 
is referred to as "Functional Data." The core concept of 
functional data analysis is to identify and assess statistical 
modeling or estimation techniques suitable for these 
functions. With the aid of advancing technology, 
computer programs have simplified the execution of this 
approach, leading to its increased popularity among 
researchers for analyzing repeated measurements. While 
several methods for longitudinal data analysis (LDA) exist 
in the literature for this type of data, functional data 
analysis holds an advantage over other methods due to its 
versatility, making it a preferred choice for analyzing 
repeated measurements. 

Although Ramsay [1] and Ramsay & Dalzell [2] coined 
the term "functional data analysis," the roots of this 
discipline can be traced back to the works of Grenander 
[3] and Rao [4], which have a long history [5]. Going even 

further back, the evolution of this technique, with broad 
applications across various fields, can be dated to the 
1800s. During this time, Gauss and the French 
mathematician Legendre endeavored to model and 
forecast the trajectory of a comet, which follows a curve 
[6]. 

Functional ANOVA (Analysis of Variance) is a statistical 
method employed to assess whether significant 
differences exist between the mean functions of two or 
more groups in a functional data set. It serves as an 
extension of the traditional ANOVA method, typically 
applied to non-functional data sets. In functional ANOVA, 
each observation in the data set is a function rather than 
a scalar value. The method decomposes the total variation 
in the data into various sources, including between-group 
and within-group variations. Additionally, the method can 
test the significance of interactions between different 
factors, such as time and group membership, on the 
variation in functional data. With applications in 
economics, biology, and engineering, Functional ANOVA 
proves to be a versatile tool in numerous fields. 

Functional ANOVA is among the most preferred 
analysis methods, akin to traditional statistics. It is 
employed to scrutinize the variation in a set of functional 
data across various groups or conditions. This statistical 
approach proves particularly advantageous when data is 
collected over time and represented as a continuous 
function within a specific interval on the time axis. The 
primary objective of functional ANOVA is to identify and 
assess the sources of variability in the data, determining 
whether significant differences exist between groups or 
conditions. 
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This paper provides a detailed explanation of 
functional ANOVA, including the calculation of test 
statistics using the pointwise testing method. The choice 
of the pointwise testing method is based on its 
resemblance to traditional statistics and ease of 
calculation. In the application section, the objective is to 
investigate the impact on stock markets in different 
regions worldwide during the Covid-19 pandemic and to 
determine whether statistically significant differences 
exist among them. For detailed information, refer to [7]. 

 
Functional Analysis of Variance 

The problem of one-way ANOVA for functional data 
can be defined as follows:  

 
Consider k independent samples denoted by  

𝑦𝑦𝑖𝑖1(𝑡𝑡), … , 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖(𝑡𝑡) , 𝑖𝑖 = 1, … , 𝑘𝑘 (1) 
 

Certain k samples meet the criteria of   
𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝜂𝜂𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) , 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) 𝑆𝑆𝑆𝑆(0, 𝛾𝛾)  ~    

𝑖𝑖.𝑖𝑖.𝑑𝑑. , 𝑗𝑗 
            = 1,2, … ,𝑛𝑛𝑖𝑖 ; 𝑖𝑖 = 1,2, … , 𝑘𝑘 , 

(2) 

 
where 𝜂𝜂1(𝑡𝑡), 𝜂𝜂2(𝑡𝑡), … , 𝜂𝜂𝑘𝑘(𝑡𝑡) represent the mean 

functions of the unidentified groups for the k samples, 
𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡), where 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑖𝑖  ; 𝑖𝑖 = 1,2, … , 𝑘𝑘 denote the 
subject-effect functions, and 𝛾𝛾(𝑠𝑠, 𝑡𝑡) denotes the shared 
covariance function for different times for s and t and 𝑆𝑆𝑆𝑆 
can be described as a stochastic process. Our objective is 
to perform a one-way ANOVA test on the testing problem 
of  

 
𝐻𝐻0 ∶ 𝜂𝜂1(𝑡𝑡) ≡ 𝜂𝜂2(𝑡𝑡) ≡ ⋯ ≡ 𝜂𝜂𝑘𝑘(𝑡𝑡) , 𝑡𝑡 ∈ 𝒯𝒯, (3) 

 
where 𝒯𝒯 is a time period of interest specified as [𝑎𝑎, 𝑏𝑏] 

with −∞ < 𝑎𝑎 < 𝑏𝑏 <  ∞, as is often the case. The one-
way ANOVA problem mentioned above is recognized as 
the 𝑘𝑘-sample problem for functional data, which expands 
on the 𝑡𝑡𝑡𝑡𝑡𝑡-sample problem for functional data presented 
in the preceding section.  

Frequently, the objective of the one-way ANOVA 
testing problem (3) is to verify whether the effect of a 
treatment or factor is statistically significant. This 
treatment or factor is commonly utilized to divide the 
individual functions into various groups, categories, or 
samples. If the treatment or factor has a significant impact 
on the functional data, then the one-way ANOVA problem 
(3) will demonstrate statistical significance. 

Define 𝜂𝜂𝑖𝑖(𝑡𝑡) as 𝜂𝜂(𝑡𝑡) added to 𝛼𝛼𝑖𝑖(𝑡𝑡) ( 𝜂𝜂𝑖𝑖(𝑡𝑡) = 𝜂𝜂(𝑡𝑡) 
+𝛼𝛼𝑖𝑖(𝑡𝑡) ) for all values of i ranging from 1 to 𝑘𝑘 (𝑖𝑖 =
1,2, … , 𝑘𝑘), where 𝜂𝜂(𝑡𝑡) represents the mean function 
across all 𝑘𝑘 samples, and 𝛼𝛼𝑖𝑖(𝑡𝑡) denotes the main-effect 
function for each value of 𝑖𝑖. Subsequently, we can express 
the model (2) as a standard one-way ANOVA model for 
functional data by representing it as 

 
𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝜂𝜂(𝑡𝑡) + 𝛼𝛼𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) , 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑖𝑖  ; 𝑖𝑖

= 1,2, … , 𝑘𝑘. 
(4) 

 

By using this formulation, we can represent the null 
hypothesis (3) in an equivalent manner as a 

 
  𝛼𝛼1(𝑡𝑡) ≡ 𝛼𝛼2(𝑡𝑡) ≡ ⋯  ≡  𝛼𝛼𝑘𝑘(𝑡𝑡) ≡ 0 , 𝑡𝑡 ∈ 𝒯𝒯 (5) 

 
In other words, the goal is to assess whether the main-

effect functions are identical and have a value of zero. 
Using the 𝑘𝑘 samples (1), we can obtain unbiased estimates 
for the group mean functions 𝜂𝜂𝑖𝑖(𝑡𝑡), where i ranges from 1 
to 𝑘𝑘 (𝑖𝑖 = 1,2, … , 𝑘𝑘), as well as the shared covariance 
function 𝛾𝛾(𝑠𝑠, 𝑡𝑡), which can be represented as  
 

�̂�𝜂𝑖𝑖(𝑡𝑡) = 𝑦𝑦�𝑖𝑖.(𝑡𝑡) = 𝑛𝑛𝑖𝑖−1�𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖

𝑖𝑖=1

, 𝑖𝑖 = 1,2, … , 𝑘𝑘 , 𝑗𝑗

= 1,2, … ,𝑛𝑛𝑖𝑖 

𝛾𝛾�(𝑠𝑠, 𝑡𝑡) = (𝑛𝑛 − 𝑘𝑘)−1���𝑦𝑦𝑖𝑖𝑖𝑖(𝑠𝑠) − 𝑦𝑦�𝑖𝑖.(𝑠𝑠)�[𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1
− 𝑦𝑦�𝑖𝑖.(𝑡𝑡)] 

(6) 

 
It is worth noting that, in this section, 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘

𝑖𝑖=1   
refers to the total sample size. The approximated 
covariance function 𝛾𝛾�(𝑠𝑠, 𝑡𝑡) is commonly known as the 
pooled sample covariance function. Keep in mind that 
�̂�𝜂𝑖𝑖(𝑡𝑡), where 𝑖𝑖 takes values from 1 to 𝑘𝑘 (𝑖𝑖 = 1,2, … , 𝑘𝑘), are 
independent, and  

 

𝐸𝐸�̂�𝜂𝑖𝑖(𝑡𝑡) = 𝜂𝜂𝑖𝑖(𝑡𝑡) , 𝑐𝑐𝑡𝑡𝑣𝑣[�̂�𝜂𝑖𝑖(𝑠𝑠), �̂�𝜂𝑖𝑖(𝑡𝑡)] =
𝛾𝛾�(𝑠𝑠, 𝑡𝑡)
𝑛𝑛𝑖𝑖

,

𝑖𝑖 = 1,2, … ,𝑘𝑘. 
(7) 

 
Set  �̂�𝜂(𝑡𝑡) = [�̂�𝜂1(𝑡𝑡), �̂�𝜂2(𝑡𝑡), … , �̂�𝜂𝑘𝑘(𝑡𝑡)]𝑇𝑇. 
This estimator of 𝜂𝜂(𝑡𝑡) is impartial. As a result, we 

obtain 𝐸𝐸�̂�𝜂(𝑡𝑡) =  𝜂𝜂(𝑡𝑡) and 𝐶𝐶𝑡𝑡𝑣𝑣[�̂�𝜂(𝑠𝑠), �̂�𝜂(𝑡𝑡)]  =  𝛾𝛾(𝑠𝑠, 𝑡𝑡)𝐷𝐷, 
where 𝐷𝐷 is a diagonal matrix with diagonal entries 1/𝑛𝑛𝑖𝑖,
𝑖𝑖 =  1, 2,··· , 𝑘𝑘, and 𝐷𝐷 =  𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(1/𝑛𝑛1, 1/𝑛𝑛2,··· , 1/𝑛𝑛𝑘𝑘). 
This implies that the stochastic process �̂�𝜂(𝑡𝑡) follows the 
𝑆𝑆𝑆𝑆𝑘𝑘(𝜂𝜂, 𝛾𝛾𝐷𝐷) distribution, where 𝑆𝑆𝑆𝑆𝑘𝑘(𝜂𝜂,𝛤𝛤) represents a 𝑘𝑘-
dimensional stochastic process with the vector of mean 
functions 𝜂𝜂(𝑡𝑡) and the matrix of covariance functions 
𝛤𝛤(𝑠𝑠, 𝑡𝑡). 

In order to examine techniques for carrying out main-
effect, post hoc, it is necessary to explore the 
characteristics of �̂�𝜂(𝑡𝑡) and 𝛾𝛾�(𝑠𝑠, 𝑡𝑡)  in different scenarios. 
In pursuit of this objective, we outline the ensuing 
assumptions: 

i. The 𝑘𝑘 samples (1) are with 𝜂𝜂1(𝑡𝑡), 𝜂𝜂2(𝑡𝑡), … , 𝜂𝜂𝑘𝑘(𝑡𝑡)  ∈
 ℒ2(𝒯𝒯)and 𝑡𝑡𝑡𝑡(𝛾𝛾) < ∞. 

ii. The 𝑘𝑘 samples (1) are normal distribution. 
iii. As 𝑛𝑛 →  ∞, the k sample sizes satisfy 𝑛𝑛𝑖𝑖/𝑛𝑛 → 𝜏𝜏𝑖𝑖 ,  

 𝑖𝑖 =  1, 2,··· , 𝑘𝑘  such that 𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑘𝑘  ∈  (0, 1). 
iv. The subject-effect functions 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡) −

𝜂𝜂𝑖𝑖(𝑡𝑡), 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑖𝑖 ; 𝑖𝑖 = 1,2, … , 𝑘𝑘 are identically 
and independently distributed. 

v. The subject-effect function 𝑣𝑣11(𝑡𝑡) satisfies 𝐸𝐸 ∥
𝑣𝑣11 ∥4 < ∞. 

vi. The maximum variance 𝜌𝜌 = 𝑚𝑚𝑎𝑎𝑚𝑚 𝑡𝑡∈𝒯𝒯  𝛾𝛾(𝑡𝑡, 𝑡𝑡) < ∞. 
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vii. The expectation 𝐸𝐸[𝑣𝑣112 (𝑠𝑠)𝑣𝑣112 (𝑡𝑡)] is uniformly 
bounded. 

 

Theorem 2.1 
Under above assumptions (i) and (ii), we have 

 

𝐷𝐷−12[�̂�𝜂(𝑡𝑡) − 𝜂𝜂(𝑡𝑡)]  ~ 𝑁𝑁𝑆𝑆𝑘𝑘(0, 𝛾𝛾𝛾𝛾𝑘𝑘), 𝑎𝑎𝑛𝑛𝑑𝑑 

(𝑛𝑛 − 𝑘𝑘)𝛾𝛾�(𝑠𝑠, 𝑡𝑡) ~ 𝑊𝑊𝑆𝑆(𝑛𝑛 − 𝑘𝑘, 𝛾𝛾). 
(8) 

 

The 𝑘𝑘-dimensional normality process (NP) of �̂�𝜂(𝑡𝑡) and 
the Wishart process (WP) of (𝑛𝑛 − 𝑘𝑘)𝛾𝛾�(𝑠𝑠, 𝑡𝑡) are both 
demonstrated by Theorem 2.1 assuming the normality 
assumption (ii). It is evident that Theorem 2.1 is 
fundamental in creating various tests for (3) if the 𝑘𝑘 
samples (1) are normal distribution. It's worth noting that 
even if the sample sizes 𝜂𝜂1, 𝜂𝜂2, … , 𝜂𝜂𝑘𝑘  are finite, Theorem 
2.1 remains valid under the normality assumption (ii). 

When conducting main-effect, post hoc, there's no 
requirement to identify the main-effect functions 𝛼𝛼𝑖𝑖(𝑡𝑡), 
where 𝑖𝑖 =  1, 2, . . . , 𝑘𝑘, as stated in equation (4). In reality, 
these functions are not identifiable unless certain 
restrictions are enforced. Suppose we do aim to estimate 
these main-effect functions; in that case, the most widely 
employed constraint to ensure their identifiability is  

 

∑ 𝑛𝑛𝑖𝑖𝛼𝛼𝑖𝑖(𝑡𝑡)𝑘𝑘
𝑖𝑖=1 = 0 ,                                                                                     (9) 

 

which relates to the 𝑘𝑘 sample sizes. Within this 
constraint, it's straightforward to demonstrate that 

 

𝛼𝛼�𝑖𝑖(𝑡𝑡) = 𝑦𝑦�𝑖𝑖.(𝑡𝑡) − 𝑦𝑦�..(𝑡𝑡), 𝑖𝑖 = 1,2, … , 𝑘𝑘, (10) 
 

provides unbiased estimators of the main-effect 
functions, where  

 

𝑦𝑦�..(𝑡𝑡) = 𝑛𝑛−1��𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

= 𝑛𝑛−1�𝑛𝑛𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑦𝑦�𝑖𝑖.(𝑡𝑡) (11) 

 

is the typical sample grand mean function. With 
constraint (12) enforced, the sample mean function 
𝑦𝑦�..(𝑡𝑡) becomes an unbiased estimator of the grand mean 
function 𝜂𝜂(𝑡𝑡) defined in equation (4). 

 

𝑆𝑆𝑆𝑆𝐻𝐻𝑛𝑛(𝑡𝑡) = ∑ 𝑛𝑛𝑖𝑖[𝑦𝑦�𝑖𝑖.(𝑡𝑡) − 𝑦𝑦�..(𝑡𝑡)]2𝑘𝑘
𝑖𝑖=1 , and 

𝑆𝑆𝑆𝑆𝐸𝐸𝑛𝑛(𝑡𝑡) = ��[𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑦𝑦�𝑖𝑖.(𝑡𝑡)]2,
𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

 
(12) 

 
refer to the pointwise between-subject and within-

subject variations, respectively. 𝑦𝑦�𝑖𝑖.(𝑡𝑡), where 𝑖𝑖 =
 1,2, … , 𝑘𝑘 as defined in equation (6), and the sample grand 
mean function 𝑦𝑦�..(𝑡𝑡) as defined in equation (11). When 
constraint (12) is in place, it's clear that  
𝑆𝑆𝑆𝑆𝐻𝐻𝑛𝑛(𝑡𝑡) = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘

𝑖𝑖=1 𝛼𝛼�𝑖𝑖
2(𝑡𝑡),                                                                             (13) 

 

where the estimated main-effect functions 𝛼𝛼�𝑖𝑖(𝑡𝑡), 𝑖𝑖 =
 1, 2, . . . , 𝑘𝑘 are given by equation (13), is easy to 
determine. We observe that when the null hypothesis (3) 
is true, 𝑆𝑆𝑆𝑆𝐻𝐻𝑛𝑛(𝑡𝑡) should be minimal, and when it is not 
valid, it should be substantial. It can be seen from (6) that  

 

𝑆𝑆𝑆𝑆𝐸𝐸𝑛𝑛(𝑡𝑡) = (𝑛𝑛 − 𝑘𝑘)𝛾𝛾�(𝑡𝑡, 𝑡𝑡).  (14) 
                                                         
The pointwise 𝐹𝐹-test, pointwise 𝜒𝜒2-test, and pointwise 

bootstrap test are all under consideration. Ramsay and 
Silverman (2005) introduced the pointwise 𝐹𝐹-test for (3) 
to extend the classical 𝐹𝐹-test into the domain of functional 
data analysis. At each 𝑡𝑡 ∈ 𝒯𝒯, the pointwise 𝐹𝐹-test is 
implemented for (3) using the pointwise 𝐹𝐹 statistic:  
 
𝐹𝐹𝑛𝑛(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐻𝐻𝑛𝑛(𝑡𝑡)/(𝑘𝑘−1)

𝑆𝑆𝑆𝑆𝐸𝐸𝑛𝑛(𝑡𝑡)/(𝑛𝑛−𝑘𝑘)
  (15) 

 

It is readily apparent from the classical linear model 
theory that, assuming the null hypothesis (3),  

 

  𝐹𝐹𝑛𝑛(𝑡𝑡) ~ 𝐹𝐹𝑘𝑘−1,𝑛𝑛−𝑘𝑘  , 𝑡𝑡 ∈ 𝒯𝒯 (16) 
 

is obtained when the 𝑘𝑘 samples (1) are normal 
distribution. 
 

Application to Stock Exchange 
 

The news of the pandemic caused world stock markets 
to open with record declines, indicating that the impact of 
heightened volatility and negative perceptions towards 
the stock market may exceed expectations. Additionally, 
the economic repercussions of the coronavirus epidemic 
have also extended to the stock markets of affected 
nations. Presently, it is evident that the economic effects 
of the epidemic are multi-faceted [8]. The apprehension 
caused by the coronavirus outbreak rapidly spread to 
global financial markets. The Covid-19 aftermath, which 
was initially disregarded, has become a significant concern 
as it continues to spread swiftly beyond China [9]. 

COVID-19's appearance and subsequent proliferation 
to over 150 countries within two months have led to the 
cessation of commercial and economic operations, 
prompting concerns that it is not solely a health crisis but 
also harbors the potential for significant and far-reaching 
consequences for the global economy in the future [10]. 
The response of the stock markets has elicited significant 
apprehension, given that the world is presently grappling 
with the most severe economic downturn since the Great 
Depression [11]. Furthermore, Ashraf's study [12]  
discovered a correlation between the number of COVID-
19 cases reported in a country and a corresponding 
decrease in stock market returns. Behavioral finance 
suggests that the rise in COVID-19 cases may have a 
substantial impact on global equity markets, making it 
challenging for individual investors to make informed 
investment decisions. 

The main purpose of this application is to investigate 
how the stock market movements in different parts of the 
world move in the Covid-19 pandemic process, how they 
are affected and whether there is a statistically significant 
difference between them. For this reason, stock market 
opening data from various countries between 01/03/2020 
– 01/03/2022 were taken from 
https://tr.investing.com/indices/world-indices. 
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Figure 1. Data for countries in the Americas region. 

 

 
Figure 2. Data for countries in the Asia-Pacific region. 

 

 
Figure 3. Data for countries in the European region. 
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By dividing the world geography into three as America, 
Asia-Pacific and Europe, 12 countries such as Argentina, 
Brazil, Ecuador, Colombia, Peru, Chile, Venezuela, USA, 
Canada, Mexico, Jamaica, Costa Rica were taken from the 
Americas region. In the Asia -Pacific region, 19 countries 
were included in Australia, Bangladesh, China, Indonesia, 
Philippines, South Korea, India, Hong Kong, Japan, 
Kazakhstan, Malaysia, Mongolia, Pakistan, Singapore, Sri 
Lanka, Thailand, Taiwan, Vietnam, New Zealand. Similarly, 
a total of 33 countries including Germany, Austria, 
Belgium, the United Kingdom, Bosnia and Herzegovina, 
Bulgaria, the Czech Republic, Denmark, Finland, France, 
Croatia, the Netherlands, Ireland, Spain, Sweden, 
Switzerland, Italy, Iceland, Montenegro, Cyprus, Hungary, 
Malta, Norway, Poland, Portugal, Romania, Russia, Serbia, 
Slovakia, Slovenia, Turkey, Ukraine, and Greece are 
included from the European region. The African region has 

not been taken into account due to its already 
underdeveloped status and its economic situation not 
matching that of the other three regions. 

Between 01/03/2020 – 01/03/2022, the data were 
prepared by applying the 𝑙𝑙𝑡𝑡𝑑𝑑(𝑆𝑆𝑡𝑡/𝑆𝑆𝑡𝑡−1) transformation in 
order to smooth the stock market opening data in 
different regions and different countries. Figure 1, Figure 
2 And Figure 3  show graphs of the transformed data in all 
three regions.  

Before moving on to functional ANOVA, data were 
tested for normality. The results according to the Shapiro-
Wilk test of normality, test statistic is 0.944 and p-value is 
0.197 and it has been determined that each data set is 
normally distributed.  (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑙𝑙𝑣𝑣𝑣𝑣 > 0.05) 

For the functional analysis of variance, firstly the 
average functions of all three regions were calculated. 
Figure 4 shows the mean functions. 

 

 
Figure 4. Average functions of all three regions. 

 

 
Figure 5. Treatment effects. 
 

Three treatment effect functions were obtained by 
using these mean functions. Figure 5 shows the treatment 
effects mentioned. 

Finally, using the 𝑆𝑆𝑆𝑆𝐻𝐻𝑛𝑛(𝑡𝑡) and 𝑆𝑆𝑆𝑆𝐸𝐸𝑛𝑛(𝑡𝑡) values, the test 
statistics (𝐹𝐹𝑛𝑛(𝑡𝑡) values) were calculated as in Figure 6. 
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Figure 6. Test statistics (𝐹𝐹𝑛𝑛(𝑡𝑡) values). 

 
After the critical table value was determined as 

𝐹𝐹2,61  =  3.13 for 𝛼𝛼 =  0.05 and 𝐹𝐹2,61 =  4.9 for 𝛼𝛼 =
 0.01, the analysis result was started. 

For 𝛼𝛼 =  0.01, stock market data during the Covid-19 
process do not differ between continents. 

For 𝛼𝛼 =  0.05, although we observe that it 
exceeds 𝐹𝐹2,61  =  3.13 on 3 separate dates, 01/07/2020 , 
01/11/2020 and 01/05/2021, in the Covid-19 process, 
stock market data does not generally differ between 
continents. 

According to the Pointwise test, for alpha = 0.05, Table 
1 was prepared in order to determine from which regions 
the difference originated on the said dates, and it was 
determined that the difference originated from the 
Americas region. (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑙𝑙𝑣𝑣𝑣𝑣 < 0.05)  

 
Table 1. The p-values of the t-tests. 
 July/2020 November/2020 May/2021 

 America 

Asia-Pacific 0.009 0.014 0.011 

Europe 0.002 0.008 0.012 

 
Conclusion 

 
Functional analysis of variance (ANOVA) is a statistical 

technique used in functional data analysis to investigate 
the variability in a set of functional data across different 
groups or conditions. This approach is particularly useful 
when the data is collected over time and expressed as a 
continuous function along a specific interval on the time 
axis. The goal of functional ANOVA is to identify and 
evaluate the sources of variability in the data and to 
determine whether there are significant differences 
between groups or conditions. This method involves 
decomposing the functional data into a sum of orthogonal 

basis functions and then testing the differences between 
groups or conditions based on the coefficients of these 
basis functions. Functional ANOVA is a powerful tool for 
analyzing functional data and can provide valuable 
insights into the underlying patterns and trends in the 
data. 

In the application part of the paper, it was investigated 
how the stock market movements in different parts of the 
world moved during the Covid-19 pandemic process, how 
they were affected and whether there was a statistically 
significant difference between them. Adhering to this 
purpose, stock market opening data recorded by 
https://tr.investing.com/indices/world-indices from 
various countries between 01/03/2020 and 01/03/2022 
were used. By dividing the world geography into three as 
America, Asia-Pacific and Europe, 12 countries were taken 
from the Americas region and from the Asia -Pacific region 
19 countries and a total of 33 countries from the European 
region. In addition, the reason for excluding the African 
region is that it is already considered underdeveloped and 
its economic situation does not align with the other three 
regions.  

After the necessary statistical analyzes and 
examinations were completed, the analysis was 
concluded. For α = 0.05, it was observed that there was a 
significant difference on 3 different dates, 01/07/2020, 
01/11/2020 and 01/05/2021, and according to the 
Pointwise test, it was determined that the difference 
originated from the Americas region. However, since 3 
months is very short for 2 years of data, we conclude that 
it was concluded that the stock market data in the Covid-
19 process did not differ between continents. 
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