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Introduction

Harmonic numbers are important in various branches
of combinatorics and number theory. The harmonic
numbers are defined by

n

1
Hy=0and H, = Z—_ forn=1,2,-
="
11 25
Some harmonic numbers are 1 PEPPYRS Recently,

some authors have generalized them[l, 2,4,8,13,19].
In [8], for any a € R*, the generalized harmonic
numbers H, (a) are defined by

n

Hy(a) = 0 and H,(a) = z%

i=1

forn=1,2,--

When a =1, H,(1) =H, and the generating

function of these numbers is

1-=

Z H, (@)x™ = —M.

- X

In [12], for the generalized harmonic numbers H, (a),

Omiir and Bilgin defined the generalized hyperharmonic

numbers of order r, Hj,(a) by: For r <0 or n <0,

Hl(a) =0andforn >1,

n
Hi@ =) W@, 121,
i=1
where H2(a) = 757
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When a = 1, H}; (1) = H], are the hyperharmonic
numbers of order r. The generating function of H} (a) is

ZHT(a)x ((1 __). €Y)

x)"
In [4, 19], the generalized harmonic numbers H(n,r)
of rank r are definedasforn > 1,r = 0,
1
H(n,7) = _
nOnl cee nT'

1sng+nq+---+nysn

When r = 0, H(n,0) = H,,. The generating function
of the generalized harmonic numbers H(n,r) of rank r is

S ryen = A
~ 1—x

In [7], inspiring from these definitions, H(n,r, a) are
definedasforn>1,r >0,

Z 1
nony =+ nran0+n1+---+nr'

1=ng+ng++npsn

H(n,r,a) =

For a=1, H(n,v,1) = H(n,r). The generating
function of the generalized harmonic numbers of rank r,
H(n,r,a) is given by

(mG-m)”

Z H(n,r,a)x™ = T 2)
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The Cauchy numbers of order r, C] have an

exponential generating function

<ln(1 + x)) Z ' ®

The Daehee numbers of order r, Dy
exponential generating function

(ln(l + x)) Z DT @

Whenr = 1, D} = D, are called Daehee numbers.
In [22], the r —derangement numbers, D,.(n) have an
exponential generating function

have an

Ao Z D (n)—. ®)

For r = 0, Dy(n) =
numbers.

The generalized geometric series are given by for
positive integers a, b,

d, are called derangement

xb

(1 — x)a+1

(e o

n=b

The exponential generating function is

7

Q
x
I
s
2%

n=0

The Stirling numbers of the first kind s(n,i) are
defined by

(x—n+1) ifn=>1,

h n—
where x 0 ifn = 0.

{x(x — 1)

The Stirling numbers of the first kind s(n, k) satisfy the
recurrence relation

s(n+ 1,k) =s(n,k—1) —ns(n, k),

and the generating functions of these numbers are
given by

n k
z s(n k)x (ln(1+x)) UnQ+2)" o0 ®)

Recently, using generating functions, there are some
works including generalized harmonic, r —derangement
and special numbers by authors [5, 6, 7, 9, 10, 11, 14, 15,

16, 17, 18, 20, 23, 24, 25, 26, 27, 31]. At the same time,
many studies have been carried out on the degenerate
states of these numbers [28, 29, 30, 32, 33].

In [22], the authors gave many formulas for the
r —derangement numbers. For example, for a positive
integerrandr < n,

n

G+DILr+1) = Z (7:) iD,(n — i),

i=1

where L(n, k) are the Lah numbers.

In [18], Rim, et al. examined some identities relating
the hyperharmonic and the Daehee numbers. For
example, for any positive integer n,

n-1

Al HE = (=1)n1 Z (Tll) (n— i) (=r)i=iD,.

i=0

In [7], some sums including generalized harmonic
numbers have been obtained by Duran et al. For example,
for any positive integersn and r,

= (=1)is(n — i, r)r!
a™i(n —i)!

Hn,r,a) = (1" H;(a).

i=0

Let F(x) = Yoo @px™and G(x) = Yoo b, x™ be two
infinite series. The Cauchy product of these series is given
as follows:

F(x)G(x) = (i anx"> (i bnx"> = i cpx™,
n=0 n=0 n=0

where ¢, = Y}, arbn_ for all positive integer n.

In this paper, we derive some sums involving
generalized harmonic and r —derangement numbers by
using generating functions of these numbers and some
combinatorial identities. The relationship between
Daehee numbers and generalized harmonic numbers of
rank r, H(n,r,a) is given. In addition, sums including
Daehee numbers of order r, Dj, generalized
hyperharmonic numbers of order r, H}(a), Cauchy
numbers of order r, CJ and the stirling numbers of the
first kind, s(n, i) are also calculated.

Some Sums Involving Generalized Harmonic and r-
Derangement Numbers

This section, we will give some sums including
generalized harmonic and r —derangement numbers by
using generating functions of these numbers and some
combinatorial identities.

Theorem 1. Let n,r and m be positive integers. For
n = m(r + 1), then
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T

) A T Sy (]

I

j=0i=0 J:

_ (ll)Dm (lz) Dm (lr+1)

= RN By (2), we get

L +lp ol =n 1Rzt e
) X\\"
Proof. By (5), (6) and (7), we consider _1\n-r Dr—r n _ (_ In (1 B E)) _
(-1 (1-x)
a™(n—r)! 1-—x
n=r
xm(r+1)e—x 1 X\ N\
—rx —In(1-= —In(1-=
( x)m(r+1)+1 e (1 — x)r — ( 1( 0()) _ x( 1( a))
_z m(r+1)(n) Z( 1)n rm ni<n+r—1) n o x © X
N n x =ZH(n,r—l,a)x"—ZH(n,r—l,a)x"“
n=0 n=0
n=0 n=0
_zz( Py m(rﬂ)(l)x Z(n+r—1)xn )
: i'(n—i) n ’ =Z(H(n,r—l,a)—H(n—l,r—l,a))x".
n=0i=

n=1

and from product of generating functions, equals secondly, by product of exponential generating

o n functions, we write
ZZZ(_T)H (n—j +r— 1) (])Dm(r+1)(l) Lo
n— . i ) 1] r+ X e_
: j J (-m(1- )) A
()" 1s(n, r+1)(r+1)'x

[ee]
and
a™ n!
(o)

n=0
xm(r+1)e—x - 1 o
(1 — x)mr+D+1 (1—x)r X Dr(n) —l
xMe=% xMe™% xMe™% n
- ((1 - x)m+1) ((1 - x)m+1) ((1 - x)m+1) _ Z N ( )( DI 15(1 r+1)D, (n - l)(r +Diam
[} o) o3} - i '
— Z Dm(ll)xll Z Dm(l2)xlz... Z Dm(lr+1)xl‘r+1 n=0 i=0 i - a n
| | | n
i1=0 b 17=0 L! lyg1=0 bria! « N
0 |
_ Dm(ll)Dm(lz) Dm(lr+1) e ) n=0 v

712=011+12+er+1=71 TN _ iii:(])(l)( 1ir=15(i, r+{-x1rz'D G -DE+D!

Hence, comparing the coefficients on both sides, we
have the proof.

and by (2) and (6), we have

Theorem 2. Forn = r, then r+1 r

. (— In (1 - g)) T_Eil _xx)r+1
(=)™ an(n—1)! _ (_ In (1 B g)) X"
=Hn,r—1,a)—Hn-1,r—1,a), - 1—x (1—x)r

and forn > 2r, ZH(nra)x Z(n_bx”
i(l DH(n—i,r,a) ZZ(l_ )H(n i,r,a)x™

n=0i=0

1

i=0
nJ r—1

= Z Z( )( )( DTG + D0+ 1)! D.(j — 0). Comparing the coefficients of x™ in the first and
j=0i=0 J7N atn! last series. So, we have the proof.
Proof. From (4), we have Theorem 3. Let m be positive integer. For n > r, then

S D;. .

Z(—l)n—r nr__n —C"Hn+m—i,r+m,a) =H(n,7,a),

a™(n—r)! i=ol!a
n=r
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and

ii( ) (-1 )L _Cld;_H(n—j,r —1,a)
j=01i=0
()

Proof. From (2) and (3), we write

. x\\7t1
S L)

0
(_ In (1 _ g))r+m+1 (_x/a)m ﬁ
(n (15"

x
= Z Hn,r+m,a)x™™ Z(—l)”am‘"C}{lF
n=0 n=0

[ee) (o] xTL
= Z Hn+mr+m,a)x™ Z(—l)"a’"‘"C{l" o

n=0 n=0

and by product of exponential generating functions,

Z H(n,r,a)x™
n=0

A
:Zzi'ai_mCi’”H(n+m—i,r+m,a)x”,
n=0i=0

as claimed.

Secondly, we will give the proof of the other sum.

From Binomial theorem and (5), we have

T X

x'e”
A= gy
-2 () 1)x";Dr(n)xn—T

© n 1 D( )

(T — n—i

=2 20 )T ©

VAR s kNG
and by product of generating functions,

T X

-yt
(1_x)1"+1
_ _x . 1—5)
_ € * a r( n( )
1—x x 1—x
X \n(1-3)
Xt~ (-1D)"Ch x™
=Zdn— —ZH(n,r 1,a)x™
1 n-r pl
n=o0 = @ s
oy Cldy_;x
=ZZ(—1)‘(,) —— —'ZH(n,r 1,a)x"
n=0i=0 —— s
oo n J
NCld:i_;Hm—j,r—1,«a
=2 > > () L Len. (10)
n=0j=0 i=0 l a!

By (9) and (10), comparing the coefficients on both
sides, we get the desired result. So, the proof is complete.

Theorem4.Forn > mandn >r = 1, then

zn:ZJ:H(L r—1,a)H; (a)( ])'

j=0i=0

n
D, (i
=ZH(n—i+m,r,a) ":,()

i=0

andforn>r>1,

D,(n)
n-r J

_Hm—j,r—1,a)

(=)D, _y(i +7 = 1)CT.
_"'ZZ (1+r—1)!(]—

D ai-i-r
j=0i= )

Proof. From product of exponential
functions, we write

(-2

(1 — x)m+2

B <—11‘1 (1 - g))ﬂ'l xMe=%

1—x (1—x)m+1x

H(n,r,a)x™ mz m(n)

generating

-X

-m

I
i[]s

Dn(m)
X

H(n+m,r,a)x"z
n!

-m n=0
D,

n
D,,(n—
ZH(i+m,r,a) m(

—~ X,
n—i)!
n=0 i=0 ( )

I
s

n

I
NgE

(11)

and

-2

(1 — x)m+2

(-n(1-2)) “in(1-%) o=

h 1—-x (1—x)m 1—x

ZH(n r—1,a)x" ZH"‘(a)x Z
= Z Z H@,r—1,a) Hﬁ"_i(“)xnz ﬁxn

—-X

From here, (11) and (12) yield the desired result.
Now, we will give the other sum. With the help of
generating functions of (2), (3) and (5), we get

114



Cumhuriyet Sci. J., 45(1) (2024) 111-116

i D,.(n) o= x"e™
n! (1 —x)r+t
1- x \ (_ _xX\Y
Larte (=g ) (l(1-3))
(1-x)r _x
v
-y Dy 1 ()X (~1)" € X"
h n! n!

a™ " n!
n=r—1 n=0

X Z Hmn,r—1,a)x™
n=0

o n . .
_ Z (—1)n-i D (i+7—1Cy X
(i+r—D!n—-i) ani-r

n=0 i=0

xZH(n,r— 1,a)x™

LiHMm—j,r—1, a) =

D,_ 1(l+r_1)

(l+r—1)'(]—l)'a1 i=r

Thus, the desired result is given.

Theorem 5. Forn = 2r + 1, then

Z( 1)L+r+1

s(l r+ 1)D,.(n —i)(r + 1)!

atin!
ZH(l T(;(_ni)! ).
andforn >,
H(n,r,a)
(r+1)'zz( 1)L+r+1< )()a s, 7 + 1d;

j=0i=

Proof. By product of exponential generating functions,

we have

(‘}:(1 _2)) uyc_eﬁ
Z( DTl ng(n,r + 1)(r + 1)|—z D, (n)—
= ( 1)r+1(r + 1)!

n
n

x Z Z (l) (=Dis(i,r + 1) Dy(n — i) %

and from product of generating functions,

X

(m(1-2) Gog

(-2 st

1—x 1—x)"

T 1(n) n
X

Z H(n,r, a)x’”lz _n!

ZH(n—lra)x Z L 1(n)
S$ iz,

n=0 i=

Thus, comparing the coefficients on both sides, we get
the desired result.
Similarly, considering

xn
= Z(—l)””“a‘"s(n,r DO+ DI
n=0

DWENE
| |

= (DD =

XZZ 2, = 1)l<,)<l>a_‘s(1r+1)

the proof of the other sum is obtained.

Conclusion

With the help of product of generating functions and
then comparing the coefficients of x™ in the first and last
series, some sums are obtained involving generalized
harmonic, r-derangement, Cauchy numbers and some
special numbers. In the future, it is aimed to find new
sums with the help of the derivative operator.
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