

X Publisher: Sivas Cumhuriyet University

Some Sums Involving Generalized Harmonic and r –Derangement Numbers

Sibel Koparal 1,a,*

¹ Department of Mathematics, Faculty of Sciences and Arts, Bursa Uludağ University, Bursa, Türkiye.

*Corresponding author	
Research Article	ABSTRACT
History Received: 23/09/2023 Accepted: 28/11/2023	In this paper, we derive some sums involving generalized harmonic and r –derangement numbers by using generating functions of these numbers and some combinatorial identities. The relationship between Daehee numbers and generalized harmonic numbers of rank r , $H(n, r, \alpha)$ is given. In addition, sums including Daehee numbers of order r , D_n^r , generalized hyperharmonic numbers of order r , $H_n^r(\alpha)$, Cauchy numbers of order r , C_n^r
This article is licensed under a Creative	and the stirling numbers of the first kind, $s(n, i)$ are also calculated. Keywords: Generalized harmonic numbers, r – Derangement numbers, Generating functions, Special

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

*Sibelkoparal@uludag.edu.tr

bttps://orcid.org/0000-0003-2889-2832

Introduction

Harmonic numbers are important in various branches of combinatorics and number theory. The harmonic numbers are defined by

numbers.

$$H_0 = 0$$
 and $H_n = \sum_{i=1}^n \frac{1}{i}$ for $n = 1, 2, \dots$.

Some harmonic numbers are $1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \cdots$. Recently, some authors have generalized them[1, 2, 4, 8, 13, 19].

In [8], for any $\alpha \in \mathbb{R}^+$, the generalized harmonic numbers $H_n(\alpha)$ are defined by

$$H_0(\alpha) = 0 \text{ and } H_n(\alpha) = \sum_{i=1}^n \frac{1}{i\alpha^i} \text{ for } n = 1, 2, \cdots.$$

When $\alpha = 1$, $H_n(1) = H_n$ and the generating function of these numbers is

$$\sum_{n=1}^{\infty} H_n(\alpha) x^n = -\frac{\ln\left(1-\frac{x}{\alpha}\right)}{1-x}.$$

In [12], for the generalized harmonic numbers $H_n(\alpha)$, Ömür and Bilgin defined the generalized hyperharmonic

numbers of order r, $H_n^r(\alpha)$ by: For r < 0 or $n \le 0$, $H_n^r(\alpha) = 0$ and for $n \ge 1$,

$$H_n^r(\alpha) = \sum_{i=1}^n H_i^{r-1}(\alpha), \qquad r \ge 1,$$
 where $H_n^0(\alpha) = \frac{1}{n\alpha^n}$.

When $\alpha = 1$, $H_n^r(1) = H_n^r$ are the hyperharmonic numbers of order r. The generating function of $H_n^r(\alpha)$ is

$$\sum_{n=1}^{\infty} H_n^r(\alpha) x^n = -\frac{\ln\left(1-\frac{x}{\alpha}\right)}{(1-x)^r}.$$
 (1)

In [4, 19], the generalized harmonic numbers H(n,r) of rank r are defined as for $n \ge 1, r \ge 0$,

$$H(n,r) = \sum_{1 \le n_0 + n_1 + \dots + n_r \le n} \frac{1}{n_0 n_1 \cdots n_r}.$$

When r = 0, $H(n, 0) = H_n$. The generating function of the generalized harmonic numbers H(n, r) of rank r is

$$\sum_{n=1}^{\infty} H(n,r)x^n = \frac{(-\ln(1-x))^{r+1}}{1-x}.$$

In [7], inspiring from these definitions, $H(n, r, \alpha)$ are defined as for $n \ge 1, r \ge 0$,

$$H(n,r,\alpha) = \sum_{1 \le n_0 + n_1 + \dots + n_r \le n} \frac{1}{n_0 n_1 \cdots n_r \alpha^{n_0 + n_1 + \dots + n_r}}.$$

For $\alpha = 1$, H(n, r, 1) = H(n, r). The generating function of the generalized harmonic numbers of rank r, $H(n, r, \alpha)$ is given by

$$\sum_{n=0}^{\infty} H(n,r,\alpha) x^n = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{1-x}.$$
 (2)

The Cauchy numbers of order r, C_n^r have an exponential generating function

$$\left(\frac{x}{\ln(1+x)}\right)^r = \sum_{n=0}^{\infty} C_n^r \frac{x^n}{n!}.$$
(3)

The Daehee numbers of order r, D_n^r have an exponential generating function

$$\left(\frac{\ln(1+x)}{x}\right)^r = \sum_{n=0}^{\infty} D_n^r \frac{x^n}{n!}.$$
 (4)

When r = 1, $D_n^1 = D_n$ are called Daehee numbers.

In [22], the r –derangement numbers, $D_r(n)$ have an exponential generating function

$$\frac{x^r e^{-x}}{(1-x)^{r+1}} = \sum_{n=0}^{\infty} D_r(n) \frac{x^n}{n!}.$$
(5)

For r = 0, $D_0(n) = d_n$ are called derangement numbers.

The generalized geometric series are given by for positive integers a, b,

$$\frac{x^{b}}{(1-x)^{a+1}} = \sum_{n=b}^{\infty} \binom{n+a-b}{a} x^{n}.$$
 (6)

The exponential generating function is

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$
(7)

The Stirling numbers of the first kind s(n, i) are defined by

$$x^{\underline{n}} = \sum_{i=0}^{n} s(n,i) x^{i},$$

where
$$x^{\underline{n}} = \begin{cases} x(x-1)\cdots(x-n+1) & \text{if } n \ge 1, \\ 0 & \text{if } n = 0. \end{cases}$$

The Stirling numbers of the first kind s(n, k) satisfy the recurrence relation

$$s(n + 1, k) = s(n, k - 1) - ns(n, k),$$

and the generating functions of these numbers are given by

$$\sum_{n=0}^{\infty} s(n,k) \frac{x^n}{n!} = \frac{(\ln(1+x))^k}{k!}, k \ge 0.$$
 (8)

Recently, using generating functions, there are some works including generalized harmonic, r –derangement and special numbers by authors [5, 6, 7, 9, 10, 11, 14, 15,

16, 17, 18, 20, 23, 24, 25, 26, 27, 31]. At the same time, many studies have been carried out on the degenerate states of these numbers [28, 29, 30, 32, 33].

In [22], the authors gave many formulas for the r –derangement numbers. For example, for a positive integer r and $r \le n$,

$$(r+1)!L(n,r+1) = \sum_{i=1}^{n} {n \choose i} iD_r(n-i),$$

where L(n, k) are the Lah numbers.

In [18], Rim, et al. examined some identities relating the hyperharmonic and the Daehee numbers. For example, for any positive integer n,

$$n! H_n^r = (-1)^{n-1} \sum_{i=0}^{n-1} {n \choose i} (n-i)(-r)^{\underline{i-1}} D_i$$

In [7], some sums including generalized harmonic numbers have been obtained by Duran et al. For example, for any positive integers n and r,

$$H(n,r,\alpha) = (-1)^{n-r} \sum_{i=0}^{n} \frac{(-1)^{i} s(n-i,r)r!}{\alpha^{n-i}(n-i)!} H_{i}(\alpha).$$

Let $F(x) = \sum_{n=0}^{\infty} a_n x^n$ and $G(x) = \sum_{n=0}^{\infty} b_n x^n$ be two infinite series. The Cauchy product of these series is given as follows:

$$F(x)G(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n,$$

where $c_n = \sum_{k=0}^n a_k b_{n-k}$ for all positive integer *n*.

In this paper, we derive some sums involving generalized harmonic and r –derangement numbers by using generating functions of these numbers and some combinatorial identities. The relationship between Daehee numbers and generalized harmonic numbers of rank r, $H(n, r, \alpha)$ is given. In addition, sums including Daehee numbers of order r, D_n^r , generalized hyperharmonic numbers of order r, $H_n^r(\alpha)$, Cauchy numbers of order r, C_n^r and the stirling numbers of the first kind, s(n, i) are also calculated.

Some Sums Involving Generalized Harmonic and r-Derangement Numbers

This section, we will give some sums including generalized harmonic and r –derangement numbers by using generating functions of these numbers and some combinatorial identities.

Theorem 1. Let n, r and m be positive integers. For $n \ge m(r + 1)$, then

$$\sum_{j=0}^{n} \sum_{i=0}^{j} (-1)^{j-i} r^{j-i} {n-j+r-1 \choose n-j} {j \choose i} \frac{D_{m(r+1)}(i)}{j!}$$
$$= \sum_{l_1+l_2+\dots+l_{r+1}=n} \frac{D_m(l_1)D_m(l_2)\cdots D_m(l_{r+1})}{l_1! \, l_2!\cdots l_{r+1}!}.$$

Proof. By (5), (6) and (7), we consider

$$\frac{x^{m(r+1)}e^{-x}}{(1-x)^{m(r+1)+1}}e^{-rx}\frac{1}{(1-x)^{r}}$$

$$=\sum_{\substack{n=0\\n=0}}^{\infty}\frac{D_{m(r+1)}(n)}{n!}x^{n}\sum_{\substack{n=0\\n=0}}^{\infty}(-1)^{n}\frac{r^{n}}{n!}x^{n}\sum_{\substack{n=0\\n=0}}^{\infty}\binom{n+r-1}{n}x^{n}$$

$$=\sum_{\substack{n=0\\n=0}}^{\infty}\sum_{\substack{i=0\\n=0}}^{n}(-r)^{n-i}\frac{D_{m(r+1)}(i)}{i!(n-i)!}x^{n}\sum_{\substack{n=0\\n=0}}^{\infty}\binom{n+r-1}{n}x^{n},$$

and from product of generating functions, equals

$$\sum_{n=0}^{\infty} \sum_{j=0}^{n} \sum_{i=0}^{j} (-r)^{j-i} \binom{n-j+r-1}{n-j} \binom{j}{i} \frac{D_{m(r+1)}(i)}{j!} x^{n},$$

and

$$\frac{x^{m(r+1)}e^{-x}}{(1-x)^{m(r+1)+1}}e^{-rx}\frac{1}{(1-x)^{r}}$$

$$=\left(\frac{x^{m}e^{-x}}{(1-x)^{m+1}}\right)\left(\frac{x^{m}e^{-x}}{(1-x)^{m+1}}\right)\cdots\left(\frac{x^{m}e^{-x}}{(1-x)^{m+1}}\right)$$

$$=\sum_{l_{1=0}}^{\infty}\frac{D_{m}(l_{1})}{l_{1}!}x^{l_{1}}\sum_{l_{2=0}}^{\infty}\frac{D_{m}(l_{2})}{l_{2}!}x^{l_{2}}\cdots\sum_{l_{r+1}=0}^{\infty}\frac{D_{m}(l_{r+1})}{l_{r+1}!}x^{l_{r+1}}$$

$$=\sum_{n=0}^{\infty}\sum_{l_{1}+l_{2}+\cdots+l_{r+1}=n}\frac{D_{m}(l_{1})D_{m}(l_{2})\cdots D_{m}(l_{r+1})}{l_{1}!l_{2}!\cdots l_{r+1}!}x^{n}.$$

Hence, comparing the coefficients on both sides, we have the proof.

Theorem 2. For $n \ge r$, then

$$(-1)^{n-r} \frac{D_{n-r}^r}{\alpha^n (n-r)!} = H(n,r-1,\alpha) - H(n-1,r-1,\alpha),$$

and for n > 2r,

$$\begin{split} &\sum_{i=0}^{n} \binom{i-1}{r-1} H(n-i,r,\alpha) \\ &= \sum_{j=0}^{n} \sum_{i=0}^{j} \binom{n}{j} \binom{j}{i} \frac{(-1)^{i-r-1} s(i,r+1)(r+1)!}{\alpha^{i} n!} D_{r}(j-i). \end{split}$$

Proof. From (4), we have

 $\sum_{n=r}^{\infty} (-1)^{n-r} \frac{D_{n-r}^r}{\alpha^n (n-r)!} x^n$

$$=\frac{x^r}{\alpha^r}\sum_{n=0}^{\infty}(-1)^n\frac{D_n^r}{\alpha^n}\frac{x^n}{n!}=\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^r.$$

By (2), we get

$$\sum_{n=r}^{\infty} (-1)^{n-r} \frac{D_{n-r}^{r}}{\alpha^{n}(n-r)!} x^{n} = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r}}{1-x} (1-x)$$
$$= \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r}}{1-x} - x \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r}}{1-x}$$
$$= \sum_{\substack{n=0\\n=0}}^{\infty} H(n,r-1,\alpha) x^{n} - \sum_{\substack{n=0\\n=0}}^{\infty} H(n,r-1,\alpha) x^{n+1}$$
$$= \sum_{\substack{n=1\\n=1}}^{\infty} \left(H(n,r-1,\alpha) - H(n-1,r-1,\alpha)\right) x^{n}.$$

Secondly, by product of exponential generating functions, we write

and by (2) and (6), we have

$$\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1} \frac{x^r}{(1-x)^{r+1}} \\ = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{1-x} \frac{x^r}{(1-x)^r} \\ = \sum_{\substack{n=0\\m=0}}^{\infty} H(n,r,\alpha) x^n \sum_{\substack{n=r\\n=1}}^{\infty} {n-1 \choose r-1} x^n \\ = \sum_{\substack{n=0\\m=0}}^{\infty} \sum_{\substack{i=0\\m=0}}^{n} {i-1 \choose r-1} H(n-i,r,\alpha) x^n.$$

Comparing the coefficients of x^n in the first and last series. So, we have the proof.

Theorem 3. Let m be positive integer. For n > r, then

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i! \, \alpha^{i-m}} C_{i}^{m} H(n+m-i,r+m,\alpha) = H(n,r,\alpha),$$

and

$$\sum_{j=0}^{n} \sum_{i=0}^{j} {j \choose i} \frac{(-1)^{i}}{j! \, \alpha^{i-r}} C_{i}^{r} d_{j-i} H(n-j,r-1,\alpha)$$
$$= \sum_{i=0}^{n} (-1)^{i} {r-1 \choose i} \frac{D_{r}(n-i)}{(n-i)!}.$$

Proof. From (2) and (3), we write

$$\sum_{n=0}^{\infty} H(n,r,\alpha)x^{n} = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{1-x}$$
$$= \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+m+1}}{1-x} \frac{\left(-x/\alpha\right)^{m}}{\left(\ln\left(1-\frac{x}{\alpha}\right)\right)^{m}} \frac{\alpha^{m}}{x^{m}}$$
$$= \sum_{\substack{n=0\\m \to 0}}^{\infty} H(n,r+m,\alpha)x^{n-m} \sum_{\substack{n=0\\m \to 0}}^{\infty} (-1)^{n} \alpha^{m-n} C_{n}^{m} \frac{x^{n}}{n!}$$
$$= \sum_{\substack{n=0\\m \to 0}}^{\infty} H(n+m,r+m,\alpha)x^{n} \sum_{\substack{n=0\\m \to 0}}^{\infty} (-1)^{n} \alpha^{m-n} C_{n}^{m} \frac{x^{n}}{n!}$$

and by product of exponential generating functions,

$$\sum_{n=0}^{\infty} H(n,r,\alpha)x^n$$

= $\sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{(-1)^i}{i! \, \alpha^{i-m}} C_i^m H(n+m-i,r+m,\alpha)x^n$,
as claimed.

Secondly, we will give the proof of the other sum. From Binomial theorem and (5), we have

$$(1-x)^{r-1} \frac{x^r e^{-x}}{(1-x)^{r+1}} = \sum_{\substack{n=0\\ m=0}}^{r-1} (-1)^n {\binom{r-1}{n}} x^n \sum_{\substack{n=0\\ n=0}}^{\infty} D_r(n) \frac{x^n}{n!} = \sum_{\substack{n=0\\ n=0}}^{\infty} \sum_{\substack{i=0\\ i=0}}^{n} (-1)^i {\binom{r-1}{i}} \frac{D_r(n-i)}{(n-i)!} x^n, \quad (9)$$

and by product of generating functions,

$$(1-x)^{r-1} \frac{x^{r} e^{-x}}{(1-x)^{r+1}}$$

$$= \frac{e^{-x}}{1-x} \left(\frac{-\frac{x}{\alpha}}{\ln\left(1-\frac{x}{\alpha}\right)} \right)^{r} \alpha^{r} \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r}}{1-x}$$

$$= \sum_{\substack{n=0\\\infty}}^{\infty} d_{n} \frac{x^{n}}{n!} \sum_{\substack{n=0\\n=0}}^{\infty} \frac{(-1)^{n} C_{n}^{r}}{\alpha^{n-r}} \frac{x^{n}}{n!} \sum_{\substack{n=0\\n=0}}^{\infty} H(n,r-1,\alpha) x^{n}$$

$$= \sum_{\substack{n=0\\n=0}}^{\infty} \sum_{\substack{i=0\\n=0}}^{n} \sum_{\substack{i=0\\i=0}}^{j} (-1)^{i} {\binom{j}{i}} \frac{C_{i}^{r} d_{n-i}}{\alpha^{i-r}} \frac{x^{n}}{n!} \sum_{\substack{n=0\\n=0}}^{\infty} H(n,r-1,\alpha) x^{n}$$

$$= \sum_{\substack{n=0\\n=0}}^{\infty} \sum_{\substack{j=0\\i=0}}^{n} \sum_{\substack{i=0\\i=0}}^{j} (-1)^{i} {\binom{j}{i}} \frac{C_{i}^{r} d_{j-i}}{\alpha^{i-r} j!} x^{n}. (10)$$

By (9) and (10), comparing the coefficients on both sides, we get the desired result. So, the proof is complete.

Theorem 4. For $n \ge m$ and $n > r \ge 1$, then

$$\sum_{j=0}^{n} \sum_{i=0}^{j} H(i, r-1, \alpha) H_{j-i}^{m}(\alpha) \frac{d_{n-j}}{(n-j)!}$$
$$= \sum_{i=0}^{n} H(n-i+m, r, \alpha) \frac{D_{m}(i)}{i!},$$

and for $n \ge r \ge 1$,

$$D_{r}(n) = n! \sum_{j=0}^{n-r} \sum_{i=0}^{j} \frac{(-1)^{i+j} D_{r-1}(i+r-1) C_{j-i}^{r} H(n-j,r-1,\alpha)}{(i+r-1)! (j-i)! \alpha^{j-i-r}}.$$

Proof. From product of exponential generating functions, we write

$$\frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{(1-x)^{m+2}}e^{-x} = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{1-x}x^{m}e^{-x}}{1-x} x^{m}e^{-x} = \sum_{n=0}^{\infty}H(n,r,\alpha)x^{n-m}\sum_{n=0}^{\infty}\frac{D_{m}(n)}{n!}x^{n} = \sum_{n=0}^{\infty}H(n+m,r,\alpha)x^{n}\sum_{n=0}^{\infty}\frac{D_{m}(n)}{n!}x^{n} = \sum_{n=0}^{\infty}\sum_{i=0}^{n}H(i+m,r,\alpha)\frac{D_{m}(n-i)}{(n-i)!}x^{n},$$
(11)

and

$$\frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{(1-x)^{m+2}}e^{-x} = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r}}{1-x}e^{-x} - \ln\left(1-\frac{x}{\alpha}\right)}{(1-x)^{m}}\frac{e^{-x}}{1-x} = \sum_{\substack{n=0\\n=0}}^{\infty}H(n,r-1,\alpha)x^{n}\sum_{\substack{n=0\\n=0}}^{\infty}H_{n}^{m}(\alpha)x^{n}\sum_{\substack{n=0\\n=0}}^{\infty}\frac{d_{n}}{n!}x^{n} = \sum_{\substack{n=0\\n=0}}^{\infty}\sum_{\substack{i=0\\n=0}}^{n}\sum_{\substack{i=0\\i=0}}^{j}H(i,r-1,\alpha)H_{n-i}^{m}(\alpha)\frac{d_{n-j}}{(n-j)!}x^{n}.$$
(12)

From here, (11) and (12) yield the desired result.

Now, we will give the other sum. With the help of generating functions of (2), (3) and (5), we get

$$= \sum_{n=0}^{\infty} H(n,r,\alpha) x^{n+1} \sum_{n=0}^{\infty} \frac{D_{r-1}(n)}{n!} x^n$$
$$= \sum_{n=0}^{\infty} H(n-1,r,\alpha) x^n \sum_{n=0}^{\infty} \frac{D_{r-1}(n)}{n!} x^n$$
$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{H(i-1,r,\alpha) D_{r-1}(n-i)}{(n-i)!} x^n$$

Thus, comparing the coefficients on both sides, we get the desired result. Similarly, considering

 $x^{n} \sum_{n=0}^{\infty} H(n,r,\alpha)x^{n}$ $\frac{1,\alpha}{2} = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{1-x} = \left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1} \frac{e^{-x}}{1-x}e^{x}$ $= \sum_{n=0}^{\infty} (-1)^{n+r+1}\alpha^{-n}s(n,r+1)(r+1)!\frac{x^{n}}{n!}$ $\times \sum_{n=0}^{\infty} d_{n}\frac{x^{n}}{n!}\sum_{n=0}^{\infty}\frac{x^{n}}{n!}$ $= (-1)^{r+1}(r+1)$ $\times \sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{i=0}^{j} \frac{(-1)^{i}}{n!} {n \choose j} {j \choose i} \alpha^{-i}s(i,r+1)d_{j-i}x^{n},$

the proof of the other sum is obtained.

Conclusion

With the help of product of generating functions and then comparing the coefficients of x^n in the first and last series, some sums are obtained involving generalized harmonic, r-derangement, Cauchy numbers and some special numbers. In the future, it is aimed to find new sums with the help of the derivative operator.

Acknowledgments

The author would like to thank the referees for their valuable comments and suggestions for the improvement of the present paper.

Conflicts of interest

There are no conflicts of interest in this work.

References

- Benjamin A.T., Gaebler D., Gaebler R., A Combinatorial Approach to Hyperharmonic Numbers, *Integers*, 3 (2013) 1-9.
- [2] Benjamin A.T., Preston G.O., Quinn J.J., A Stirling Encounter with Harmonic Numbers, *Math. Mag.*, 75 (2002) 95-103.

Thus, the desired result is given.

Theorem 5. For $n \geq 2r+1$, then

$$\sum_{i=0}^{n} (-1)^{i+r+1} {n \choose i} \frac{s(i,r+1)D_r(n-i)(r+1)!}{\alpha^i n!} = \sum_{i=0}^{n} H(i-1,r,\alpha) \frac{D_{r-1}(n-i)}{(n-i)!},$$

and for n > r,

$$H(n,r,\alpha) = \frac{(r+1)!}{n!} \sum_{j=0}^{n} \sum_{i=0}^{j} (-1)^{i+r+1} {n \choose j} {j \choose i} \alpha^{-i} s(i,r+1) d_{j-i}.$$

Proof. By product of exponential generating functions, we have

$$\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1} \frac{x^{r}e^{-x}}{(1-x)^{r+1}}$$

$$= \sum_{\substack{n=0\\ n=0}}^{\infty} (-1)^{n+r+1} \alpha^{-n} s(n,r+1)(r+1)! \frac{x^{n}}{n!} \sum_{\substack{n=0\\ n=0}}^{\infty} D_{r}(n) \frac{x^{n}}{n!}$$

$$= (-1)^{r+1} (r+1)!$$

$$\times \sum_{\substack{n=0\\ n=0}}^{\infty} \sum_{\substack{i=0\\ i=0}}^{n} {n \choose i} (-1)^{i} s(i,r+1) D_{r}(n-i) \frac{x^{n}}{\alpha^{i} n!}$$

and from product of generating functions,

$$\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1} \frac{x^{r}e^{-x}}{(1-x)^{r+1}} \\ = \frac{\left(-\ln\left(1-\frac{x}{\alpha}\right)\right)^{r+1}}{1-x} \frac{x^{r-1}e^{-x}}{(1-x)^{r}} x^{r-1}$$

- [3] Caralambides C.A., Enumarative combinatorics, Chapman&Hall/Crc, Press Company, 1st ed. New York, (2002), 1-632.
- [4] Cheon G.S., El-Mikkawy M., Generalized Harmonic Numbers with Riordan Arrays, J. Number Theory, 128(2) (2008) 413-425.
- [5] Dattoli G., Licciardi S., Sabia E., Srivastava H.M., Some Properties and Generating Functions of Generalized Harmonic Numbers, *Mathematics*, 7(7) (2019), Article ID 577.
- [6] Dattoli G., Srivastava H.M., A Note on Harmonic Numbers, Umbral Calculus and Generating Functions, *Appl. Math. Lett.*, 21 (7) (2008) 686-693.
- [7] Duran Ö., Ömür N., Koparal S., On Sums with Generalized Harmonic, Hyperharmonic and Special Numbers, *Miskolc Math. Notes*, 21(2) (2020) 791-160.
- [8] Geňcev M., Binomial Sums Involving Harmonic Numbers, Math. Slovaca, 61(2) (2011) 215-226.
- [9] Koparal S., Ömür N., Südemen K.N., Some Identities for Derangement Numbers, *Miskolc Math. Notes*, 23(2) (2022) 773-785.
- [10] Koparal S., Ömür N., Duran Ö., On Identities Involving Generalized Harmonic, Hyperharmonic and Special Numbers with Riordan Arrays, *Spec. Matrices*, 9 (2021) 22-30.
- [11] Kwon H.I., Jang G.W., Kim T., Some Identities of Derangements Numbers Arising from Differential Equations, Adv. Stud. Contemp. Math., 28(1) (2018) 73-82.
- [12] Ömür N., Bilgin G., Some Applications of Generalized Hyperharmonic Numbers of Order r, $H_n^r(\alpha)$, Adv. Appl. Math. Sci., 17(9) (2018) 617-627.
- [13] Ömür N., Koparal S., On the Matrices with the Generalized Hyperharmonic Numbers of Order *r*, *Asian–European J*. *Math.*, 11(3) (2018) Article ID 1850045.
- [14] Ömür N., Südemen K.N., Koparal S., Some Identities with Special Numbers, *Cumhuriyet Sci. J.*, 43(4) (2022) 696-702.
- [15] Ömür N., Koparal S., Sums Involving Generalized Harmonic and Daehee Numbers, Notes on Number Theory and Discrete Math., 28(1) (2022) 92-99.
- [16] Qi F., Zhao J.L., Guo B.N., Closed Forms for Derangement Numbers in terms of the Hessenberg Determinants, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM*, 112 (2018) 933–944.
- [17] Qi F., Guo B.N., Explicit Formulas for Derangement Numbers and Their Generating Function, J. Nonlinear Funct. Anal., 2016 (2016) Article ID 45.
- [18] Rim S.H., Kim T., Pyo S.S., Identities Between Harmonic, Hyperharmonic and Daehee Numbers, J. Inequal. Appl.,

2018 (2018) Article ID 168.Santmyer J.M., A Stirling like Sequence of Rational Numbers, *Discrete Math.*, 171(1-3) (1997) 229-235.

- [19] Sofo A., Srivastava H.M., Identities for the Harmonic Numbers and Binomial Coefficients, *Ramanujan J.*, 25(1) (2011) 93-113.
- [20] Şimşek Y., Special Numbers on Analytic Functions, *Appl. Math.*, 5(7) (2014) 1091-1098.
- [21] Wang C., Miska P., Mezö I., The *r*-Derangement Numbers, *Discrete Math.*, 340(2017) 1681-1692.
- [22] Choi J., Srivastava H.M., Some summation formulas involving harmonic numbers and generalized harmonic numbers, *Math. Comput. Model.*, 54(9-10) (2011) 2220– 2234.
- [23] Simsek Y., Some classes of finite sums related to the generalized Harmonic functions and special numbers and polynomials, *Montes Taurus J. Pure Appl. Math.*, 4(3) (2022) 61-79.
- [24] Simsek Y., New integral formulas and identities involving special numbers and functions derived from certain class of special combinatorial sums, *RACSAM*, 115(66) (2021) 1-14. Simsek Y., Apostol type Daehee numbers and polynomials, *Adv. Stud. Contemp. Math.*, 26(3) (2016) 555-566.
- [25] Rassias T.M., Srivastava H.M., Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, *Appl. Math. Comput.*, 131(2002) 593-605.
- [26] Kim T., Kim D.S., Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. Appl. Math., 148(2023) Article ID 102535, 15 p.
- [27] Kim T., Kim D.S., Some identities on degenerate hyperharmonic numbers, *Georgian Math. J.*, 30(2) (2023) 255-262.
- [28] Dolgy D.V., Kim D.S., Kim H.K., Kim, T., Degenerate harmonic and hyperharmonic numbers, *Proc. Jangjeon Math. Soc.*, 26(3) (2023) 259-268.
- [29] Kim D.S., Kim T., Normal ordering associated with λ –Whitney numbers of the first kind in λ –shift algebra, *Russ. J. Math. Phys.*, 30(3) (2023) 310-319.
- [30] Kim T., Kim D.S., Some identities on degenerate r Stirling numbers via boson operators, *Russ. J. Math. Phys.*, 29(4) (2022) 508-517.
- [31] Kim T.K., Kim D.S., Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, *Russ. J. Math. Phys.*, 30(1) (2023) 62-75.