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Abstract
In this paper, we introduce some new f -divergence measures that we call t-asymmetric/symmetric divergence
measure and integral divergence measure, establish their joint convexity and provide some inequalities that
connect these f -divergences to the classical one introduced by Csiszar in 1963. Applications for the
dichotomy class of convex functions are provided as well.
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1. Introduction
Let (X,A) be a measurable space satisfying |A| > 2 and µ be a σ-finite measure on (X,A) . Let P be the set of all

probability measures on (X,A) which are absolutely continuous with respect to µ. For P, Q ∈ P , let p =
dP

dµ
and

q =
dQ

dµ
denote the Radon-Nikodym derivatives of P and Q with respect to µ.

Two probability measures P, Q ∈ P are said to be orthogonal and we denote this by Q ⊥ P if

P ({q = 0}) = Q ({p = 0}) = 1.

Let f : [0,∞)→ (−∞,∞] be a convex function that is continuous at 0, i.e., f (0) = limu↓0 f (u) .
In 1963, I. Csiszár [1] introduced the concept of f -divergence as follows.

Definition 1.1. Let P, Q ∈ P . Then

If (Q,P ) =

∫
X

p (x) f

[
q (x)

p (x)

]
dµ (x) , (1.1)
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is called the f -divergence of the probability distributions Q and P.

Remark 1.1. Observe that, the integrand in the formula (1.1) is undefined when p (x) = 0. The way to overcome this
problem is to postulate for f as above that

0f

[
q (x)

0

]
= q (x) lim

u↓0

[
uf

(
1

u

)]
, x ∈ X. (1.2)

We now give some examples of f -divergences that are well-known and often used in the literature (see also [2]).

1.1 The class of χα-divergences
The f -divergences of this class, which is generated by the function χα, α ∈ [1,∞), defined by

χα (u) = |u− 1|α , u ∈ [0,∞)

have the form

If (Q,P ) =

∫
X

p

∣∣∣∣qp − 1

∣∣∣∣α dµ =

∫
X

p1−α |q − p|α dµ. (1.3)

From this class only the parameter α = 1 provides a distance in the topological sense, namely the total variation
distance V (Q,P ) =

∫
X
|q − p| dµ. The most prominent special case of this class is, however, Karl Pearson’s χ2-

divergence

χ2 (Q,P ) =

∫
X

q2

p
dµ− 1

that is obtained for α = 2.

1.2 Dichotomy class
From this class, generated by the function fα : [0,∞)→ R

fα (u) =



u− 1− lnu for α = 0;

1

α (1− α)
[αu+ 1− α− uα] for α ∈ R\ {0, 1} ;

1− u+ u lnu for α = 1;

only the parameter α =
1

2

f1

2

(u) = 2 (
√
u− 1)

2

 provides a distance, namely, the Hellinger distance

H (Q,P ) =

[∫
X

(
√
q −√p)2

dµ

]1

2
.

Another important divergence is the Kullback-Leibler divergence obtained for α = 1,

KL (Q,P ) =

∫
X

q ln

(
q

p

)
dµ.

1.3 Matsushita’s divergences
The elements of this class, which is generated by the function ϕα, α ∈ (0, 1] given by

ϕα (u) := |1− uα|
1

α , u ∈ [0,∞),

are prototypes of metric divergences, providing the distances [Iϕα
(Q,P )]

α
.
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1.4 Puri-Vincze divergences
This class is generated by the functions Φα, α ∈ [1,∞) given by

Φα (u) :=
|1− u|α

(u+ 1)
α−1 , u ∈ [0,∞).

It has been shown in [3] that this class provides the distances [IΦα (Q,P )]

1

α .

1.5 Divergences of Arimoto-type
This class is generated by the functions

Ψα (u) :=



α

α− 1

(1 + uα)

1

α − 2

1

α
−1

(1 + u)

 for α ∈ (0,∞) \ {1} ;

(1 + u) ln 2 + u lnu− (1 + u) ln (1 + u) for α = 1;

1

2
|1− u| for α =∞.

It has been shown in [4] that this class provides the distances [IΨα (Q,P )]
min

(
α,

1

α

)
for α ∈ (0,∞) and

1

2
V (Q,P )

for α =∞.
For f continuous convex on [0,∞) we obtain the ∗-conjugate function of f by

f∗ (u) = uf

(
1

u

)
, u ∈ (0,∞)

and
f∗ (0) = lim

u↓0
f∗ (u) .

It is also known that if f is continuous convex on [0,∞) then so is f∗.
The following two theorems contain the most basic properties of f -divergences. For their proofs we refer the

reader to Chapter 1 of [5] (see also [2]).

Theorem 1.1 (Uniqueness and Symmetry Theorem). Let f, f1 be continuous convex on [0,∞). We have

If1 (Q,P ) = If (Q,P ) ,

for all P, Q ∈ P if and only if there exists a constant c ∈ R such that

f1 (u) = f (u) + c (u− 1) ,

for any u ∈ [0,∞).

Theorem 1.2 (Range of Values Theorem). Let f : [0,∞)→ R be a continuous convex function on [0,∞).
For any P,Q ∈ P , we have the double inequality

f (1) ≤ If (Q,P ) ≤ f (0) + f∗ (0) . (1.4)

(i) If P = Q, then the equality holds in the first part of (1.4).

If f is strictly convex at 1, then the equality holds in the first part of (1.4) if and only if P = Q;

(ii) If Q ⊥ P, then the equality holds in the second part of (1.4).

If f (0) + f∗ (0) <∞, then equality holds in the second part of (1.4) if and only if Q ⊥ P.

The following result is a refinement of the second inequality in Theorem 1.2 (see [2, Theorem 3]).
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Theorem 1.3. Let f be a continuous convex function on [0,∞) with f (1) = 0 (f is normalised) and f (0) + f∗ (0) <∞.
Then

0 ≤ If (Q,P ) ≤ 1

2
[f (0) + f∗ (0)]V (Q,P ) (1.5)

for any Q, P ∈ P .

For other inequalities for f -divergence see [6], [7]-[21].

2. Some basic properties

Let f be a continuous convex function on [0,∞) with f (1) = 0 and t ∈ [0, 1] . We define the t-asymmetric
divergence measure Af,t by

Af,t (Q,P,W ) :=

∫
X

f

[
(1− t) q (x) + tp (x)

w (x)

]
w (x) dµ (x) (2.1)

and the t-symmetric divergence measure Sf,t by

Sf,t (Q,P,W ) :=
1

2
[Af,t (Q,P,W ) +Af,1−t (Q,P,W )] (2.2)

for any Q, P, W ∈ P .

For t =
1

2
we consider the mid-point divergence measure Mf by

Mf (Q,P,W ) :=

∫
X

f

[
q (x) + p (x)

2w (x)

]
w (x) dµ (x)

= Af,1/2 (Q,P,W ) = Sf,1/2 (Q,P,W ) ,

for any Q, P, W ∈ P .
We can also consider the integral divergence measure

Af (Q,P,W ) :=

∫ 1

0

Af,t (Q,P,W ) dt =

∫ 1

0

Sf,t (Q,P,W )

=

∫
X

(∫ 1

0

f

[
(1− t) q (x) + tp (x)

w (x)

]
dt

)
w (x) dµ (x) .

The following result contains some basic facts concerning the divergence measures above:

Theorem 2.1. Let f be a continuous convex function on [0,∞) with f (1) = 0. Then for all Q, P, W ∈ P and t ∈ [0, 1]

0 ≤ Af,t (Q,P,W ) ≤ (1− t) If (Q,W ) + tIf (P,W ) (2.3)

and the mapping
P × P 3 (Q,P ) 7→ Af,t (Q,P,W ) ∈ [0,∞) (2.4)

is convex as a function of two variables.
We have the inequalities

0 ≤Mf (Q,P,W ) ≤ Sf,t (Q,P,W ) ≤ 1

2
[If (Q,W ) + If (P,W )] (2.5)

for all Q, P, W ∈ P and the mapping

P × P 3 (Q,P ) 7→ Sf,t (Q,P,W ) ∈ [0,∞) (2.6)

is convex as a function of two variables.



Some new f -divergence measures and their basic properties 47

Proof. Let t ∈ [0, 1] and Q, P, W ∈ P . We use Jensen’s integral inequality to get

Af,t (Q,P,W ) =

∫
X

f

[
(1− t) q (x) + tp (x)

w (x)

]
w (x) dµ (x)

≥ f
(∫

X

[
(1− t) q (x) + tp (x)

w (x)

]
w (x) dµ (x)

)
= f

(∫
X

[(1− t) q (x) + tp (x)] dµ (x)

)
= f

(
(1− t)

∫
X

q (x) dµ (x) + t

∫
X

p (x) dµ (x)

)
= f (1) = 0.

By the convexity of f we also have

Af,t (Q,P,W ) =

∫
X

f

[
(1− t) q (x) + tp (x)

w (x)

]
w (x) dµ (x)

≤ (1− t)
∫
X

f

[
q (x)

w (x)

]
w (x) dµ (x) + t

∫
X

f

[
p (x)

w (x)

]
w (x) dµ (x)

= (1− t) If (Q,W ) + tIf (P,W )

for t ∈ [0, 1] and Q, P, W ∈ P , and the inequality (2.3) is proved.
Let α, β ≥ 0 and such that α+ β = 1. If (Q1, P1) , (Q2, P2) ∈ P × P , then

Af,t (α (Q1, P1,W ) + β (Q2, P2,W ))

= Af,t ((αQ1 + βQ2, αP1 + βP2,W ))

=

∫
X

f

[
(1− t) (αQ1 + βQ2) + t (αP1 + βP2)

w (x)

]
w (x) dµ (x)

=

∫
X

f

[
α [(1− t)Q1 + tP1] + β [(1− t)Q2 + tP2]

w (x)

]
w (x) dµ (x)

≤ α

∫
X

f

[
(1− t)Q1 + tP1

w (x)

]
w (x) dµ (x) + β

∫
X

f

[
(1− t)Q2 + tP2

w (x)

]
w (x) dµ (x)

= αAf,t (Q1, P1,W ) + βAf,t (Q2, P2,W ) ,

which proves the joint convexity of the mapping defined in (2.4).
Using the convexity of f we have

f

(
1

2

[
(1− t) q (x) + tp (x)

w (x)
+

(1− t) p (x) + tq (x)

w (x)

])
≤ 1

2

{
f

[
(1− t) q (x) + tp (x)

w (x)

]
+ f

[
(1− t) p (x) + tq (x)

w (x)

]}
,

namely

f

(
q (x) + p (x)

2w (x)

)
≤ 1

2

{
f

[
(1− t) q (x) + tp (x)

w (x)

]
+ f

[
(1− t) p (x) + tq (x)

w (x)

]}
, (2.7)

for x ∈ X.
By multiplying (2.7) with w (x) and integrating over µ (x) we get the second inequality inequality in (2.5).
We have, by (2.3) that

Sf,t (Q,P,W ) =
1

2
[Af,t (Q,P,W ) +Af,1−t (Q,P,W )]

≤ 1

2

[
(1− t) If (Q,W ) + tIf (P,W ) + tIf (Q,W ) + (1− tI)f (P,W )

]
=

1

2
[If (Q,W ) + If (P,W )] ,

which proves the third inequality in (2.5).
The convexity of the mapping defined by (2.6) follows by the same property of the mapping defined by (2.4).
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Corollary 2.1. Let f be a continuous convex function on [0,∞) with f (1) = 0. Then for all Q, P, W ∈ P we have the
inequalities

0 ≤Mf (Q,P,W ) ≤ Af (Q,P,W ) ≤ 1

2
[If (Q,W ) + If (P,W )] . (2.8)

The mapping
P × P 3 (Q,P ) 7→ Af (Q,P,W ) ∈ [0,∞) (2.9)

is convex as a function of two variables.

Proof. The inequality (2.8) follows by integrating over t in the inequality (2.5). Since the mapping

P × P 3 (Q,P ) 7→ Sf,t (Q,P,W ) ∈ [0,∞)

is convex as a function of two variables for all t ∈ [0, 1] , then it remains convex if one takes the integral over
t ∈ [0, 1] .

The following reverses of the Hermite-Hadamard inequality hold:

Lemma 2.1 (Dragomir, 2002 [9] and [10]). Let h : [a, b]→ R be a convex function on [a, b] . Then

0 ≤ 1

8

[
h+

(
a+ b

2

)
− h−

(
a+ b

2

)]
(b− a) (2.10)

≤ h (a) + h (b)

2
− 1

b− a

∫ b

a

h (x) dx

≤ 1

8
[h− (b)− h+ (a)] (b− a)

and

0 ≤ 1

8

[
h+

(
a+ b

2

)
− h−

(
a+ b

2

)]
(b− a) (2.11)

≤ 1

b− a

∫ b

a

h (x) dx− h
(
a+ b

2

)
≤ 1

8
[h− (b)− h+ (a)] (b− a) .

The constant
1

8
is best possible in all inequalities.

We have the reverse inequalities:

Theorem 2.2. Let f be a differentiable convex function on [0,∞) with f (1) = 0. Then for all Q, P, W ∈ P we have

0 ≤ Af (Q,P,W )−Mf (Q,P,W ) ≤ 1

8
∆f ′ (Q,P,W ) (2.12)

and
0 ≤ 1

2
[If (Q,W ) + If (P,W )]−Af (Q,P,W ) ≤ 1

8
∆f ′ (Q,P,W ) (2.13)

where

∆f ′ (Q,P,W ) :=

∫
X

[
f ′
(
q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)]
(q (x)− p (x)) dµ (x) . (2.14)

Proof. Let Q, P, W ∈ P . By the inequality (2.11) we have

0 ≤
∫ 1

0

f

[
(1− t) q (x) + tp (x)

w (x)

]
dt− f

(
q (x) + p (x)

2w (x)

)
≤ 1

8

[
f ′
(
q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)](
q (x)

w (x)
− p (x)

w (x)

)
.
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If we multiply this inequality by w (x) ≥ 0 and integrate on X we get (2.12).
From (2.10) we also have

0 ≤ 1

2

[
f

(
q (x)

w (x)

)
+ f

(
p (x)

w (x)

)]
−
∫ 1

0

f

[
(1− t) q (x) + tp (x)

w (x)

]
dt

≤ 1

8

[
f ′
(
q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)](
q (x)

w (x)
− p (x)

w (x)

)
.

If we multiply this inequality by w (x) ≥ 0 and integrate on X we get (2.12).

Corollary 2.2. Let f be a differentiable convex function on [0,∞) with f (1) = 0 and Q, P, W ∈ P . If there exists
0 < r < 1 < R <∞ such that the following condition holds

r ≤ q (x)

w (x)
,
p (x)

w (x)
≤ R for µ-a.e. x ∈ X, (2.15)

then
0 ≤ Af (Q,P,W )−Mf (Q,P,W ) ≤ 1

8
[f ′ (R)− f ′ (r)] d1 (Q,P ) (2.16)

and
0 ≤ 1

2
[If (Q,W ) + If (P,W )]−Af (Q,P,W ) ≤ 1

8
[f ′ (R)− f ′ (r)] d1 (Q,P ) (2.17)

where
d1 (Q,P ) :=

∫
X

|q (x)− p (x)| dµ (x) .

Proof. Since f ′ is increasing on [r,R] , then

|f ′ (t)− f ′ (s)| ≤ f ′ (R)− f ′ (r)

for all t, s ∈ [r,R] .
Therefore

∆f ′ (Q,P,W ) :=

∫
X

[
f ′
(
q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)]
(q (x)− p (x)) dµ (x)

≤
∫
X

∣∣∣∣f ′( q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)∣∣∣∣ |q (x)− p (x)| dµ (x)

≤ [f ′ (R)− f ′ (r)]
∫
X

|q (x)− p (x)| dµ (x)

= [f ′ (R)− f ′ (r)] d1 (Q,P ) ,

which proves the desired inequalities (2.16) and (2.17).

Corollary 2.3. Let f be a twice differentiable convex function on [0,∞) with f (1) = 0 and Q, P, W ∈ P . If there exists
0 < r < 1 < R <∞ such that the condition (2.15) holds and

‖f ′′‖[r,R],∞ := sup
t∈[r,R]

|f ′′ (t)| <∞, (2.18)

then
0 ≤ Af (Q,P,W )−Mf (Q,P,W ) ≤ 1

8
‖f ′′‖[r,R],∞ dχ2 (Q,P,W ) (2.19)

and
0 ≤ 1

2
[If (Q,W ) + If (P,W )]−Af (Q,P,W ) ≤ 1

8
‖f ′′‖[r,R],∞ dχ2 (Q,P,W ) , (2.20)

where

dχ2 (Q,P,W ) :=

∫
X

(q (x)− p (x))
2

w (x)
dµ (x) . (2.21)
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Proof. We have

∆f ′ (Q,P,W ) :=

∫
X

[
f ′
(
q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)]
(q (x)− p (x)) dµ (x)

≤
∫
X

∣∣∣∣f ′( q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)∣∣∣∣ |q (x)− p (x)| dµ (x)

≤ ‖f ′′‖[r,R],∞

∫
X

∣∣∣∣ q (x)

w (x)
− p (x)

w (x)

∣∣∣∣ |q (x)− p (x)| dµ (x)

= ‖f ′′‖[r,R],∞

∫
X

(q (x)− p (x))
2

w (x)
dµ (x) ,

which proves the desired results (2.19) and (2.20).

3. Further results
We have the following result for convex functions that is of interest in itself as well:

Lemma 3.1. Let f : I ⊂ R→ R be a convex function on the interval I , a, b ∈ I̊ , the interior of I, with a < b and ν ∈ [0, 1] .
Then

ν (1− ν) (b− a)
[
f ′+ ((1− ν) a+ νb)− f ′− ((1− ν) a+ νb)

]
(3.1)

≤ (1− ν) f (a) + νf (b)− f ((1− ν) a+ νb)

≤ ν (1− ν) (b− a)
[
f ′− (b)− f ′+ (a)

]
.

In particular, we have

1

4
(b− a)

[
f ′+

(
a+ b

2

)
− f ′−

(
a+ b

2

)]
≤ f (a) + f (b)

2
− f

(
a+ b

2

)
(3.2)

≤ 1

4
(b− a)

[
f ′− (b)− f ′+ (a)

]
.

The constant
1

4
is best possible in both inequalities from (3.2).

Proof. The case ν = 0 or ν = 1 reduces to equality in (3.1).
Since f is convex on I it follows that the function is differentiable on I̊ except a countably number of points, the

lateral derivatives f ′± exists in each point of I̊ , they are increasing on I̊ and f ′− ≤ f ′+ on I̊ .
For any x, y ∈ I̊ we have for the Lebesgue integral

f (x) = f (y) +

∫ x

y

f ′ (s) ds = f (y) + (x− y)

∫ 1

0

f ′ ((1− t) y + tx) dt. (3.3)

Assume that a < b and ν ∈ (0, 1) . By (3.3) we have

f ((1− ν) a+ νb) (3.4)

= f (a) + ν (b− a)

∫ 1

0

f ′ ((1− t) a+ t ((1− ν) a+ νb)) dt

and

f ((1− ν) a+ νb) (3.5)

= f (b)− (1− ν) (b− a)

∫ 1

0

f ′ ((1− t) b+ t ((1− ν) a+ νb)) dt.
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If we multiply (3.4) by 1− ν, (3.4) by ν and add the obtained equalities, then we get

f ((1− ν) a+ νb) = (1− ν) f (a) + νf (b)

+ (1− ν) ν (b− a)

∫ 1

0

f ′ ((1− t) a+ t ((1− ν) a+ νb)) dt

− (1− ν) ν (b− a)

∫ 1

0

f ′ ((1− t) b+ t ((1− ν) a+ νb)) dt,

which is equivalent to

(1− ν) f (a) + νf (b)− f ((1− ν) a+ νb) = (1− ν) ν (b− a) (3.6)

×
∫ 1

0

[f ′ ((1− t) b+ t ((1− ν) a+ νb))− f ′ ((1− t) a+ t ((1− ν) a+ νb))] dt. (3.7)

That is an equality of interest in itself.
Since a < b and ν ∈ (0, 1) , then (1− ν) a+ νb ∈ (a, b) and

(1− t) a+ t ((1− ν) a+ νb) ∈ [a, (1− ν) a+ νb]

while
(1− t) b+ t ((1− ν) a+ νb) ∈ [(1− ν) a+ νb, b]

for any t ∈ [0, 1] .
By the monotonicity of the derivative we have

f ′+ ((1− ν) a+ νb) ≤ f ′ ((1− t) b+ t ((1− ν) a+ νb)) ≤ f ′− (b) (3.8)

and
f ′+ (a) ≤ f ′ ((1− t) a+ t ((1− ν) a+ νb)) ≤ f ′− ((1− ν) a+ νb) (3.9)

for any t ∈ [0, 1] .
By integrating the inequalities (3.8) and (3.9) we get

f ′+ ((1− ν) a+ νb) ≤
∫ 1

0

f ′ ((1− t) b+ t ((1− ν) a+ νb)) dt ≤ f ′− (b)

and

f ′+ (a) ≤
∫ 1

0

f ′ ((1− t) a+ t ((1− ν) a+ νb)) dt ≤ f ′− ((1− ν) a+ νb) ,

which implies that

f ′+ ((1− ν) a+ νb)− f ′− ((1− ν) a+ νb) ≤
∫ 1

0

f ′ ((1− t) b+ t ((1− ν) a+ νb)) dt

−
∫ 1

0

f ′ ((1− t) a+ t ((1− ν) a+ νb)) dt ≤ f ′− (b)− f ′+ (a) .

Making use of the equality (3.6) we the obtain the desired result (3.1).

If we consider the convex function f : [a, b] → R, f (x) =

∣∣∣∣x− a+ b

2

∣∣∣∣ , then we have f ′+

(
a+ b

2

)
= 1,

f ′−

(
a+ b

2

)
= −1 and by replacing in (3.2) we get in all terms the same quantity

1

2
(b− a) which show that

the constant
1

4
is best possible in both inequalities from (3.2).

Corollary 3.1. If the function f : I ⊂ R→ R is a differentiable convex function on I̊ , then for any a, b ∈ I̊ and ν ∈ [0, 1] we
have

0 ≤ (1− ν) f (a) + νf (b)− f ((1− ν) a+ νb) (3.10)
≤ ν (1− ν) (b− a) [f ′ (b)− f ′ (a)] .
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Proof. If a < b, then the inequality (3.10) follows by (3.1). If b < a, then by (3.1) we get

0 ≤ (1− ν) f (b) + νf (a)− f ((1− ν) b+ νa) (3.11)
≤ ν (1− ν) (b− a) [f ′ (b)− f ′ (a)]

for any ν ∈ [0, 1] . If we replace ν by 1− ν in (3.11), then we get (3.10).

We can prove now the following reverse of the second inequality in (2.3) and the first inequality in (2.5).

Theorem 3.1. Let f be a differentiable convex function on [0,∞) with f (1) = 0. Then for all Q, P, W ∈ P and t ∈ [0, 1] we
have

0 ≤ (1− t) If (Q,W ) + tIf (P,W )−Af,t (Q,P,W ) (3.12)
≤ t (1− t) ∆f ′ (Q,P,W )

and

0 ≤ Sf,t (Q,P,W )−Mf (Q,P,W ) ≤ 1

2

(
t− 1

2

)
∆f ′,t (Q,P,W ) , (3.13)

where

∆f ′,t (Q,P,W ) =

∫
X

(q (x)− p (x))

×
[
f ′
(

(1− t) p (x)

w (x)
+ t

q (x)

w (x)

)
− f ′

(
(1− t) q (x)

w (x)
+ t

p (x)

w (x)

)]
dµ (x) .

Proof. From the inequality (3.12) we get

0 ≤ (1− t) f
(
q (x)

w (x)

)
+ tf

(
p (x)

w (x)

)
− f

(
(1− t) q (x)

w (x)
+ t

p (x)

w (x)

)
(3.14)

≤ t (1− t)
[
f ′
(
q (x)

w (x)

)
− f ′

(
p (x)

w (x)

)](
q (x)

w (x)
− p (x)

w (x)

)
.

If we multiply this inequality by w (x) ≥ 0 and integrate on X we get (3.12).
For any x, y ∈ I̊ we have

0 ≤ f (x) + f (y)

2
− f

(
x+ y

2

)
≤ 1

4
(x− y) [f ′ (x)− f ′ (y)] . (3.15)

If in this inequality we take x = (1− t) a+ tb, y = (1− t) b+ ta with a, b ∈ I̊ and t ∈ [0, 1], then we get

0 ≤ f ((1− t) a+ tb) + f ((1− t) b+ ta)

2
− f

(
a+ b

2

)
(3.16)

≤ 1

4
((1− t) a+ tb− (1− t) b− ta)

× [f ′ ((1− t) a+ tb)− f ′ ((1− t) b+ ta)]

=
1

2

(
t− 1

2

)
(b− a) [f ′ ((1− t) a+ tb)− f ′ ((1− t) b+ ta)] .

From this inequality we have

0 ≤ 1

2

[
f

(
(1− t) q (x)

w (x)
+ t

p (x)

w (x)

)
+ f

(
(1− t) p (x)

w (x)
+ t

q (x)

w (x)

)]
− f

(
q (x) + p (x)

2w (x)

)
≤ 1

2

(
t− 1

2

)(
q (x)

w (x)
− p (x)

w (x)

)
×
[
f ′
(

(1− t) p (x)

w (x)
+ t

q (x)

w (x)

)
− f ′

(
(1− t) q (x)

w (x)
+ t

p (x)

w (x)

)]
.

If we multiply this inequality by w (x) ≥ 0 and integrate on X we get (3.12).
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Corollary 3.2. Let f be a differentiable convex function on [0,∞) with f (1) = 0 and Q, P, W ∈ P . If there exists
0 < r < 1 < R <∞ such that the condition (2.15) holds, then

0 ≤ (1− t) If (Q,W ) + tIf (P,W )−Af,t (Q,P,W ) (3.17)
≤ t (1− t) [f ′ (R)− f ′ (r)] d1 (Q,P )

and

0 ≤ Sf,t (Q,P,W )−Mf (Q,P,W ) (3.18)

≤ 1

2

∣∣∣∣t− 1

2

∣∣∣∣ [f ′ (R)− f ′ (r)] d1 (Q,P )

Proof. The inequality (3.17) is obvious. For (3.18), we have

1

2

(
t− 1

2

)
∆f ′,t (Q,P,W ) =

1

2

∣∣∣∣t− 1

2

∣∣∣∣ |∆f ′,t (Q,P,W )|

≤ 1

2

∣∣∣∣t− 1

2

∣∣∣∣ ∫
X

|q (x)− p (x)|

×
∣∣∣∣f ′((1− t) p (x)

w (x)
+ t

q (x)

w (x)

)
− f ′

(
(1− t) q (x)

w (x)
+ t

p (x)

w (x)

)∣∣∣∣ dµ (x)

≤ 1

2
[f ′ (R)− f ′ (r)]

∣∣∣∣t− 1

2

∣∣∣∣ ∫
X

|q (x)− p (x)| dµ (x)

=
1

2

∣∣∣∣t− 1

2

∣∣∣∣ [f ′ (R)− f ′ (r)] d1 (Q,P ) .

Corollary 3.3. Let f be a twice differentiable convex function on [0,∞) with f (1) = 0 and Q, P, W ∈ P . If there exists
0 < r < 1 < R <∞ such that the conditions (2.15) and (2.18) hold, then

0 ≤ (1− t) If (Q,W ) + tIf (P,W )−Af,t (Q,P,W ) (3.19)
≤ t (1− t) ‖f ′′‖[r,R],∞ dχ2 (Q,P,W )

and

0 ≤ Sf,t (Q,P,W )−Mf (Q,P,W ) ≤
∣∣∣∣t− 1

2

∣∣∣∣2 ‖f ′′‖[r,R],∞ dχ2 (Q,P,W ) . (3.20)

Proof. We have

1

2

(
t− 1

2

)
∆f ′,t (Q,P,W ) ≤ 1

2

∣∣∣∣t− 1

2

∣∣∣∣ ∫
X

|q (x)− p (x)|

×
∣∣∣∣f ′((1− t) p (x)

w (x)
+ t

q (x)

w (x)

)
− f ′

(
(1− t) q (x)

w (x)
+ t

p (x)

w (x)

)∣∣∣∣ dµ (x)

≤ 1

2

∣∣∣∣t− 1

2

∣∣∣∣ ‖f ′′‖[r,R],∞

∫
X

|q (x)− p (x)|

×
∣∣∣∣(1− t) p (x)

w (x)
+ t

q (x)

w (x)
− (1− t) q (x)

w (x)
− t p (x)

w (x)

∣∣∣∣ dµ (x)

=

∣∣∣∣t− 1

2

∣∣∣∣2 ‖f ′′‖[r,R],∞

∫
X

|q (x)− p (x)| |q (x)− p (x)|
w (x)

dµ (x)

=

∣∣∣∣t− 1

2

∣∣∣∣2 ‖f ′′‖[r,R],∞ dχ2 (Q,P,W ) ,

which proves (3.20).



54 S. S. Dragomir

4. Examples

Consider the dichotomy class generated by the function fα : [0,∞)→ R that is given by

fα (u) =



u− 1− lnu for α = 0;

1

α (1− α)
[αu+ 1− α− uα] for α ∈ R\ {0, 1} ;

1− u+ u lnu for α = 1.

We have

Afα,t (Q,P,W ) =

∫
X

f

[
(1− t) q (x) + tp (x)

w (x)

]
w (x) dµ (x)

=



−
∫
X
w (x) ln

[
(1− t) q (x) + tp (x)

w (x)

]
dµ (x) for α = 0;

1

α (1− α)

[
1−

∫
X

[(1− t) q (x) + tp (x)]
α
w1−α (x) dµ (x)

]
for α ∈ R\ {0, 1} ;

∫
X

[(1− t) q (x) + tp (x)] ln

[
(1− t) q (x) + tp (x)

w (x)

]
dµ (x) for α = 1

and

Mfα (Q,P,W ) =

∫
X

f

[
q (x) + p (x)

2w (x)

]
w (x) dµ (x)

=



−
∫
X
w (x) ln

[
q (x) + p (x)

2w (x)

]
dµ (x) for α = 0;

1

α (1− α)

[
1−

∫
X

[
q (x) + p (x)

2

]α
w1−α (x) dµ (x)

]
for α ∈ R\ {0, 1} ;

∫
X

[
q (x) + p (x)

2

]
ln

[
q (x) + p (x)

2w (x)

]
dµ (x) for α = 1.

Let us recall the following special means:

a) The arithmetic mean

A (a, b) :=
a+ b

2
, a, b > 0,

b) The geometric mean
G (a, b) :=

√
ab; a, b ≥ 0,

c) The harmonic mean

H (a, b) :=
2

1

a
+

1

b

; a, b > 0,

d) The identric mean

I (a, b) :=


1

e

(
bb

aa

) 1

b− a if b 6= a

a if b = a

; a, b > 0
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e) The logarithmic mean

L (a, b) :=


b− a

ln b− ln a
if b 6= a

a if b = a

; a, b > 0

f) The p-logarithmic mean

Lp (a, b) :=


(

bp+1 − ap+1

(p+ 1) (b− a)

)1

p if b 6= a, p ∈ R\ {−1, 0}

a if b = a

; a, b > 0.

If we put L0 (a, b) := I (a, b) and L−1 (a, b) := L (a, b) , then it is well known that the function R 3p 7→ Lp (a, b)
is monotonic increasing on R.

We observe that for p ∈ R\ {−1, 0}we have

∫ 1

0

[(1− t) a+ tb]
p
dt = Lpp (a, b) ,

∫ 1

0

[(1− t) a+ tb]
−1
dt = L−1 (a, b)

and ∫ 1

0

ln [(1− t) a+ tb] dt = ln I (a, b) .

We also have

∫ 1

0

[(1− t) a+ tb] ln [(1− t) a+ tb] dt

=
1

b− a

∫ b

a

t ln tdt =
1

2

1

b− a

∫ b

a

ln td
(
t2
)

=
1

2

1

b− a

[
b2 ln b− a2 ln a− b2 − a2

2

]
=

1

2

1

b− a

[
b2 ln b2 − a2 ln a2

2
− b2 − a2

2

]
=

1

2

1

b− a
b2 − a2

2

[
b2 ln b2 − a2 ln a2

b2 − a2
− 1

]
=

1

4
(b+ a) ln I

(
a2, b2

)
=

1

2
A (a, b) ln I

(
a2, b2

)
.

Therefore

Afα (Q,P,W ) :=

∫ 1

0

Afα,t (Q,P,W ) dt

=

∫
X

(∫ 1

0

f

[
(1− t) q (x) + tp (x)

w (x)

]
dt

)
w (x) dµ (x)
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=



−
∫
X

(∫ 1

0
ln

[
(1− t) q (x) + tp (x)

w (x)

]
dt

)
w (x) dµ (x) for α = 0;

1

α (1− α)

[
1−

∫
X

(∫ 1

0

[
(1− t) q (x) + tp (x)

w (x)

]α
dt

)
w (x) dµ (x)

]
for α ∈ R\ {0, 1} ;

∫
X

∫ 1

0

([
(1− t) q (x) + tp (x)

w (x)

]
ln

[
(1− t) q (x) + tp (x)

w (x)

]
dt

)
w (x) dµ (x) for α = 1

=



−
∫
X

ln I

(
q (x)

w (x)
,
p (x)

w (x)

)
w (x) dµ (x) for α = 0;

1

α (1− α)

[
1−

∫
X
Lαα

(
q (x)

w (x)
,
p (x)

w (x)

)
w (x) dµ (x)

]
for α ∈ R\ {0, 1} ;

1

2

∫
X
A

(
q (x)

w (x)
,
p (x)

w (x)

)
ln I

((
q (x)

w (x)

)2

,

(
p (x)

w (x)

)2
)
w (x) dµ (x) for α = 1.

According to Corollary 2.1 we have

0 ≤Mfα (Q,P,W ) ≤ Afα (Q,P,W ) ≤ 1

2
[Ifα (Q,W ) + Ifα (P,W )] (4.1)

and the mapping
P × P 3 (Q,P ) 7→ Afα (Q,P,W ) ∈ [0,∞) (4.2)

is convex.
Observe also that

f ′α (u) =



1− 1

u
for α = 0;

1

1− α
(
1− uα−1

)
for α ∈ R\ {0, 1} ;

lnu for α = 1,

which implies that

∆f ′
α

(Q,P,W ) :=

∫
X

[
f ′α

(
q (x)

w (x)

)
− f ′α

(
p (x)

w (x)

)]
(q (x)− p (x)) dµ (x)

=



∫
X

(q (x)− p (x))
2

p (x) q (x)
w (x) dµ (x) for α = 0;

1

α− 1

∫
X

qα−1 (x)− pα−1 (x)

wα (x)
(q (x)− p (x)) dµ (x) for α ∈ R\ {0, 1} ;

∫
X

(q (x)− p (x)) ln

(
q (x)

p (x)

)
dµ (x) for α = 1.

For all Q, P, W ∈ P we have by Theorem 2.2 that

0 ≤ Afα (Q,P,W )−Mfα (Q,P,W ) ≤ 1

8
∆f ′

α
(Q,P,W ) (4.3)

and
0 ≤ 1

2
[Ifα (Q,W ) + Ifα (P,W )]−Afα (Q,P,W ) ≤ 1

8
∆f ′

α
(Q,P,W ) . (4.4)

If there exists 0 < r < 1 < R <∞ such that the following condition holds

r ≤ q (x)

w (x)
,
p (x)

w (x)
≤ R for µ-a.e. x ∈ X, ((r,R))
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then by Corollary 2.2

0 ≤ Afα (Q,P,W )−Mfα (Q,P,W ) (4.5)

≤ 1

8
d1 (Q,P )



R− r
rR

for α = 0;

Rα−1 − rα−1

α− 1
for α ∈ R\ {0, 1} ;

ln

(
R

r

)
for α = 1

(4.6)

and

0 ≤ 1

2
[If (Q,W ) + If (P,W )]−Af (Q,P,W ) (4.7)

≤ 1

8
d1 (Q,P )



R− r
rR

for α = 0;

Rα−1 − rα−1

α− 1
for α ∈ R\ {0, 1} ;

ln

(
R

r

)
for α = 1.

(4.8)

Further, since

f ′′α (u) =



1

u2
for α = 0;

uα−2 for α ∈ R\ {0, 1} ;

1

u
for α = 1,

hence by Corollary 2.3 we have

0 ≤ Af (Q,P,W )−Mf (Q,P,W ) (4.9)

≤ 1

8
dχ2 (Q,P,W )



1

r2
for α = 0;

Rα−2 for α ≥ 2;

rα−2 for α < 2, α ∈ R\ {0, 1} ;

1

r
for α = 1,

(4.10)

and

0 ≤ 1

2
[If (Q,W ) + If (P,W )]−Af (Q,P,W ) (4.11)

≤ 1

8
dχ2 (Q,P,W )



1

r2
for α = 0;

Rα−2 for α ≥ 2;

rα−2 for α < 2, α ∈ R\ {0, 1} ;

1

r
for α = 1.

(4.12)

The interested reader may apply the above general results for other particular divergences of interest generated
by the convex functions provided in the introduction. We omit the details.
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