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Abstract. This study considered certain nonlinear third-order stochastic dif-
ferential equations with delay. The third-order equation is reduced to an equiv-

alent system of first-order differential equations and used to construct the
desired complete Lyapunov-Krasovskǐı functional. Standard conditions guar-

anteeing stability when the forcing term is zero, boundedness of solutions when

the forcing term is non-zero, and lastly the existence and uniqueness of solu-
tions are derived. The obtained results indicated that the adopted technique

is effective in studying the qualitative behaviour of solutions. The obtained

results are not only new but extend the frontier of knowledge of the qualitative
behaviour of solutions of nonlinear stochastic differential with delay. Finally,

two special cases are given to illustrate the derived theoretical results.

1. Introduction

In recent years, the studies of stability, boundedness, existence and uniqueness of
solutions of a nonlinear third-order stochastic differential equations with delay have
been discussed and still under intensive investigations by researchers. Some out-
standing works on deterministic model with and without delay using the technique
of Lyapunov, we refer to the papers in [7–10, 12, 14, 18, 25].

In this paper, we shall consider the third-order nonlinear stochastic differential
equation with delay defined as

(1.1)
...
x (t) + aẍ(t) + g(·) + h(x(t− τ(t))) + σx(t− τ(t))ω̇(t) = p(·),

where g(·) = g(x(t− τ(t)), ẋ(t− τ(t))), p(·) = p(t, x(t), ẋ(t), ẍ(t)), for simplicity we
shall write x(t) = x, y(t) = y, and z(t) = z. Assign y = ẋ and z = ẍ equation (1.1)
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is equivalent to system of first order equations

ẋ = y, ẏ = z,

ż = p(t, x, y, z)− h(x)− g(x, y)− az − σ
[
x−

∫ t

t−τ(t)
y(s)ds

]
ω̇(t)

+

∫ t

t−τ(t)

[
gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s))y(s)

]
ds,

(1.2)

where the functions g, h, and p are continuous in their respective arguments on
R2, R, and R+ × R3, respectively with R+ = [0,∞), R = (−∞,∞), and ω ∈ R (a
standard Wiener process, representing the noise) is defined on R3, τ(t) is a continu-
ously differentiable function with 0 ≤ τ(t) ≤ τ0, τ0, a, and σ are positive constants.
The dots denote to differentiation with respect to the independent variable t ∈ R+,
derivatives h′(x), gx(x, y), and gy(x, y) exist and are continuous. Moreover, the
continuity of the functions g, h, and p is sufficient for the existences of the solutions
and the local Lipschitz condition for system (1.2) to obtain a unique continuous
solution represented by (x(t), y(t), z(t)).

Systematic investigations of differential equations of distinct orders, with and
without delay and/or randomness, have been carried out by researchers. In par-
ticular, there are critical inspection on first order system of differential equations,
we can mention the background books and papers in [15–17, 19–21, 24, 27–29].
In addition, researchers in [11] employed the direct method of Lyapunov to obtain
standard criteria on stability and boundedness of solutions of a certain second-order
non-autonomous stochastic differential equation

ẍ(t) + f(x(t), ẋ(t))ẋ(t) + g(x(t)) + γx(t)ω̇(t) = p(t, x(t), ẋ(t)),

where γ is a positive constant, g ∈ C(R,R) f ∈ C(R×R,R), and p ∈ C(R+ ×R×
R,R) are continuous functions. The function g is differentiable and continuous for
all x.

Furthermore, authors in [2] considered stability of solutions of certain second-
order stochastic delay differential equations

ẍ(t)+bẋ(t)+cx(t−ε)+γx(t)ω̇(t) = 0 and ẍ(t)+bẋ(t)+f(x(t−ε))+γx(t−ψ0)ω̇(t) = 0,

where b, c, γ are positive constants, ε and ψ0 are positive constant delays, the func-
tion f is continuous with respect to x with f(0) = 0. What is more, article in [3]
discussed new results on the stability and boundedness for solutions of second-order
stochastic delay differential equation

ẍ(t) + g(ẋ(t)) + bx(t− h) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), x(t− h)),

where b, σ are positive constants, h is a positive constant delay, g and p are con-
tinuous functions with g(0) = 0. In [5], a suitable Lyapunov functional is used to
establish sufficient conditions guaranteeing the existence of stochastic asymptotic
stability of the zero solution of the non-autonomous second-order stochastic delay
differential equation

ẍ(t) + a(t)ẋ(t) + b(t)f(x(t− r)) + g(t, x)ω̇(t) = 0,

where a(t) and b(t) are two positive continuously differentiable functions on [0,∞), r
is a positive constant delay, f(x) and g(t, x) are continuous functions defined on
R and R+ × R respectively with f(0) = 0. Researchers in [6] studied the stability
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and boundedness of solutions to certain nonlinear non autonomous second-order
stochastic delay differential equations

ẍ(t) + ψ(t)f(x(t), ẋ(t))ẋ(t) + g(x(t− τ)) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), x(t− τ)),

where ψ, f, g, p are continuous functions in their respective arguments on R+,R2,R,
R+ × R3 respectively, σ > 0 is a constant, and τ is a positive constant delay. No
doubt, articles [2, 3, 5, 6, 11] are special cases of equation (1.1).

When τ(t) ≡ 0, g(·) ≡ bẋ(t), h(x(t − τ(t))) ≡ cx(t), and x(t − τ(t)) ≡ x(t),
equation (1.1) reduces to the third-order stochastic differential equation discussed
in [1] namely

...
x (t) + aẍ(t) + bẋ+ cx(t) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)),

where a > 0, b > 0, c > 0, σ > 0 are constants, and p(t, x, ẋ, ẍ) is a continuous
function. Authors in [4] investigated the asymptotic stability of the zero solution
for the third-order stochastic delay differential equations given by

...
x (t) + a1ẍ(t) + g1(ẋ(t− r1(t))) + f1(x(t)) + σ1x(t)ω̇(t) = 0

and

...
x (t) + a2ẍ(t) + f2(x(t))(ẋ(t) + f3(x(t− r2(t))) + σ2x(t− h(t))ω̇(t) = 0,

where a1, a2, σ1, σ2 are positive constants, γ1, γ2 are two positive constants such
that 0 ≤ r1(t) ≤ γ1, 0 ≤ r2(t) ≤ γ2, 0 ≤ h(t), suph(t) = H; g1, f1, f2, and f3 are
continuous functions with g1(0) = f1(0) = f3(0) = 0. The two equations discussed
in [4] are special cases of (1.1) since g(·) ≡ g1(ẋ(t−τ1(t)), h(x(t−τ(t))) ≡ f1(x(t)),
x(t − τ(t)) ≡ x(t), and p(·) ≡ 0 in the first equation and g(·) ≡ f2(x(t))ẋ(t) and
p(·) ≡ 0 in the second equation. Whenever g(·), x(t− τ(t)), and τ(t) are equivalent
to bẋ(t), x(t), and τ > 0 a constant delay respectively then equation (1.1) is cut
down to the third-order stochastic delay differential equations considered in [13]
i.e.,

...
x (t) + aẍ(t) + bẋ(t) + h(x(t− τ)) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)),

where the constants a, b, σ are positive, h, p are nonlinear continuous functions in
their respective arguments and h(0) = 0, τ > 0 is a delay constant.

In the case g(·), x(t − τ(t)), and p(·) are equivalent to φ(ẋ(t − r(t))), x(t − h),
and 0 respectively then equation (1.1) is trim down to the third-order stochastic
differential equation

...
x (t) + aẍ(t) + φ(ẋ(t− r(t))) + ψ(x(t− r(t))) + σx(t− h)ω̇(t) = 0,

investigated in [22] where a > 0 and σ > 0 are constants, h > 0 is a constant
delay, r(t) is a continuously differentiable function satisfying 0 ≤ r(t) ≤ β1, β1 > 0
a constant, φ and ψ are nonlinear continuous functions defined on R with φ(0) =
ψ(0) = 0. Motivation for this work comes from the works in [1, 4, 13, 22], where
Lyapunov functionals are exploited to acquire asymptotic stability, boundedness,
existence and uniqueness of solutions of the equations considered. Section 2 presents
definitions of terms and basic results used in this paper, stability of the trivial
solutions are stated and proved in Section 3, boundedness and existence results are
communicated in Section 4, and special cases of the theoretical results discussed in
Sections 3 and 4 are presented as examples in Section 5.
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2. Preliminary Results

Let (Ω,F, {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0

satisfying the usual conditions (i.e., it is right continuous and {F0} contains all
P−null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m−dimensional Brownian
motion defined on the probability space. Let ‖ · ‖ denotes the Euclidean norm in
Rn. If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix, its
trace norm is denoted by ‖A‖ =

√
trace (ATA). Details can be seen [15] and [23].

Consider a non autonomous n−dimensional stochastic delay differential equation

(2.1) dx(t) = F (t, x(t), x(t− τ))dt+G(t, x(t), x(t− τ))dB(t)

on t > 0 with initial data {x(θ) : −τ ≤ θ ≤ 0}, x0 ∈ C([−τ, 0],Rn). Here F :
R+ × R2n → Rn and G : R+ × R2n → Rn×m are measurable functions. Suppose
that the functions F,G satisfy the local Lipschitz condition, given any b > 0, p ≥ 2,
F (t, 0, 0) ∈ C1([0, b],Rn), and G(t, 0, 0) ∈ Cp([0, b],Rm×n). Then there must be
a stopping time β = β(ω) > 0 such that equation (2.1) with x0 ∈ CpFt0

[class

of Ft-measurable C([−τ, 0],Rn)-valued random variables ξt and E‖ξt‖p < ∞] has
a unique maximal solution on t ∈ [t0, β) which is denoted by x(t, x0). Assume
further that F (t, 0, 0) = G(t, 0, 0) = 0 for all t ≥ 0. Hence, the stochastic delay
differential equation admits zero solution x(t, 0) ≡ 0 for any given initial value
x0 ∈ C([−τ, 0],Rn).

Definition 2.1. The zero solution of the stochastic differential equation (2.1) is
said to be stochastically stable or stable in probability, if for every pair ε ∈ (0, 1)
and r > 0, there exists a δ0 = δ0(ε, r) > 0 such that Pr{‖x(t;x0)‖ < r for all t ≥
0} ≥ 1− ε whenever ‖x0‖ < δ0. Otherwise, it is said to be stochastically unstable.

Definition 2.2. The zero solution of the stochastic differential equation (2.1) is
said to be stochastically asymptotically stable if it is stochastically stable and in
addition if for every ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε) > 0 such that
Pr{limt→∞ x(t;x0) = 0} ≥ 1− ε whenever ‖x0‖ < δ.

Definition 2.3. A solution x(t, x0) of the stochastic delay differential equation
(2.1) is said to be stochastically bounded or bounded in probability, if it satisfies

(2.2) Ex0‖x(t, x0)‖ ≤ N(t0, ‖x0‖), ∀ t ≥ t0
where Ex0 denotes the expectation operator with respect to the probability law
associated with x0, N : R+×R+ → R+ is a constant function depending on t0 and
x0.

Definition 2.4. The solutions x(t0, x0) of the stochastic delay differential equation
(2.1) is said to be uniformly stochastically bounded if N in (2.2) is independent of
t0.

Let K denote the family of all continuous non-decreasing functions ρ : R+ → R+

such that ρ(0) = 0 and ρ(r) > 0 if r 6= 0. In addition, K∞ denotes the family of all
functions ρ ∈ K with

lim
r→∞

ρ(r) =∞.

Suppose that C1,2(R+ × Rn,R+), denotes the family of all non negative functions
V = V (t, xt) (Lyapunov functional) defined on R+ × Rn which are twice continu-
ously differentiable in x and once in t. By Itô’s formula we have

dV (t, xt) = LV (t, xt)dt+ Vx(t, xt)G(t, xt)dB(t),
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where

LV (t, xt) =
∂V (t, xt)

∂t
+
∂V (t, xt)

∂xi
F (t, x(t)) +

1

2
trace [GT (t, xt)Vxx(t, xt)G(t, xt)]

(2.3)

with

Vxx(t, xt) =

(
∂2V (t, xt)

∂xi∂xj

)
n×n

, i, j = 1, · · · , n

In this study we will use the diffusion operator LV (t, xt) defined in (2.3) to replace
V ′(t, x(t)) = d

dtV (t, x(t)). We now present the basic results that will be used in the
proofs of the main results.

Lemma 2.5. (See [15]) Assume that there exist V ∈ C1,2(R+×Rn,R+), and η ∈ K
such that

(i) V (t, 0) = 0, for all t ≥ 0;
(ii) V (t, xt) ≥ η(‖x(t)‖), η(r)→∞ as r →∞; and

(iii) LV (t, xt) ≤ 0 for all (t, x) ∈ R+ × Rn.
Then the zero solution of stochastic delay differential equation (2.1) is stochastically
stable. If conditions (ii) and (iii) hold then (2.1) with x0 ∈ CpFt0

has a unique global

solution for t > 0 denoted by x(t;x0).

Lemma 2.6. (See [15]) Suppose that there exist V ∈ C1,2(R+ × Rn,R+), and
η0, η1, η2 ∈ K such that

(i) V (t, 0) = 0, for all t ≥ 0;
(ii) η0(‖x(t)‖) ≤ V (t, xt) ≤ η1(‖x(t)‖), η0(r)→∞ as r →∞; and

(iii) LV (t, xt) ≤ −η2(‖x(t)‖) for all (t, xt) ∈ R+ × Rn.
Then the zero solution of stochastic delay differential equation (2.1) is uniformly
stochastically asymptotically stable in the large

Assumption 2.7. (See [21, 26]) Let V ∈ C1,2(R+×Rn,R+), suppose that for any
solutions x(t0, x0) of stochastic delay differential equation (2.1) and for any fixed
0 ≤ t0 ≤ T <∞, we have

(2.4) Ex0

{∫ T

t0

V 2
xi

(t, xt)G
2
ik(t, xt)dt

}
<∞, 1 ≤ i ≤ n, 1 ≤ k ≤ m.

Assumption 2.8. (See [21, 26]) A special case of the general condition (2.4) is
the following condition. Assume that there exits a function ρ(t) such that

(2.5) |Vxi
(t, xt)Gik(t, xt)| < ρ(t), x ∈ Rn, 1 ≤ i ≤ n, 1 ≤ k ≤ m,

for any fixed 0 ≤ t0 ≤ T <∞,

(2.6)

∫ T

t0

ρ2(t)dt <∞.

Lemma 2.9. (See [21, 26]) Assume there exists a Lyapunov function V ∈ C1,2(R+×
Rn,R+), satisfying Assumption 2.7, such that for all (t, xt) ∈ R+ × Rn,

(i) ‖x(t)‖p ≤ V (t, xt) ≤ ‖x(t)‖q,
(ii) LV (t, xt) ≤ −α(t)‖x(t)‖r + ψ(t),
(iii) V (t, xt)− V r/q(t, xt) ≤ µ,
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where α,ψ ∈ C(R+,R+), p, q, r are positive constants, p ≥ 1, and µ is a non
negative constant. Then all solutions of stochastic delay differential equation (2.1)
satisfy

(2.7) Ex0‖x(t, x0)‖ ≤
{
V (t0, x0)e

−
∫ t
t0
α(s)ds

+A

}1/p

,

for all t ≥ t0, where

A :=

∫ t

t0

(
µα(u) + ψ(u)

)
e−

∫ t
u
α(s)dsdu.

Lemma 2.10. (See [21, 26]) Assume there exists a Lyapunov function V ∈ C1,2(R+×
Rn,R+), satisfying Assumption 2.7, such that for all (t, x) ∈ R+ × Rn,

(i) ‖x(t)‖p ≤ V (t, xt),
(ii) LV (t, xt) ≤ −α(t)V q(t, xt) + ψ(t),

(iii) V (t, xt)− V q(t, xt) ≤ µ,

where α,ψ ∈ C(R+,R+), p, q are positive constants, p ≥ 1, and µ is a non negative
constant. Then all solutions of stochastic delay differential equation (2.1) satisfy
(2.7) for all t ≥ t0.

Corollary 2.11. (See [21, 26])

(i) Assume that hypotheses (i) to (iii) of Lemma 2.9 hold. In addition

(2.8)

∫ t

t0

(
µα(u) + ψ(u)

)
e−

∫ t
u
α(s)dsdu ≤M, ∀ t ≥ t0 ≥ 0,

for some positive constant M, then all solution of stochastic delay differen-
tial equation (2.1) are uniformly stochastically bounded.

(ii) Assume the hypotheses (i) to (iii) of Lemma 2.10 hold. If condition (2.8)
is satisfied, then all solutions of stochastic delay differential equation (2.1)
are stochastically bounded.

3. Stability of the Trivial Solution

We now present stability results of the trivial solution as follows. When p(·) ≡ 0,
(1.1) becomes

(3.1)
...
x (t)+aẍ(t)+g(x(t−τ(t)), ẋ(t−τ(t)))+h(x(t−τ(t)))+σx(t−τ(t))ω̇(t) = 0.

As usual, by assigning y = ẋ and z = ẍ equation (3.1) is stepped down to equivalent
system of first order differential equations

ẋ = y, ẏ = z, ż = −h(x)− g(x, y)− az − σ
[
x−

∫ t

t−τ(t)
y(s)ds

]
ω̇(t)

+

∫ t

t−τ(t)

[
gx(x(s), y(s))y(s) + gy(x(s), y(s))z(s) + h′(x(s))y(s)

]
ds,

(3.2)
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where the functions h and g are continuous in their respective arguments. For
the purpose of this investigation, a continuously differential scalar functional con-
structed is defined as

V = V (t,Xt) = α

∫ x

0

h(s)ds+
1

2
βbx2 +

1

2
(αa+ γbc+ c)y2 +

1

2
(a+ γc)z2

+ a2bxy + γcyh(x) + βxz + αyz +

∫ 0

−τ(t)

∫ t

t+s

(λ1y
2(θ) + λ2z

2(θ))dθds,

(3.3)

where a > 0, b > 0, c > 0, α := a2+ac+c2, β := ab−c, γ := 1+b are constants, h, g
are continuous functions, positive constants λi (i = 1, 2) will be verified latter, the
function τ(t) ≤ τ0 for τ0 > 0, and Xt = xt, yt, zt. We have the following stability
results.

Theorem 3.1. In addition to the basic assumption on the functions g and h,
suppose that a, b, c, c0, k1, k2, k3, β1 are positive constants such that

(i) h(0) = 0, c0 ≤
h(x)

x
for all x 6= 0;

(ii) g(0, 0) = 0, b ≤ g(x, y)

y
for all x and y 6= 0;

(iii) h′(x) ≤ c for all x, ab− c > 0, σ2 <
2(ab− c)c0
a+ (b+ 1)c

;

(iv) a2b(a+cγ) > αβ, bβ(aα+c) > a4b2, (aα+c)(a+cγ) > α2, a2bα > β(aα+c),
bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
> a2b

[
a2b(a+ cγ)− αβ

]
;

and
(v) |h′(x)| ≤ k1, |gx(x, y)| ≤ k2, |gy(x, y)| ≤ k3.

Then the trivial solution of system (3.2) is asymptotically stable, provided that

(3.4) β1 < min

{
2(ab− c)c0 − (a+ cγ)σ2

2B3
,

(ab− c)c
B4

,
(ab− c)c

B5

}
where

B3 := k0(k1 + k2 + k3)− (a+ γc)σ2,

B4 :=
[
3k0(k1 + k2) + (a+ cγ)σ2 + k0(k1 + k2 + k3)(1− β0)

]
/(1− β0),

B5 :=
(
3k0k3 + k0(k1 + k2 + k3)(1− β0)

)
/(1− β0), and

k0 := max{α, β, (a+ cγ)}.

Since asymptotic stability implies stability we have the following result.

Corollary 3.2. If all assumptions of Theorem 3.1 hold true, then the trivial solu-
tion of system (3.2) is stable if estimate (3.4) holds.

In what follows we present uniform asymptotic stability results.

Theorem 3.3. Further to the basic assumption on the functions g and h, suppose
that a, b, b1, c, c0, c1, k0, k1, k2, and k3 are positive constants such that

(i) h(0) = 0, c0 ≤
h(x)

x
≤ c1 for all x 6= 0;

(ii) g(0, 0) = 0, b ≤ g(x, y)

y
≤ b1 for all x and y 6= 0;

(iii) h′(x) ≤ c for all x, ab− c > 0, σ2 <
2(ab− c)c0
a+ (b+ 1)c

;
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(iv) a2b(a+cγ) > αβ, bβ(aα+c) > a4b2, (aα+c)(a+cγ) > α2, a2bα > β(aα+c),
bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
> a2b

[
a2b(a+ cγ)− αβ

]
;

and
(v) |h′(x)| ≤ k1, |gx(x, y)| ≤ k2, |gy(x, y)| ≤ k3;

Then the trivial solution of system (3.2) is uniformly asymptotically stable provided
that inequality (3.4) holds.

Next, the following corollary is immediate from Theorem 3.3.

Corollary 3.4. If all assumptions of Theorem 3.3 hold, then the trivial solution of
system (3.2) is uniformly stable provided that inequality (3.4) holds.

To show that (3.3) is indeed a Lyapunov functional we need to state and prove
two lemmas.

Lemma 3.5. Under the assumptions of Theorem 3.3 there exist positive constants
E1 and E2 such that

(3.5) E1(x2 + y2 + z2) ≤ V (t,Xt) ≤ E2(x2 + y2 + z2),

for all t ≥ 0, x, y, and z. Moreover,

(3.6) V (t,Xt)→ +∞ as x2 + y2 + z2 →∞.

Proof. To prove this lemma we shall show that V (t,0) = 0 where 0 = (0, 0, 0),
V (t,Xt) is positive semi-definite, decrescent (or have an infinitesimal small upper-
bound), and radially unbounded. To see these, equation (3.3) shows that

(3.7) V (t,0) = 0,

for all t ≥ 0. Following, equation (3.3) can be represented in the form V =
3∑
j=1

Vj

where

V1 := α

∫ x

0

h(s)ds+
1

2
bcγy2 + cγyh(x);

V2 :=
1

2
bβx2 +

1

2

[
aα+ c

]
y2 +

1

2

[
a+ cγ

]
z2 + a2bxy + βxz + αyz; and

V3 :=

∫ 0

−τ(t)

∫ t

t+s

[
λ1y

2(θ) + λ2z
2(θ)

]
dθds.

Now the last two terms of V1 can be represented as

(3.8a)
1

2
bcγy2 + cγyh(x) =

1

2
bcγ
[
y + b−1h(x)

]2 − 1

2
b−1cγh2(x).

Also, since h2(x) = 2
∫ x
0
h′(s)h(s)ds+ h2(0) and h(0) = 0, it follows that

α

∫ x

0

h(s)ds = α

∫ x

0

h(s)ds− 1

2
b−1cγh2(x) +

1

2
b−1cγh2(x)

=
1

b

∫ x

0

[
bα− cγh′(s)

]
h(s)ds+

1

2
b−1cγh2(x).

(3.8b)

Adding equations (3.8a) and (3.8b) we have

V1 =
1

b

∫ x

0

[
bα− cγh′(s)

]
h(s)ds+

1

2
bcγ
[
y + b−1h(x)

]2
.
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Hypotheses (i) and (iii) of Theorem 3.3 result to

V1 ≥
1

2b
c0[bα− c2γ]x2 +

1

2
bcγ[y + b−1c0x]2 ≥ 1

2b
c0[bα− c2γ]x2,

since 1
2bcγ[y + b−1c0x]2 ≥ 0 for all x, y. The basic assumptions imply that

bα− c2γ = b(a2 + ac+ c2)− (b+ 1)c2 = a2b+ cβ > 0.

Thus

V1 ≥
1

2b
c0[a2b+ cβ]x2, for all x.

Next,

V2 =
1

2
bβx2 +

1

2
[aα+ c]y2 +

1

2
[a+ cγ]z2 + a2bxy + βxz + αyz;

can be represented as 2V2 := XAXT where X =
(
x y z

)
, XT is the transpose of

X, and

A :=

 bβ a2b β
a2b aα+ c α
β α a+ cγ

 .

We need to show that the determinant of the principal minors of matrix A (i.e.,
|A1|, |A2|, and |A3|,) are positive. The basic assumptions indicate that

|A1| := bβ > 0.

Hypothesis (iv) gives raise to

|A2| :=
∣∣∣∣ bβ a2b
a2b aα+ c

∣∣∣∣ = bβ(aα+ c)− a4b2 > 0,

and

|A3| = |A| :=

∣∣∣∣∣∣
bβ a2b β
a2b aα+ c α
β α a+ cγ

∣∣∣∣∣∣ = bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
− a2b

[
a2b(a+ cγ)− αβ

]
> 0.

Since all principal minors of matrix A are positive, then A is positive definite and
a constant θ1 = θ1(a, b, c) > 0 exists such that

V2 ≥ θ1(x2 + y2 + z2) for all x, y, z.

Next, the double integrals in V3 are obviously positive, thus there exist a constant
µ > 0 such that

V3 =

∫ 0

−τ(t)

∫ t

t+s

[λ1y
2(θ) + λ2z

2(θ)]dθds ≥ µ(y2 + z2).

combining the Vi(i = 1, 2, 3) there exists a positive constant θ2 such that

(3.9) V ≥ θ2(x2 + y2 + z2)

for all t ≥ 0, x, y, and z where

θ2 = θ1 ·min

{
1

2b
c0[a2b+ cβ], µ

}
.

Inequality (3.9) establishes the lower inequality in (3.5) with θ2 equivalent to E1,
hence by inequality (3.9), the function V (t,Xt) is positive semi-definite.



SOME QUALITATIVE PROPERTIES OF SOLUTIONS OF THIRD-ORDER STOCHASTIC 71

Moreover, from inequality (3.9), we have the following relations

(3.10a) V (t,Xt) = 0 ⇐⇒ x2 + y2 + z2 = 0,

(3.10b) V (t,Xt) > 0 ⇐⇒ x2 + y2 + z2 6= 0,

it validly follows from equation (3.10a) and estimate (3.10b) that

(3.10c) V (t,Xt)→ +∞ as x2 + y2 + z2 →∞,

so that the function V (t,Xt) is radially unbounded. In addition, assumptions (i)

and (ii) of Theorem 3.3, the obvious inequality 2ab ≤ a2+b2, the fact that
h(x)

x
≤ c1

for all x 6= 0, and since τ(t) ≤ τ0, equation (3.3) becomes

V (t,Xt) ≤
1

2
(c1α+ bβ + a2b+ cc1γ + β)‖x‖2 +

1

2
(aα+ bcγ + c+ a2b+ cc1γ + α

+ λ1τ
2
0 )‖y‖2 +

1

2
(a+ cγ + β + α+ λ1τ

2
0 )‖z‖2.

In view of the last inequality, there exist a positive constant θ3 such that

(3.11) V (t,Xt) ≤ θ3(x2 + y2 + z2)

for all t ≥ 0, x, y, and z where

θ3 :=
1

2
max{c1α+ bβ + a2b+ cc1γ + β, aα+ bcγ + c+ a2b+ cc1γ + α

+ λ1τ
2
0 , a+ cγ + β + α+ λ1τ

2
0 }.

Inequality (3.11) fulfils the upper inequality in (3.5) with θ3 equivalent to E2, thus
the functional V (t,Xt) has an infinitesimal small upper bound. This completes the
prove of Lemma 3.5. �

The following lemma establishes the derivative of the functional V (t,Xt) defined
by (3.3), using Itô’s formula defined by equation (2.3).

Lemma 3.6. Under the assumption of Theorem 3.1 there exists a positive constant
E3 such that along the solution path of system (3.2)

(3.12) LV (t,Xt) ≤ −E3(x2 + y2 + z2), ∀ x, y, z.

Proof. The first partial derivative of the functional V (t,Xt) along the solution path
of (3.2) is

LV(3.2)(t,Xt) = −1

2
V4 − V5 + V6 + (λ1y

2 + λ2z
2)τ(t)

− (1− τ ′(t))
∫ t

t−τ(t)
[λ1y

2(θ) + λ2z
2(θ)]dθ,

(3.13)
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where

V4 =

(
β
h(x)

x
− a+ cγ

2
σ2

)
x2 +

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
y2 +

(
a(a+ cγ)− α

)
z2;

V5 =
1

2

(
β
h(x)

x
− a+ cγ

2
σ2

)
x2 +

1

2

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
y2 +

1

2

(
a(a+ cγ)− α

)
z2

+ β

(
g(x, y)

y
− b
)
xy +

(
aβ + a− a2b

)
xz +

[
(a+ cγ

g(x, y)

y
− β − bcγ − c)

]
yz; and

V6 =
[
βx+ αy + (a+ cγ)z

] ∫ t

t−τ(t)
[h′(·)y(s) + gx(·)y(s) + gy(·)z(s)]ds

− σ2(a+ cγ)x

∫ t

t−τ(t)
y(s)ds+

1

2
σ2

∫ t

t−τ(t)
y2(s)ds.

Hypotheses (i) to (iii) of Theorem 3.1 the following inequalities hold:

β
h(x)

x
− a+ cγ

2
σ2 ≥ c0β −

a+ cγ

2
σ2;

α
g(x, y)

y
− (a2b+ cγh′(x)) ≥ (a2 + ac+ c2)b− a2b− bc2 − c2 = abc− c2;

a(a+ cγ)− α ≥ a2 + ac(b+ 1)− (a2 + ac+ c2) = abc− c2.

(3.14)

Estimate (3.14) gives rise to

V4 ≥
[(
ab− c

)
c0 −

a+ cγ

2
σ2
]
x2 +

(
abc− c2

)
y2 +

(
abc− c2

)
z2,

for all t ≥ 0, x, y, z. Let V5 =
3∑
i=1

V5i where

V51 :=
1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2

)
x2 + β

(
g(x, y)

y
− b
)
xy +

1

4

(
αg(x, y)

y

− (a2b+ cγh′(x))

)
y2;

V52 :=
1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2

)
x2 + (aβ + a− a2b)xz +

1

4

(
a(a+ cγ)− α

)
z2; and

V53 :=
1

4

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
y2 +

(
(a+ cγ)

g(x, y)

y
− β − bcγ − c

)
yz

+
1

4

(
a(a+ cγ)− α

)
z2.

Note that V5i (i = 1, 2, 3) is a quadratic function with coefficients of x2, y2, and z2

positive, using Hessian matrix, we obtain(
β
h(x)

x
− (a+ cγ)

2
σ2

)(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
> 4β2

(
g(x, y)

y
− b
)2

;(
β
h(x)

x
− (a+ cγ)

2
σ2

)(
a(a+ cγ)− α

)
> 4

(
aβ + a− a2b

)2

; and(
α
g(x, y)

y
− (a2b+ cγh′(x))

)(
a(a+ cγ)− α

)
> 4

(
(a+ cγ)

g(x, y)

y
− β − bcγ − c

)2

.
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Applying these estimates in V5i to give the following inequalities:

V51 ≥
[√

1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2
)
|x|+

√
1

4

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
|y|
]2

≥ 0,∀ t ≥ 0, x, y;

V52 ≥
[√

1

4

(
β
h(x)

x
− (a+ cγ)

2
σ2
)
|x|+

√
1

4

(
a(a+ cγ)− α)

)
|z|
]2
≥ 0,∀ t ≥ 0, x, z; and

V53 ≥
[√

1

4

(
α
g(x, y)

y
− (a2b+ cγh′(x))

)
|y|+

√
1

4

(
a(a+ cγ)− α)

)
|z|
]2
≥ 0,∀ t ≥ 0, y, z.

These last three inequalities assure

V5 ≥ 0, ∀ t ≥ 0, x, y, z.

Apply the following inequality 2xy ≤ 2|xy| ≤ x2+y2 and hypothesis (iv) of Theorem
3.1 give.

V6 ≤
k0(k1 + k2 + k3)

2
(x2 + y2 + z2)τ(t) +

1

2

∫ t

t−τ(t)

[
3k0(k1 + k2) + (a+ cγ)σ2

]
y2(s)ds

+
3k0k3

2

∫ t

t−τ(t)
z2(s)ds+

1

2
(a+ cγ)σ2x2τ(t),

where k0 := max{α, β, (a + cγ)}. Utilizing inequalities V4, V5, and V6 in equation
(3.12) we obtain

LV(3.2)(t,Xt) ≤ −
1

2

[
(ab− c)c0 −

a+ cγ

2
σ2 −

(
k0(k1 + k2 + k3)

+ (a+ cγ)σ2

)
τ(t)

]
x2 − 1

2

[
(ab− c)c−

(
2λ1 + k0(k1 + k2 + k3)

)
τ(t)

]
y2

− 1

2

[
(ab− c)c−

(
2λ2 + k0(k1 + k2 + k3)

)
τ(t)

]
z2

−
(
λ1[1− τ ′(t)]− 3

2
k0(k1 + k2)− 1

2
(a+ cγ)σ2

)∫ t

t−τ(t)
y2(s)ds

−
(
λ2[1− τ ′(t)]− 3

2
k0k3

)∫ t

t−τ(t)
z2(s)ds.

(3.15)

Let τ ′(t) ≤ β0, β0 ∈ (0, 1), τ(t) ≤ β1, suppose λ1 :=
[
3k0(k1+k2)+(a+cγ)σ2

][
2(1−

β0)
]−1

> 0, and λ2 := 3k0k3
[
2(1− β0)

]−1
> 0 so estimate (3.15) becomes

LV(3.2)(t,Xt) ≤ −
1

2

[
(ab− c)c0 −

a+ cγ

2
σ2

−
(
k0(k1 + k2 + k3)− (a+ γc)σ2

)
β1

]
x2

− 1

2

[
(ab− c)c−

([
3k0(k1 + k2) + (a+ cγ)σ2

1− β0

]
+ k0(k1 + k2 + k3)

)
β1

]
y2

− 1

2

[
(ab− c)c−

((
3k0k3
1− β0

)
+ k0(k1 + k2 + k3)

)
β1

]
z2.

(3.16)



74 R.O. BANIRE, O.O. FABELURIN, P.O. ARAWOMO, A.T. ADEMOLA, AND M.O. OMEIKE

Inequalities (3.4) and (3.16) invoke the existence of a positive constant k4 such that

(3.17) LV(3.2)(t,Xt) ≤ −k4(x2 + y2 + z2)

for all t ≥ 0, x, y, and z where

k4 :=
1

2
min

{
(ab− c)c0 −

a+ cγ

2
σ2 −

(
k0(k1 + k2 + k3)− (a+ γc)σ2

)
β1,

(ab− c)c−
([

3k0(k1 + k2) + (a+ cγ)σ2

1− β0

]
+ k0(k1 + k2 + k3)

)
β1,

(ab− c)c−
((

3k0k3
1− β0

)
+ k0(k1 + k2 + k3)

)
β1

}
.

Inequality (3.17) satisfies estimate (3.12) with k4 equivalent to E3, hence Lemma
3.6 is proved. �

Proof of Theorems 3.1. Suppose (Xt) is any solution of (3.2), the functional
V (t,Xt) defined in (3.3) satisfies equation (3.7), estimates (3.9), (3.10c), and (3.17),
so that conditions (i), (ii), and (iii) of the Lemma 2.5 are satisfied, hence by Lemma
2.5 the solution of (3.2) is stochastically asymptotically stable. �

Proof of Theorems 3.3. Given that (Xt) is any solution of (3.2) and the func-
tional V (t,Xt) defined in (3.3) satisfies equation (3.7), estimates (3.9), (3.10c),
(3.11), and (3.17), fulfil assumptions (i), (ii), and (iii) of the Lemma 2.6, hence
by Lemma 2.6 the solution of (3.2) is uniformly stochastically asymptotically sta-
ble. �

4. Boundedness and Existence Results

Furthermore, if p(t, x, y, z) 6= 0 in system (1.2), we have the following bounded-
ness and ultimate boundedness results

Theorem 4.1. Suppose conditions (i) to (iv) and inequality (3.4) of Theorem
3.1 hold and in addition, if |p(t, x, y, z)| ≤ P0 where P0 is a finite constant, then
the solutions (Xt) of system (1.2) are not only stochastically bounded but also
stochastically ultimately bounded.

Proof. Let (Xt) be any solution of system (1.2), by applying the Itô’s formula on
the functional defined in (3.3), along the solution path of (1.2), results to

LV(1.2)(t,Xt) = LV(3.2)(t,Xt) +
[
βx+ αy + (a+ cγ)z

]
p(t, x, y, z).

Now from estimate (3.17) we find that

LV(1.2)(t,Xt) ≤ −k4(x2 + y2 + z2) + k5(|x|+ |y|+ |z|)|p(t, x, y, z)|

where k5 = max{β, α, (a+ cγ)}. Since |p(t, x, y, z)| ≤ P0 for all t ≥ 0, x, y, and z, it
follows that

LV(1.2)(t,Xt) ≤ −
1

2
k4(x2 + y2 + z2) + P0k

−1
4 k25 −

1

2
k4P0

[
(|x| − k−14 k5)2

+ (|y| − k−14 k5)2 + (|z| − k−14 k5)2
]
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∀ t ≥ 0, x, y, and z. Since k4 and P0 are positive constants and (|x| − k−14 k5)2 +
(|y| − k−14 k5)2 + (|z| − k−14 k5)2 ≥ 0 for all x, y, and z. Therefore there exist positive
constants k6 and k7 such that

(4.1) LV(1.2)(t,Xt) ≤ −k6(x2 + y2 + z2) + k7

where k6 = 1
2k4 and k7 = P0k

−1
4 k25 for all t ≥ 0, x, y, and z. Estimate (3.11) implies

that θ−13 V (t,Xt) ≤ (x2 + y2 + z2) for all t ≥ 0, x, y, and z. The last estimate and
inequality (4.1) result to

(4.2) LV(1.2)(t,Xt) ≤ −k8V (t,Xt) + k7

for all t ≥ 0, x, y, and z where k8 := k6θ
−1
3 . Inequality (4.2) fulfills condition (ii) of

Lemma 2.10 with α(t) = k8, ψ(t) = k7, q = 1.
Furthermore, the lower inequality (3.5) (or estimate (3.9)) satisfies hypothesis

(i) of Lemma 2.10. Now by estimate (4.2), we have q = 1, this implies that µ = 0,
so that hypothesis (iii) of Lemma 2.10 holds. Substituting the values of α,ψ, and
µ in (2.8), to find that

(4.3)

∫ t

t0

(µα(u) + ψ(u))e−
∫ t
u
α(s)dsdu = k7k

−1
6 [1− e−k6(t−t0)] ≤ k7k−16

for all t ≥ t0 ≥ 0, inequality (4.3) satisfies estimate (2.8) of Corollary 2.11 with
M = k7k

−1
6 > 0.

Also, to verify inequalities (2.5) and (2.6) of Assumption 2.8 (a special case of
Assumption 2.7). System (1.2) and the Lyapunov functional (3.3) result to

|Vxi(t,Xt)Gik(t,Xt)| ≤
1

2
σ

{
[2β + α+ (a+ cγ) + k5β1]‖x‖2 + [α+ k5β1]‖y‖2+

[(a+ cγ) + k5β1]‖z‖2 +
3

4
k5σβ

2
1‖y‖2

}
.

In view of the above inequality there exists a positive constant k9 such that

|Vxi(t,Xt)Gik(t,Xt)| ≤ k9(x2 + y2 + z2),

and for 0 ≤ t0 ≤ T <∞ and ∫ T

t0

ρ2(s)ds <∞

where ρ(t) := k9(x2 + y2 + z2)(t) and k9 := 1
2σmax

{
α + 2β + a+ cγ + k5β1, α +

k5β1 + 3
4k5σβ

2
1 , a+ cγ + k5β1

}
. Thus, Assumption 2.7 is satisfied, i.e.,

(4.4) Ex0

{∫ T

t0

V 2
xi

(t,Xt)G
2
ik(t,Xt)dt

}
<∞.

Hypotheses (i) to (iii) of Lemma 2.10 and estimate (2.8) hold true so that Corollary
2.11 (ii) follows, hence by Corollary 2.11 (ii) all solutions of (1.2) are not only
bounded but also ultimately stochastically bounded. �

Next theorem presents uniform stochastic boundedness and uniform ultimate
stochastic boundedness of solutions of system (1.2).
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Theorem 4.2. Suppose that conditions (i) to (v) of Theorem 3.3 and inequality
(3.4) are satisfied and in addition |p(t, x, y, z)| < P0 where P0 is a finite constant,
then the solutions (Xt) of system (1.2) are not only uniform stochastically bounded
but also uniformly ultimately stochastically bounded.

Proof. Given that (Xt) is any solution of the system (1.2) and the functional (3.3)
satisfy inequalities (3.9), (3.11), (4.1) so that hypotheses (i) and (ii) of Lemma 2.9
hold. Also with p = q = r = 2 we have µ = 0 so that hypothesis (iii) of Lemma 2.9
holds. In addition, the inequalities (4.3) and (4.4) together with Lemma 2.9 satisfy
the hypothesis of Corollary 2.11(i), hence by Corollary 2.11(i) the solutions of sys-
tem (1.2) are not only uniform stochastically bounded, but also uniform ultimately
stochastically bounded. �

Next, we shall state and prove an existence and uniqueness theorem as follows.

Theorem 4.3. If assumptions of Theorem 4.1 are satisfied, then there exists a
unique solution of system (1.2).

Proof. Let (Xt) be any solution of (1.2), the functional defined in (3.3) satisfy the
following estimates (3.9), (3.10c), and (3.17), these inequalities successfully satisfy
all assumptions of Lemma 2.5 thus by Lemma 2.5 solution of system (1.2) exists
and unique. Hence, the proof of Theorem 4.3 is completed. �

Next, we shall consider arbitrary third-order stochastic differential equations
with delay and show that all assumptions of Theorems 3.1, 3.3, 4.1, 4.2, and 4.3
hold true.

5. Examples

Example 5.1. Consider the third-order stochastic differential equation

...
x (t) + aẍ(t) +

[
3xẋ(t− τ(t)) +

(
ẋ(t− τ(t))

2 + x2(t− τ(t)) + ẋ2(t− τ(t))

)]
+

[
x(t− τ(t)) +

(
x(t− τ(t))

1 + x2(t− τ(t))

)]
+ σx(t− τ(t))ω̇(t) = 0.

(5.1)

Assign y = ẋ and z = ẍ equation (5.1) is equivalent to system of first order equations

ẋ = y, ẏ = z,

ż = −
(

2x+ x3

1 + x2

)
−
[

3(2y + x2y + y3) + y

2 + x2 + y2

]
− az − σ

[
x−

∫ t

t−τ(t)
y(s)ds

]
+

∫ t

t−τ(t)

{[
1 +

1

1 + x2(s)
− 2x2(s)

(1 + x2(s))2

]
y(s)− 2x(s)y2(s)

(2 + x2(s) + y2(s))2

+

[
3 +

1

2 + x2(s) + y2(s)
− 2y2(s)

(2 + x2(s) + y2(s))2

]
z(s)

}
ds.

(5.2)

Now, comparing equations (3.2) with (5.2) the following relations hold:

(i) The function h(x) :=
x(2 + x2)

1 + x2
= x+

x

1 + x2
, clearly h(0) = 0 and

h(x)

x
=

1 +
1

1 + x2
. Since 1 + x2 ≥ 1 for all x, it follows 0 <

1

1 + x2
≤ 1 for all x.
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Further simplification of the last inequality gives

1 = c0 ≤
h(x)

x
≤ c1 = 2 ∀ x 6= 0.

(ii) The derivative of h = h(x) with respect to x is defined as h′(x) := 1 +
1

1 + x2
− 2x2

(1 + x2)2
. Since 2x2(1+x2)−2 ≥ 0 for all x and by (i) to find that

(5.3) h′(x) ≤ c = 2, ∀ x.

Moreover,

(5.4) |h′(x)| ≤ k1 = 2, ∀ x.

See Figure 1 for the coincide bounds on h′(x) and |h′(x)|. Inequalities (5.3)
and (5.4) hold true for all x ∈ R.

Figure 1. Upper bound on the functions h′(x) and |h′(x)| for x ∈ [−10, 10]

(iii) The function g = g(x, y) is defined as g(x, y) := 3y+
y

2 + x2 + y2
.Obviously,

g(0, 0) = 0 and that
g(x, y)

y
= 3 +

1

2 + x2 + y2
. It is not difficult to show

that 3 = b ≤ g(x, y)

y
≤ b1 = 3 1

2 ∀ x, y 6= 0.

(iv) The first partial derivatives of g with respect to x and y are given by

gx(x, y) :=
−2xy

(2 + x2 + y2)2
and gy(x, y) := 3+

1

2 + x2 + y2
− 2y2

(2 + x2 + y2)2

respectively, and is easy to see that

(5.5a) |gx(x, y)| ≤ k2 = 0.12

for all x, y, and

(5.5b) |gy(x, y)| ≤ k3 = 3.5

for all x, y. Figures 2 and 3 confirm estimates (5.5a) and (5.5b) respectively
for −2 ≤ x, y ≤ 2.
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Figure 2. Bound on the function |gx(x, y)| for x, y ∈ [−2, 2]

Figure 3. Bound on the function |gy(x, y)| for x, y ∈ [−2, 2]

Since b = 3, c = 2, and c0 = 1 it follows from the inequality ab − c > 0

that a > 2/3 ≈ 0.7, we choose a = 0.8 and σ2 <
2(ab− c)c0
a+ (b+ 1)c

so that

σ < 0.3 we choose σ = 0.29. The following assumptions are verified as

α := a2 + ac+ c2 = 6.24 > 0, β := ab− c = 0.4 > 0, and γ := 1 + b = 4 > 0,

k0 = max{6.24, 0.4, 8.8} = 8.8 > 0, a2b(a+ cγ)− αβ = 14.4 > 0,

bβ(aα+ c)− a4b2 = 4.704 > 0, (aα+ c)(a+ cγ)− α2 = 22.592 > 0,

a2bα− β(aα+ c) = 9.184 > 0, bβ
[
(aα+ c)(a+ cγ)− α2

]
+ β

[
a2bα− β(aα+ c)

]
− a4b2(a+ cγ) + a2bαβ = 3.136 > 0, B3 := k0(k1 + k2 + k3)− (a+ γc)σ2 = 48.7159 > 0.

Next, since 0 < β0 < 1 two cases are to be considered:
Case 1: When β0 = 0.001, we have the following estimates:

B4 :=
[
3k0(k1 + k2) + (a+ cγ)σ2 + k0(k1 + k2 + k3)(1− β0)

]
/(1− β0) = 106.2208 > 0, and

B5 :=
(
3k0k3 + k0(k1 + k2 + k3)(1− β0)

)
/(1− β0)141.9485.

In this case the inequality (3.4) yields



SOME QUALITATIVE PROPERTIES OF SOLUTIONS OF THIRD-ORDER STOCHASTIC 79

β1 < min

{
2(ab− c)c0 − (a+ (b+ 1)c)σ2

2B3
,

(ab− c)c
B4

,
(ab− c)c

B5

}
= min{6.1× 10−4, 7.5× 10−3, 5.6× 10−3}
= 6.1× 10−4

(5.6)

Case 2: When β0 = 0.999 we have the following estimates:

B4 :=
[
3k0(k1 + k2) + (a+ cγ)σ2 + k0(k1 + k2 + k3)(1− β0)

]
/(1− β0) = 56757.536 > 0, and

B5 :=
(
3k0k3 + k0(k1 + k2 + k3)(1− β0)

)
/(1− β0) = 92449.456 > 0.

In this case inequality (3.4) yields

β1 < min{6.1× 10−4, 1.4× 10−5, 8.6× 10−6} = 8.6× 10−6(5.7)

Thus in both cases β1 is positive, hence for system (5.2) we have the following
remark

Remark 5.2. If there exist positive constants 0.12, 1, 2, 3, and 3.5 such that

(i) h(0) = 0, 1 = c0 ≤
h(x)

x
≤ c1 = 2 for all x 6= 0;

(ii) g(0, 0) = 0, 3 = b ≤ g(x, y)

y
≤ b1 = 3.5 for all x and y 6= 0;

(iii) h′(x) ≤ c = 2 for all x, ab− c = 0.4 > 0, σ = 0.29 > 0;
(iv) a2b(a+ cγ)− αβ = 14.4 > 0, bβ(aα + c)− a4b2 = 4.704 > 0, (aα + c)(a+

cγ)−α2 = 22.592 > 0, a2bα−β(aα+ c) = 9.184 > 0, bβ
[
(aα+ c)(a+ cγ)−

α2
]

+ β
[
a2bα− β(aα+ c)

]
− a2b

[
a2b(a+ cγ)− αβ

]
= 3.136 > 0; and

(v) |h′(x)| ≤ k1 = 2, |gx(x, y)| ≤ k2 = 0.12, |gy(x, y)| ≤ k3 = 3.5;

Then the trivial solution of system (5.2) is stochastically stable, asymptotically
stochastically stable, uniformly stochastically stable, and uniform asymptotically
stochastically stable provided that 8.6× 10−6 ≤ β1 ≤ 6.1× 10−4.

Finally, we shall consider the case p(·) 6= 0.

Example 5.3. Consider the third-order stochastic differential equation

...
x (t) + aẍ(t) +

[
3xẋ(t− τ(t)) +

(
ẋ(t− τ(t))

2 + x2(t− τ(t)) + ẋ2(t− τ(t))

)]
+

[
x(t− τ(t)) +

(
x(t− τ(t))

1 + x2(t− τ(t))

)]
+ σx(t− τ(t))ω̇(t)

=
1

10 + t2 + x2 + ẋ2 + ẍ2
,

(5.8)
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Assign y = ẋ and z = ẍ equation (5.1) is equivalent to system of first order equations

ẋ = y, ẏ = z,

ż = −
(

2x+ x3

1 + x2

)
−
[

3(2y + x2y + y3) + y

2 + x2 + y2

]
− az − σ

[
x−

∫ t

t−τ(t)
y(s)ds

]
+

∫ t

t−τ(t)

{[
1 +

1

1 + x2(s)
− 2x2(s)

(1 + x2(s))2

]
y(s)− 2x(s)y2(s)

(2 + x2(s) + y2(s))2

+

[
3 +

1

2 + x2(s) + y2(s)
− 2y2(s)

(2 + x2(s) + y2(s))2

]
z(s)

}
ds

+
1

10 + t2 + x2 + y2 + z2
.

(5.9)

Now comparing (1.2) with (5.9) items (i) to (v) of Remark 5.2 hold. In addition

p(t, x, y, z) :=
1

10 + t2 + x2 + y2 + z2
. Since 10 + t2 + x2 + y2 + z2 ≥ 10 for all

t ≥ 0, x, y, and z there exists a finite constant P0 such that |p(t, x, y, z)| < P0 = 1
10

for all t ≥ 0, x, y, and z.

Remark 5.4. If in addition to the hypotheses of Theorem 5.2, there exists a finite
constant 1/10 such that |p(t, x, y, z)| < P0 = 1

10 for all t ≥ 0, x, y, and z, then the
conclusions of Theorems 4.1, 4.2, and 4.3 hold true for all β1 in the close interval
[8.6× 10−6, 6.1× 10−4].

6. Conclusion

This paper presents some qualitative properties of solutions to certain third-
order nonlinear nonautonomous stochastic differential equations with variable delay.
Novel and outstanding results obtained in this paper compliment and extend many
outstanding existing results in literature.
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