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Abstract

In this paper, By using an identity for differentiable functions, we obtain some new type integral
inequalities for the class of functions whose derivatives in absolutely value at certain powers are
p -quasi convex. Also, we give some applications to special means of positive real numbers
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p -QUASI KONVEKS FONKSIYONLAR iCiN YENI TiP
INTEGRAL ESITSIZLIKLER

Ozet

Bu ¢aligmada, diferansiyellenebilir fonksiyonlar i¢in bir 6zdeslik kullanilarak, tiirevlerinin mutlak
degerlerinin belirli kuvvetleri p -quasi-konveks olan fonksiyonlarin sinifi i¢in bazi yeni tip

integral esitsizlikler elde ediyoruz. Ayn1 zamanda, pozitif reel sayilarin 6zel ortalamalar1 i¢in baz1

uygulamalar veriyoruz.
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New Type Integral Inequalities For p -Quasit Convex Functions

1. Introduction

Definition 1.1 4 function f:1 cR —>R is said to be convex if the inequality

flex+A=0)y)<tf ) +(1-01(»)
is valid for all x,yel and te [0,1]. If this inequality reverses, then [ is said to be concave on
interval I # @ . This definition is well known in the literature.

Definition 1.2 4 function f:1 c R —R is said to be quasi-convex if the inequality

flex+-(1=0)y) < max{f (), £ (»)}
holds for all x,y el and t<|0,1].

Remark 1.1 Clearly, any convex function is a quasi-convex function. Furthermore, there exist
quasi-convex functions which are not convex (lon 2007).

Let f:/ cR—>R be a convex function defined on the interval / of real numbers and
a,bel with a<b. The following inequality
a+b 1%
<— | f(x)dx <
f( : j — !f( )

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality
for convex functions. Note that some of the classical inequalities for means can be derived from
(1.1) for appropriate particular selections of the mapping f . Both inequalities hold in the reversed

S+ /) 0

direction if f is concave.

In recent years, much attention have been given to theory of convexity because of its great
utility in various fields of pure and applied sciences. Many researchers have extended and
generalized the classical concepts of convex functions in various directions using novel and
innovative techniques. For more information, see (Dragomir et al 1995, Fang & Shi 2014, Iscan
2014; 2016; 2016, Kunt & Iscan 2016, Matkowski 2003/2004, Ostrowski 1938, Varosanec 2007).

In (Iscan 2014), the author gave the definition of harmonically convex function as follow
and established Hermite-Hadamard’s inequality for harmonically convex functions.

Definition 1.3 Ler I R\ {O} be a real interval. A function f:1— R issaid to be harmonically
convex, if

tx+(1-1t)y
for all x,yel and te[O,l]. If the inequality in (1.2) is reversed, then [ is said to be
harmonically concave.

f(Lj <tf (3)+(1-1) £ (x) (1.2)

Definition 1.4 Let f:]cR\{O}—)R be a harmonically convex function and a,bel with
a<b. If felLla,b] then the following inequalities hold

f( Z“bjg ab (1) 4o S@ES®)
a+b) b-a? x 2
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The above inequalities are sharp.
Definition 1.5 4 function f:Ic (0, oo)—) [O, oo) is said to be harmonically quasi-convex, if

Xy
f(—m 0z t)yj < max {/(x), /()
forall x,yel and te [0,1].

Remark 1.2 Any harmonically convex function on I g(O,oo) is a harmonically quasi-convex
function, but not conversely.

In (Iscan 2016), the definition of p-convex function is given a different as follows:
Definition 1.6 Let [ — (O,oo) be a real interval and p e R\{O}. A function f:1 >R is said to

be a p-convex function, if

[[axu(l )y’ Tj<oﬂx>+(1 ) f ()

forall x,yel and ae [O,l].
According to Definition 6, It can be easily seen that for p=1 and p =-1, p-convexity

reduces to ordinary convexity and harmonically convexity of functions defined on [ c(O,oo),
respectively.

Definition 1.7 (Iscan 2016) [ c (O,oo) be a real interval and p e R\{O}. A function f:1 —>R
is said to be p-quasi-convex, if

f([axp +(1 —a)yPFj <max {f(x), f()} (1.3)

forall x,yel and o< [0,1]. If the inequality in (1.3) is reversed, then fis said to be p-
quasi-concave.

In (Fang & Shi 2014, Theorem 5) and (Iscan 2016), Hermite-Hadamard’s inequality for
p -convex functions is given as follow:

Theorem 1.1 Let f:]c(O,oo)—)R be a p -convex function, peR\{O}, and a,bel with
a<b. If fella,b] then we have

y {ap—lrbp}” <P J‘f(x) f(a)+f(b) (1.4)

2

In order to prove our main results we need the following Lemma (Iscan et al 2017):

Lemma 1.1 Let f:1c (O, oo)—)R be a differentiable function on I’ and a,bel with a<b
and pe R\{O}. If f"ella,b] then

YO -aI@ _p (10,
bp_ap -[ J [ }

where A, ,=tb” +(1-1t)a".
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By using Lemma 1.1, iscan obtained some new integral inequalities for p -convex functions in
(Iscan 2016). In this work, we established some new type integral inequalities for the class of
functions whose derivatives in absolutely value at certain powers are p -quasi-convex. Therefore
we also obtained some new integral inequalities for quasi-convex and harmonically quasi-convex
functions in special case of obtained inequalities.

For some results related to p -convex functions and its generalizations, we refer the reader to see
(Fang & Shi 2014, Iscan 2016; 2016, Noor & Noor 2015).

Throughout this paper we will use the following notations: Let 0 <a <b, we will denote with

Ala,b)= a;b’ Gla,b)= Jab, L(a,b),zb_—a

hb-lha’

p+l

—(p+1)(b—a)j , D€ R\{—I,O},

the arithmetic, geometric, logarithmic and p-logarithmic respectively.

+1
LszAmbﬁ=(lﬂ -

2. Main results

Theorem 2.1 Let f:]g(O,oo)—)R be a differentiable function on I°, a,bel’ with a<b,
p eR\{O} and f'elLla,b]. If |f’|q is p-quasi-convex on [a,b] for g>1, then for all

x €[a,b], we have

bPf(b)—a’f(a) _ p j](u)

_C(ab) T
b? —a? max

S (a),

Proof. From Lemma 1.1, Power mean integral inequality and the p-quasi convexity of | f '|q on

ia] ;U e f
[IApcthnx (a).| /@) }

C(ammmﬂ (a).|7'(®) }

7o)} 2.1)

[a,b], we have

B0 -a"f @) __p jf(u) “
b’ —a’

Here, it is easily seen that the following equality holds:

1 A(a,b), p=1
C,(ab)=[4},dt=1G(a,b)/ L(a,b), p=-I
‘ L2 (a,b)/ 27\ (a,b), peR\{-1,0,1}

Hence, we obtain the desired result. This completes the proof.
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Corollary 2.1 In Theorem 2.1,
(i) If we take p =1, then we have the following inequality when |f'|q is convex on [a,b]:

b (b)—af (@) _ o)

b—a
(ii) If we take p = -1, then we have the following inequality when |f'|q is harmonically

< A(a,b)max |/ (a),

biai’jf(u)du

convex on [a,b]:

SO __ab {10,

G*(a,b ,
P < max|(a),

= L(a,b)

/(b)Y }

Theorem 2.2 Let f:]g(O,oo)—>R be a differentiable function on I°, a,bel’ with a<b,

I 1
and f'eLla,b). If |f'|q is p-quasi-convex on [a,b] for q>1,—+—=1, then
rq

!

7o)} (2.2)

b? —a? p|

DG @ _p Jf () ‘ <Dprl@h)
a[’

Proof. From Lemma 1.1 and Holder’s inequality and the p-quasi-convexity of |f”|" on [a,b], we
have

b'f(b)—a"f(a) p jf(u)
b’ —a’

iNr |U g d’m il a ]

(a)| /() )

r

Sij; max{f

r r

AP dr | max{|f

/() }
7'b)}

(a).

_| | D, (a,bymax {| f'(a),

Here, it is easily seen that the following equality holds:

I
=
S S——

L L), p=1
Dp,,(a,b)ZUAfpdt] = Gz(a,b)/Lfr(a,b), p=-1
0

p+r1 pl

L, (a,b)/L/ (a,b), peR\{-1,0,1}

Hence, we obtain the desired result. This completes the proof. This completes the proof.
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Corollary 2.2 In Theorem 2.2,

(i) If we take p =1, then we have the following inequality when | f '|q is quasi-convex on
[a,b]:

bf(b)—af(a) 1
b—a b—a

£'b)}

(ii) If we take p = -1, then we have the following inequality when |f'|q is harmonically

j f(w)du| < L, (a,b) max {|f"(a),

quasi-convex on [a,b]:

af (b)-bf(a) ab ' f(w) G*(a,b) ' :
I TI0 0 < O {6

max{

3. Some applications for special means

Proposition 3.1 Let 0<a<b and p eR\ {—%,—1,0}. Then we have the following inequality

P

L (a,b) < b"Lf (a,b) for p>0
Léf,(a,b) <a"ll(a,b) for p<O0

Proof. The assertion follows from the inequality (2.1) in Theorem 2.1, for
p+l

£:(0,0) >R, flx)="—.

p+1

Proposition 3.2 Let 0<a<b,r>1 and peR\ {—%,—r,l - r,O,l}. Then we have the following

inequality
p+r—1
PR L) (a,b)
p+r—1
pIA L) (a,b)

Proof. The assertion follows from the inequality (2.2) in Theorem 2.2, for
p+l

£:(0,0) >R, flx)="—.

p+1
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