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defined by f and deferred statistical convergent sequences are equivalent if the sequence is f-deferred
uniformly integrable. Some converse inclusions are obtained when the modulus function f is compatible. Finally,
for any compatible modulus f, we prove that any sequence is f-strongly deferred Cesaro convergent if and ony

if it is deferred f-statistically convergent and deferred uniformly integrable.
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Introduction

Statistical convergence was first introduced by Fast [1]
and also independently by Buck [2] and Schoenberg [3] for
real and complex sequences, but the rapid developments
started after the papers of Salat [4] and Fridy [5].

Strong Cesaro convergence with respect to a modulus
function was introduced by Maddox [6]. Connor [7]
extended this idea by replacing Cesaro matrix with a non-
negative regular matrix A and proved that A-statistical
convergence includes strong A-summability with respect
to a modulus and further these notions are equivalent for
bounded sequences. Connor also established the
relationship between statistical convergence and strong
Cesaro convergence [8]: A real sequence is strongly
convergent if and only if it is statistical convergent and
bounded. Khan and Orhan [9] extended this result by
replacing the boundedness condition with a strictly
weaker condition so-called uniform integrability.

By using any modulus function f, Aizpuru and
coworkers [10] introduced the concept of f-statistical
convergence. Ledn-Saavedra et. al. [11] defined the
notion of f-strongly convergence by means of modulus
functions. They proved that if a sequence is f-strongly
convergent then it is f-statistically convergent and
uniformly integrable, and the converse statement is true
when f is compatible modulus function. Such type of
modulus functions are those for which the concepts of
statistical convergence and f-statistical convergence are
equivalent.

Motivated by Agnew [12], Kigilkaslan and Yilmaztirk
[13] defined and studied on the the concept of deferred
statistical convergence. Later this concept was improved
by Gupta and Bhardwaj [14] with the help of modulus

b yildirim@cumhuriyet.edu.tr

Keywords: Deferred statistical convergence, Strong deferred convergence, Uniformly integrable sequence,

https:// ‘orcid.org/0000-0002-8880-5457

functions. They also introduced the notion of strongly
deferred Cesaro convergence of sequences defined by
modulus function f and investigated its relation with
deferred f-statistical convergence. We refer to [15-22] for
additional different works on deferred statistical
convergence.

In the present paper, we investigate the relationship
between strongly deferred Cesaro convergent sequences
defined by a modulus function and deferred statistically
convergent sequences. We prove that these two classes
are equivalent in the context of f-deferred uniformly
integrable sequences. Later we define f-strongly deferred
Cesaro convergence of a real sequence and examines its
relation with strongly deferred Cesaro convergence. If f is
any modulus function, f-strongly deferred Cesaro
convergence (deferred f-statistical convergence) implies
strongly deferred Cesaro convergence (deferred statistical
convergence), but not conversely. We prove that converse
statements are true when f is compatible modulus
function. Finally, for any compatible modulus f, we prove
that any sequence is f-strongly deferred Cesaro
convergent if and ony if it is deferred f-statistically
convergent and deferred uniformly integrable.

Materials and Methods

Let N be set of positive integers and x = (x;) be
sequence of real numbers. Then x is statistically
convergent to the number L (in short x € S) provided for
eache > 0,

1
lim —|{k <n:|x, —L| =€} =0.

n-on
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Suppose that (p,,) and (gq,,) are the sequences of non-
negative integers with p, < q,, and g,, = o (as n = ).
We say that (x;,) is strongly deferred Cesaro convergent
to L if

an

1
lim [x, —L| =0
n-0 (qn — Pn k1

(see [12]). In this paper we prefer the notation w, 4 for the
set of all strongly deferred Cesaro convergent sequences.

Any sequence (x;) is said to be deferred statistical
convergent to L if for each € > 0,

lim H{k EN:ip, <k <qulx,— Ll =¢€}=0.
n=e (y — Pn

In this case we write S, ,-limx = L and the set of all
deferred statistically convergent sequences will be
denoted by S, ; (see [13]). Throughout the paper we will
use the notation E,,, instead of the set {k € N:p, <
k < qn |x, — L| = €}. If we choose g, =n and p,, =0
for all n, then Sp,q coincides with S.

Note thatwy, q € S, s andwy, o N €, = S, 4 N L4, also

Pn ) is bounded then S c S, ;, where

{ is the set of all bounded sequences.
Any function f : R* - R* with the following
properties is called a modulus function;

if the sequence (q

1. f(x)=0ifandonlyifx =0,

2.f(x+y) < f(x)+ f(y) forall x,y € R,
3. f isincreasing,

4. f, is continuous from the right at zero [23].

f(x)=xP (0<p<1) and f(x)= :—x are some
examples of a modulus function. A modulus function can
be bounded or unbounded.

Let f be any modulus function. A sequence x = (x;,)
is said to be f-statically convergent to L if for each € > 0

Ak s mlx =L =)
o Q)

(see, [10]). It is also known from [10] that any f-
statistically convergent sequence is also statistically
convergent but not conversely. We remark here that if f
is bounded modulus function, then these definitions hold
only for trivial cases (for empty set and constant
sequences). So, throughout the paper, we only consider
the unbounded modulus functions.

In [14], Gupta and Bhardwaj defined the notion of
deferred f-statistical convergence and strongly deferred
Cesaro convergence with respect to f as follows:

Let f be any modulus function and x = (x;) be any
real sequence. Then, x is said to be deferred f-statistically
convergent to L if for each € > 0,

1
lim ——f({k:p, < k< qulxy — Ll =¢€}]) =0
o an — ) P I 1

and if

an
lim flx,—=LD) =0
n-0o (qy — Pu k1 g

then x is said to be strongly deferred Cesaro convergent
to L with respect to f. The sets of all deferred f-
statistically convergent and all strongly deferred Cesaro
convergent with respect to f will be denoted by Sz{q and

Wz{.q'
S,f,q C Sy q is strict.

Now let A = (ay,), n,k €N, be any non-negative
regular matrix, i.e. that transforms any convergent
sequence into a convergent sequence with the same limit.
Any real sequence x = (x;) is A-statistically convergent
to L if

respectively. We know from [14] that the inclusion

lim Z e = 0
n—oo
k:|xp—L|ze

for each € > 0. Also x is said to be A-strong convergent if

[ee]

lim il — L] = 0.
n—-oo

k:=1

Khan and Orhan [9] characterized A-strong
convergence and A-statistical convergence through A-
uniform integrable sequences. A real sequence x = (x;)
is called A-uniformly integrable if

limsup il X ] = 0.
c—>00

|xk|zc

Khan and Orhan proved that a sequence is A-strongly
convergent if and only if it is A-statistically convergent and
A-uniformly integrable. Replacing the matrix A with
Dy q: = (dni), where

, <k<
due =390 — P Pn Qn’

0, otherwise
we obtain the the following result.

Theorem 2.1 [9]Let x = (x;) be a real sequence. Then the
following are equivalent.

(i) x is strongly deferred Cesaro convergent to L.

(ii) x is deferred statistically convergent to L and

Dp‘q -uniformly integrable
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Main Results

In this section, we first characterize the sets Wpf‘q and
Sp,q Via deferred uniformly integrable sequences with
respect to a modulus function. For this, we define the
following idea motivated by [9].

Definition 3.1 Let f be any modulus function. Then a
sequence (x) is said to be f-D ;-uniformly integrable if

. 1 q
limsup———3,7 ., f(lx]) = 0.
e A Flxgel)ze

Theorem 3.1 Let f be any modulus function and x = (xy)
be a real sequence. Then the following are equivalent.

(i) x is strongly deferred Cesaro convergent to L with
respect to f.

(ii) x is deferred statistically convergent to L and f-
Dy, g-uniformly integrable.

Proof. (i) = (ii). Let x € w/, with limit L, that is

an

lim
n->© gy — Pn k1
-—Fn

fxe =L =0.

Let E.pq = {kipp <k < qulxx —L| = €} for any
given € > 0. Then we have

1 an _ 1 —
T F = LD = ——Fher,,, f(lxe — LD)

> L |k py <k < gl — LI 2 €},

dn—Pn
since f is increasing. Letting limit for n - o in this
inequality, we get S, ;-limx = L. If we set y,: = f(|x,|),
then we obtain from Theorem 2.1 that x is f-D, 4-
uniformly integrable.

(i) = (i). Assume that S, -limx = Land x is f-D, 4-
uniformly integrable. Let € > 0. |x; — L| = € implies that
f(x, — L|) = f(&). On the other hand, lim,_,+f(g) = 0
since f is continuous at zero. This implies that any
deferred statistically convergent sequence satisfies the
condition

1

lim
n—o qn=Pn

[{kipn <k < qu f(xe — LD = f(e)}| =0. (1)

Thus, f-D, ,-uniformly integrability and (1) imply by
Theorem 2.1 that x is strongly deferred Cesaro convergent
to L with respect to f. This completes the proof.

Next, we define the class of f-strongly deferred Cesaro
convergent sequences and display its relation with
strongly deferred Cesaro convergent sequences.

Definition 3.2 Let f be a modulus function and x = (xy) be
a sequence of real numbers. The sequence X is said to be
f-strongly deferred Cesaro convergent to the number L if

an
1
lim ———— Z lx, — L| | = .
o a0 .

k=pp+1

The set of all f-strong deferred Cesaro convergent
sequences will be denoted by f-wy, ;.

Theorem 3.2 Let f be any unbounded modulus function
and x = (xy) be a sequence of real numbers. If x is f-
strongly deferred Cesaro convergent to L, then x is
strongly deferred Cesaro convergent to L. That is f-w, ; ©
Wpq-

Proof. Assume that (x) is f-strongly deferred Cesaro
convergent to L. Then for each p € N, there existsann, €
N such that for n = n, we have

A3 ) < < (222),

k=pn+1

Since f is increasing, we have

an

1
|xk_L| Sa(qn_pn) (2)

k=pn+1

for all n = ny. From this, we obtain that (x;) is strongly
deferred Cesaro convergent to L. This completes the
proof.

Now recall the concept of compatible modulus
function used in [11] and also in [24, 6].

Definition 3.3 [11]Let f be a modulus function. We say that
f is compatible provided for any € > 0 there exist € > 0
f(ng)
f(n)
For example, f(x) =x+log(x +1), g(x) =

and ny = ngy(€) such that < eforalln = n,.

X

Vi+x
and h(x) = logx% are unbounded compatible modulus

functions, where logarithm is to the natural base e. On the
other hand the f(x)=1log(x+1) and f(x)=
log(log(x + e)) are examples of modulus functions which
are not compatible (For the details, see [24] and [11]).

Remark 3.1 We know from [14] that Sf,,q C Sp,q for any
modulus function f. Now let f(x) = log(x + 1), q, = n?,
pp =nand
v = {1, if k is square
k™10, otherwise

Then S, ;-limx = 0 but Sz{q-limx # 0 (see Example
2.6 of [14]). On the other hand if we replace the modulus
function with f(x) = x + log(x + 1), then we obtain that
Sp g7 limx = Sz{q —limx = 0. The following result shows

that this case is always valid when we use compatible
modulus functions.
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Theorem 3.3 Let f be a compatible modulus function.
Then SL 4 =S, q-

Proof. When f is a compatible modulus function, it is

L f
sufficient to prove that S, ;, € S, 4 -

Since S{;q C Spq for any modulus function, it is

enough to prove that S, , Sz{q when f is a compatible
modulus function. Let f be a compatible modulus
function, x = (x;) be a real sequence and S, ;-limx = L.
Since f is compatible, for any given € > 0, there exist £ >
f(n®)
f
the assumption q,, — p, =  (n = o0) implies that there
exists Ny = Ny(ng) (thus Ny = Ny(€)) such that for all
n = N, we have g, — p, > n,. Hence, we obtain that
f((qn_Pn)g)
f(@n—pn)
Since Splq-limx = L, there exists N; such that

0 and ny = ny(€) such that < ¢ for all n = ny. Also

< ¢ for all n = Ny. Now, let 1 > 0 and fix €.

|{k:pn <k< qn |xk - Ll = l}l < (qn —pn)§

for alln > N;. Since f is increasing, we get

1
—f({k:pp < k < qn, |xx — L] = A}])
q-rl_pn)f{ Pn dn k }

f( ( )
f (Qn - pn)§
= f(Qn - pn) < ¢

for all n = max{Ny, N;}. Thus, S{,c_q-limx = L and this
completes the proof.
By using the same technic we can prove the following.

Theorem 3.4 Let f be a compatible modulus function.
Then f-wp g = wp q.

Using the same method with Proposition 1.1 of [25],
one can also obtain the following result.

Theorem 3.5 Let f be a modulus function.

(i) If all deferred statistically convergent sequences
are deferred f-statistically convergent, then f must be
compatible.

(ii) If all strongly deferred Cesaro convergent
sequences are f-strongly deferred Cesaro convergent,
then f must be compatible.

Theorem 3.6 Let x = (xy) be a real sequence and f be a
compatible modulus function. Then the following are
equivalent.
(i) x is f-strongly deferred Cesaro convergent to L.
(ii) x is deferred f-statistically convergent to L and
D, ;-uniformly integrable.

Proof. (ii) = (i). Let x be deferred f-statistically
convergent to L and D, ,-uniformly integrable. Since,
Sz);,q C Sp,q» Theorem 2.1, x is strongly deferred Cesaro
convergent to L. Finally, since f is a compatible modulus,
x is f-strongly deferred Cesaro convergent to L by

Theorem 3.4.

(i) = (ii). Assume that x is f-strongly deferred
Cesaro convergent to L. Then applying Theorem 3.2 and
Theorem 2.1 we obtain that x is D, ;-uniformly integrable.
Now prove that x is deferred f-statistically convergent to

L.Let € > 0 and choose any m € N such that% < &.Since
Eepg C E%‘p‘q we have

fU{k:pp <k < qu|xx — LI = €}])

1
f(CIn - pn)
< ! (lepn <l an b - 112 2]

and so it is enough to prove that

lim e ([{lepn <k < qu v L1 2 1) =0 (3)

for any n € N. Hence for any n € N, we can write

an
LD =t =rl ) -t
k=pn+1 kEE%,p,q
> ! 1
>f -
KEE 1
mP
>1 1
_Ef
KEE 1
mP

=%f(|{k;pn <k < qu lx — L Zi}l)

From this, we have

mfﬂ{k:pn <K< Gt — L] = %}D
an
= f(qnni "N k;n:ﬂ e =L ).

Thus, by the assumption we obtain (3) and this completes
the proof.

Conclusion

In this paper we have studied on deferred f-
statistically convergent, strongly deferred Cesaro
convergent and f-strongly deferred Cesaro convergent
sequences. Some results are obtained through deferred
uniformly integrable sequences and compatible modulus
functions. Our results in this paper generalizes the results
of [11]. For further study, similar ideas can be
reformulated for double sequences.
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