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There are many fit statistics used in the structural equation modeling, and new ones are consistently being 
developed.  Because of the variety of fit statistics, it is very important to be able to decide which fit statistics are 
appropriate to use in studies.  When comparing any two statistics, the asymptotic relative efficiency (ARE) 
between them is used.  The ARE can use as a power of the fit indices is one of the familiar optimal criteria.  It is 
frequently more convenient, and also more suggestive, to use a measure of relative merit called the relative 
efficiency.  This study aimed to compare of fit indices using Fraser’s asymptotic relative efficiency.  The data sets 
were derived from the multivariate normal distribution using the mean vector and covariance matrix.  It was 
determined that the most efficient fit indices in terms of asymptotic relative efficiency were Z-Test of Wilson & 
Hilferty (W&H), Root Mean Square Error of Approximation (RMSEA), and Chi-Square indices, respectively. 
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Introduction 
 

Forecasting is a collaborative effort across a wide 
range of disciplines, and as a result, the question of how 
forecasts can best be evaluated is of fundamental 
importance to much of the scientific community [1].  A 
good forecast is very important for scientific, economic 
and administrative purposes. Therefore, it is necessary to 
know whether the forecaster is skilled enough to predict 
the future. Due to the increasing dependence on 
forecasting in various disciplines, forecasting skill indices 
have been proposed. It is very important to clarify that 
forecasting skill is not the same as forecasting accuracy. A 
highly skilled forecaster generally tends to have a high rate 
of forecast accuracy, but the opposite may not be true [2]. 

Statisticians, when dealing with specific test problems, 
often try to take or improve the statistical tests that are 
most efficient in a certain sense.  Therefore, since such 
tests are not usually available in finite sample cases, the 
main focus is on efficiency concepts that enable 
comparison of competing procedures through their 
specific asymptotic properties [3].  Making a verified 
selection of the most effective statistical test among the 
few tests at the statistician's disposal is considered one of 
Statistics' fundamental problems.  This problem became 
particularly important in the mid-twentieth century when 
computationally simple but "inefficient" rank tests 
emerged.  Asymptotic relative efficiency (ARE) is a concept 
that enables the quantitative comparison of two different 
tests (for example T1 and T2) used to test the same 
statistical hypothesis to be applied in large samples.  The 

concept of asymptotic efficiency of tests is more complex 
than the asymptotic efficiency of estimates [4].  The ARE 
of T2 relative to T1 is defined as; 
 
𝐴𝐴𝐴𝐴𝐴𝐴21 = lim

𝑛𝑛→∞
�𝑛𝑛1
𝑛𝑛2
�                                                                                                                                              (1) 

 
where n1 and n2 are sample sizes such that T1 and T2 

have the same power.  The oldest known efficiency is the 
Pitman efficiency [5].  The most familiar and the classical 
efficiencies are concepts in this respect are Pitman 
efficiency, Chernoff efficiency, Hodges-Lehmann 
efficiency and Bahadur efficiency [5-8].  The four basic 
types of efficiency mentioned are not easy to calculate. 
Each type of efficiency statistic has its own advantages 
and disadvantages.  Current studies on ARE mainly focus 
on two categories.  First category, consists of method that 
compare the efficiency of estimators of the same 
parameter.  The other consists of method that compare 
test statistics of the same hypothesis.  Subsequent studies 
may assume that the test statistics are asymptotically 
normal.   In the circumstances, the ARE’s can be easily 
calculated.  There are also some methods to compare ARE 
of different test statistics, where the same hypothesis may 
have different asymptotic distributions.  These methods 
(Pitman efficiency, Hodges-Lehmann efficiency and 
Bahadur efficiency) suggested different ways to calculate 
ARE, and are difficult to calculate.  Although test statistics 
have the same asymptotic distribution, ARE can be easily 
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calculated [9].  A simple statement for the relative 
efficiency under moderate assumptions has been 
obtained by Fraser [10].  Under the asymptotic normality 
assumption of the test statistic the efficacy is given by [10-
12]. 

 

𝑒𝑒𝑒𝑒𝑒𝑒 = �µ
𝜎𝜎
�
4
                                                                                                                                                             (2) 

 
Here µ and σ are the mean and standard deviation of 

the limiting normal distribution.  Definition of the ARE of 
two statistics, T1 with respect to T2 is as follows [10, 11]; 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇1,𝑇𝑇2) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇1)

𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇2)
                                                                                                                                        (3) 

 
The value of 𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇1,𝑇𝑇2) > 1 indicates that T2 is 

efficient, 𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇1,𝑇𝑇2) < 1 indicates that T1 is efficient.  In 
structural equation modeling (SEM), the fit indices 
establish whether, overall, the model is acceptable.  The 
model fit evaluating issue in SEM analysis has been at the 
main topic of theoretical and empirical research for years 
[13-17]. The simplest model that describes the data well 
enough and makes the best prediction is the best fit 
model. Therefore, one of the important goals of scientific 
theory should be to establish criteria that will enable 
determining models that produce accurate predictions 
[18]. Research in this area has focused on various aspects 
of model fit indices, such as which model fit indices should 
be used in which situations and how they should be 
interpreted.  Most studies have examined the changing of 
fit indices under different data conditions, such as 
estimation methods, sample size, and model 
misspecification [19].   
 

In this article, we focus our study to the asymptotic 
relative efficiency via Fraser [10] of the fit indices.  We 
propose an analytic comparison of the some fit indices.  To 
this aim, we introduce Fraser [10] asymptotic relative 
efficiency, and compare the fit indices' asymptotic relative 
efficiencies, in the Fraser asymptotic relative efficiency 
sense. 

 
Material and Methods 

 
Simulation Study 
In the study, a model occurred from four latent 

variables was used. Also each latent variable were 
explained by four variables. The mean vector and 
covariance matrix created for this model were obtained 
from the study of Doğan and Özdamar [15].  The data sets 
were derived under the assumption of multivariate 
normal distribution.  While the sample sizes were 
determined as 100, 150, 250, 500, 1000 and 5000 units 
and the replication number was determined as 1000.  The 
maximum likelihood (ML) was used for parameter 
estimates.  This study was conducted to compare the 
model fit measures by using Fraser efficiency with 
different sample sizes.  For this purpose, Chi-Square, 
Goodness of Fit Index (GFI), Root Mean Square Residuals 

(RMR), Standardized Root Mean Square Residuals (SRMR), 
Z-Test of Wilson & Hilferty (W&H), Comparative Fit Index 
(CFI), Normed Fit Index (NFI), Non-normed Fit Index 
(NNFI), Incremental Fit Index (IFI), Adjusted Goodness of 
Fit Index (AGFI), Akaike Information Criterion (AIC), 
Consistent Akaike Information Criterion (CAIC), Expected 
Cross Validation Index (ECVI), McDonald’s Fit Index (MFI), 
Root Mean Square Error of Approximation (RMSEA), and 
Schwarz Bayesian Criterion (SBC) goodness of fit statistics 
were evaluated.  The simulation study was performed in 
the SAS 9.3 program using the PROC IML and PROC WORK 
procedures. 

There are two aspects to measuring model 
performance: discriminative capacity and reliability. 
However, it is generally stated that discrimination 
capacity is more important than reliability. Discriminative 
capacity measures a model's ability to distinguish 
between the presence and absence of the phenomenon 
in question. Reliability refers to the agreement between 
predicted values and observed values. Reliability is an 
important characteristic of the quality of probabilistic 
forecast models. When the modeling result is continuous, 
both aspects of model performance (discrimination 
capacity and reliability) can be evaluated. When the 
modeling result is binary, only discriminatory capacity can 
be evaluated. Various indices are used to assess 
discriminatory capacity and/or reliability. Some of these 
can only be applied to binary results or to continuous 
results converted to a binary solution using a specific cut-
off value called a threshold. These indices are called 
threshold-dependent indices. Indices that can be directly 
applied to continuous cases are called threshold-
independent indices [20]. The indices used in this study 
are non-threshold-dependent measures. 
 

Data Generation 
The steps of the simulation study were performed as 

suggested by Doğan and Özdamar [15] and Fan Xit and Fan 
Xia [21].  First of all, a 5000-unit data set was generated 
from the multivariate normal distribution by using the 
mean vector and covariance matrix of the specified model 
[15].  Secondly, the covariance matrix of the obtained data 
set in the first step was calculated to avoid the singular 
covariance matrix structure.  Thirdly, another data set 
containing 5000 units is generated from the multivariate 
normal distribution with the help of the covariance matrix 
calculated in second step.  Finally, parameter estimations 
of the model specified by Doğan and Özdamar [15] were 
performed with the help of the data set obtained in the 
third step.  The fit statistics of the specified model and the 
correlation matrix (R) were examined.  The correlation 
coefficients for the variables of each latent variable 
change 0.30 ≤ r ≤ 0.90 intervals. 

 
Results 

 
The comparative summarized table of fit indices based 

on ARE is given in Table 1.  As a result, it was determined 
that the most efficient fit indices in terms of asymptotic 
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relative efficiency were W&H, RMSEA, and Chi-Square 
indices, respectively.  The results of the simulation study 
are same for all sample sizes (n=100, 150, 250, 500, 1000 
and 5000).  When all fit indices considered in the study are 

sorted in terms of efficiency, W&H, RMSEA, Chi-Square, 
RMR, SRMR, AIC / MFI, ECVI, SBC, CAIC, ACFI, NNFI, IFI, 
NFI, CFI, and GFI are obtained. 

 
Table 1. The comparisons of the fit indices 
 GFI RMR SRMR W&H CFI NFI NNFI IFI AGFI AIC CAIC ECVI MFI RMSEA SBC 
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GFI - RMR SRMR W&H CFI NFI NNFI IFI AGFI AIC CAIC ECVI MFI RMSEA SBC 
RMR  - RMR W&H RMR RMR RMR RMR RMR RMR RMR RMR RMR RMSEA RMR 
SRMR   - W&H SRMR SRMR SRMR SRMR SRMR SRMR SRMR SRMR SRMR RMSEA SRMR 
W&H    - W&H W&H W&H W&H W&H W&H W&H W&H W&H W&H W&H 
CFI     - NFI NNFI IFI AGFI AIC CAIC ECVI MFI RMSEA SBC 
NFI      - NNFI IFI AGFI AIC CAIC ECVI MFI RMSEA SBC 
NNFI       - NNFI AGFI AIC CAIC ECVI MFI RMSEA SBC 
IFI        - AGFI AIC CAIC ECVI MFI RMSEA SBC 
AGFI         - AIC CAIC ECVI MFI RMSEA SBC 
AIC          - AIC AIC AIC/MFI RMSEA AIC 
CAIC           - ECVI CAIC/MFI RMSEA SBC 
ECVI            - ECVI/MFI RMSEA ECVI 
MFI             - RMSEA SBC/MFI 
RMSEA              - RMSEA 
 

Chi-Square, Goodness of Fit Index (GFI), Root Mean 
Square Residuals (RMR), Standardized Root Mean Square 
Residuals (SRMR), Z-Test of Wilson & Hilferty (W&H), 
Comparative Fit Index (CFI), Normed Fit Index (NFI), Non-
normed Fit Index (NNFI), Incremental Fit Index (IFI), 
Adjusted Goodness of Fit Index (AGFI), Akaike Information 
Criterion (AIC), Consistent Akaike Information Criterion 
(CAIC), Expected Cross Validation Index (ECVI), 
McDonald’s Fit Index (MFI), Root Mean Square Error of 
Approximation (RMSEA) and Schwarz Bayesian Criterion 
(SBC) 

 
Discussion and Conclusion 

 
Structural equation modeling is a very powerful 

multivariate analysis technique that makes it possible to 
evaluate hidden structures, while asymptotic relative 
efficiency is an analysis and testing tool due to its unique 
properties compared to other techniques. After 
parameter estimation is made with the appropriate 
method for the specified model, the model needs to be 
tested. In testing the model, the compatibility of the data 
with the specified model is determined. In other words, an 
answer is sought to the question "to what extent is the 
theoretical (specified, proposed, and established) model 
compatible with the sample data" [22]. Compliance is 
called the ability of a model to reproduce the data, that is, 
the variance-covariance matrix [23]. There are many fit 
criteria to evaluate model fit in SEM. Most of these fit 
measures are based on comparing the covariance matrix 
of the theoretically proposed model with the sample 
covariance matrix. The fact that these two matrices are 
not similar to each other, that is, the difference between 
the matrices is large, indicates that the data does not fit 

the theoretical model, and the fact that the difference 
between these two matrices is very small indicates that 
the data fits well with the theoretical model [22, 24, 25]. 
Evaluating model performance, that is, comparing the 
predictions produced by the model with observed values, 
is a fundamental step in model development and use. 
Once models are obtained, it is necessary to validate some 
aspects of them. This validation process usually involves a 
definition of criteria based on mathematical 
measurements that indicate how well the model's 
predictions are produced by simulating observed values 
[26].The validity of the structural equation model is tested 
by calculating fit indices based on the collected data.   

The results suggest that W&H is the best goodness of 
fit statistic for all specified assumptions.  In the study, the 
multivariate normality assumption was taken into 
consideration and the fit indices were compared in terms 
of their asymptotic relative efficiency for the case where 
this assumption is valid.  Although it is emphasized in the 
literature [15, 19, 25, 27] that the Chi-Square indices is 
affected by the sample size and should not be used, its 
effectiveness was better than the other indices after W&H 
and RMSEA fit indexes.  In future studies, it is 
recommended to make comparisons for cases where this 
assumption is violated.  Since the W&H fit indices is not 
calculated in some statistical packages, it is recommended 
to use the RMSEA fit indices in future studies. Doğan and 
Doğan [18] emphasize that model selection criteria should 
be considered as a model comparison or evaluation tool 
because the term selection includes the idea that 
something more certain is achieved. In addition, the 
criteria used in model selection should not be duplicated 
beyond necessity [18]. As a result, it is more important to 
decide which one gives better results rather than 
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duplicating model fit indices. This study shows that the 
RMSEA fit indices gives better results than others. 
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