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Introduction

Convex functions are an important concept that is
used in mathematics, economics, engineering, statistics,
and many other fields. In the field of statistics, these
functions have various applications such as parameter
estimation, classification, clustering, and regression. Also,
in engineering, convex functions play an important role in
many areas such as signal processing, control systems,
data compression, optimization, and energy
management. Lastly, in the realm of mathematics, convex
functions find extensive applications in disciplines like
analysis, differential equations, topology, geometry, and
mathematical programming. Especially, they have an
important place in the issue of inequalities in
mathematics. The most known inequality of convex
analysis is Hermite-Hadamard inequality, which was
investigated by C. Hermite and J. Hadamard. The Hermite-
Hadamard is a mathematical inequality states that the
mean of the values of a function is an upper bound
between the maximum and minimum values of the
function. This can be expressed as [1,2]:

Let f:1 € R = R be a convex function a,b € R with
a < b then the following inequalities hold

b
b 1 b
f<a42— )Sfaff(x)dxsw' (D

a
If f is concave, both inequalities hold in the opposite
direction. The left-hand side of the inequality (1)
represents midpoint inequality, while the right-hand side
of the inequality (1) represents trapezoid inequality.

fractional integrals. For this, we first obtain an identity. After that, using this identity and with the help of
modulus function, Holder inequality, power mean inequality, ongoing research and the papers mentioned, we
have reached our intended midpoint type inequalities. Also, we give the special cases of our results. We see that
our special results give earlier works.
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On the other hand, fractional calculus has a long
history, dating back to the correspondence between
Leibniz and L'Hopital. Many mathematicians and
physicists have contributed to the development of
fractional calculus over the past three centuries, and there
are now numerous books covering the topic. Recent
theories and experiments have shown that fractional
calculus is a powerful tool for describing non-classical
phenomena in applied sciences and engineering [3-6].
Due to its mathematical properties, fractional calculus is
commonly used to study anomalous kinetics in physics,
biology, chemistry, and other complex systems [3].

Fractional calculus has two important topics that are
fractional derivative and fractional integral. The first
fractional integrals were described by Gottfried Wilhelm
Leibniz in 1695. However, the modern theory of fractional
integration was developed in the 19th century by Augustin
Louis Cauchy and Liouville. Cauchy was one of the first to
demonstrate that fractional integrals can be calculated
analytically. On the other hand, Liouville made important
studies on the theory of fractional integrals and obtained
many results about fractional derivatives. The modern
theory of fractional integration has been developed since
the early 20th century. The general theory of fractional
integrals was developed in the 1930s and 1940s,
especially by Norbert Wiener and Joseph L. Doob. Besides,
various types of fractional derivatives, including Riemann-
Liouville, Caputo [7,8], Riesz [8], and Hilfer [6,9], have
been introduced for practical applications. Fractional
integrals have been discovered to be an important tool for
modeling stochastic processes. Advances in this area
include topics such as fractional derivatives of random
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walks and fractional Brownian motions. In recent years,
fractional integration and derivatives have become a topic
with applications in many fields such as mathematical
physics, electrotechnics, materials science, biomedical
engineering, fluid dynamics, and finance. One can find the
papers referenced in [10-14] about fractional calculus.

In this article, we introduce several necessary
definitions to present our main results. The definition of
Riemann-Liouville integral operators is as follows [15]:

Definition 1. The Riemann-Liouville integrals with ¢ > 0
for f € Ly[a, b] are:

1 X
86 = s f -0 f@Odt, x>a  (2)

and

b
1
Ip-f(x) = @f(t ) Lf()dt, x<b.  (3)

It is evident that the Riemann-Liouville integrals
coincide with the classical integrals when a = 1.

The trapezoid-type inequalities for convex functions
were first established by Dragomir and Agarwal in [16],
while Kirmaci was the first to prove midpoint-type
inequalities for convex functions in [17]. Fractional
midpoint-type inequalities and trapezoid-type
inequalities for convex functions were presented by
Sarikaya et al. in [18] and by Igbal et al. in [19],

Mohammed et al. defined new function and gave
some properties of this function as follows [21]:

Definition 2. For the real numbers &« > 0 and x,4 = 0 the
A — incomplete gamma function is defined as follows:
X

Y, (a,x) = J-t“_le‘“dt.

0
Taking A =1 it turns the incomplete gamma function
[22]:

X
Y(a,x) = f t* et

0
Remark 3. For real numbersa > 0; x,A > 0 and a < b,

there are the following equalities:
1

D Vigma (@) = [ <t et0-rar
0

= <ﬁ)an((x, b —a),

1
2) fl) Yap-a)(a, x) dx
0

Y,(a,b—a) Y(a+1,b—a)
T o(b-a*  (b—a)t
Now, we will review the basic definitions and
introduce new symbols for the tempered fractional
operators [23,24].

Definition 3. Let f € L,[a,b] and a >0, A > 0. The

. . (a,h)
respectively. To learn more about fractional integral fr(zcilt)lonal tempered integral operators /o, f(x) and
inequalities, see [8,20] and the references mentioned Jp- /(X) are presented by
there.

1 X
I ORS f (x = )*1e™AE0 f(t)dt, x € [a,b] )
a
and
) b
P = o [ € =0 e f0de, x ela,bl ©)
X

If A = 0, then the fractional integrals in (4) and (5) reduce to the Riemann-Liouville fractional integrals in (2) and (3),

respectively.

In [21], Mohammed et al. gave Hermite-Hadamard inequality involved A-incomplete gamma function and tempered

fractional operators as follows:

Theorem 4. Let f: [a, b] — R be a convex L; function on [a, b] with a < b. Then, the following inequlaties hold:

a+b I'(a)
f( 2 ) = Z(b - a)a) Y,l(b_a)(a, 1)

fora >0and 1= 0.

Tempered fractional calculus is considered as an
extension of fractional calculus. Buschman's work [25]
introduced the definitions of fractional integration with
weak singular and exponential kernels which later led to
the development of tempered fractional integration.
Meerschaert, Samko, Srivastava [8,26,27], and other
researchers have studied various definitions of tempered
fractional integration. In [21], Hermite-Hadamard-type

UEPFb) + 1P F(@)] <

f(a) + f(b)

— (6)
inequalities involving tempered fractional integrals were
established for convex functions, extending previously
published results such as Riemann integrals and Riemann-
Liouville fractional integrals. The authors followed the
techniques developed by Sarikaya et al. [18,28] to
establish these inequalities.

In this paper, we first obtain an identity for the
midpoint side of Hermite-Hadamard inequality [21]. After
that using this identity and with the help of modulus
function, Holder inequality, power mean inequality,

759



Tung, Altunok. / Cumhuriyet Sci. J., 44(4) (2023) 758-767

ongoing research and the papers mentioned above, we  differentiable convex mappings. Also, we give the special
get number of midpoint-type inequalities that involve  cases of these inequalities.
tempered fractional integral operators for the

Midpoint-Type Inequalities Involving Tempered Fractional Integrals

Using tempered fractional integrals, we build Hermite-Hadamard type inequalities through differentiable convex
functions in this section. To start, we'll define the following identity for obtaining such inequalities.
Lemma 5. Consider that f:[a,b] = R is a differentiable function on (a, b) such that f', f € L;[a, b]. The following
equality for Tempered fractional integrals holds with a > 0, 1 = 0:

a+b I'(a) @) @) B b—a 2
( 2 ) T 20b—-a)e Yatr-ay(@ 1) Vo f ) + 1,27 F(@)] = m;h{ @)
where

1/2

1/2
11=f Yi-a (@ ) f/(th + (1 — Da)dt, 5=J';mw%ﬂmwfxm+m1—wwdu
0 0
1

- f [Yo0-0 (@ ) = Yoo (@ D] £/(th + (1 — Da)d,
172

~
w
|

1

I, = f[Ym,_a) (@,1) — Yap-a)(@ )] f'(ta + (1 — t)b)dL.

1/2

Proof. We can obtain the following result by applying integration by parts

1/2
L= [ Yio-o@O @+ - Dt ®)
0
Y (@) fth+ (1 -Da)|* 1 e
_ Yip-o(@ —Da) f a-1 ,-A(b-a)t 1—
b —a i P— t* e fth+ (1 —t)a)dt
0

1/2

f t21e A=t (th + (1 —t)a)dt.
0

1
Y- (0(, 7) (a + b) 1
- b-a 2 b—a

By computing the remaining integrals in a similar method, we arrive at

1/2
L= f —Yap-ay(a, t) f'(ta + (1 — t)b)dt ©
0
1 1/2
Yip-) (@3 +bhy 1
= (bbai(a 2) (a . )_ — af a1 e—ﬂ(b—a)tf(ta + (1 - t)b)dt,
0
1
Iy = f [Yam-a(@t) = Vap-o (@, D] f'(th + (1 — )a)dt (10)
1/2
1 1
Y}L - (a'l)_Y}L — a, = +b 1
— [ (b-a) — a(b a)( 2)] f(a _ ) _ — af ta—1e—/1(b—a)tf(tb +(1-t)a)dt,
2
and
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1
14- = I[YA(b_a)(a’, 1) - Y}.(b_a)(a, t)] f,(ta + (1 - t)b)dt (11)

1/2

[Y/l(b—a) (@) = Vap-a) (a, 1)] a+b 1
: f( )_b

b—a 2

1
- J- t@ 1 e A=t £(tq 4 (1 — t)b)dLt.
al
2

By summing up the inequalities (8)-(11), we conclude that

4
ZYA(b— )((X, 1) a+b
Zl"z b= a f( 2 ) 12
k=1
1 1 1
S f t@ 1 e~ A=t £(th 4 (1 — t)a)dt + f t@ 1 Ab-Dtf(tq + (1 — t)b)dt ;.
0 0

When the above integrals are rewritten using the variable change x =tb + (1 —t)a and x = ta + (1 — t)b, the
following expressions are obtained

1

j ta1e=A0-Dtf(¢p 4 (1 — )a)dt = % 7S (b, (13)
0
f pa-1 e—l(b—a)tf(ta + (1 —t)b)dt = % ]lglf.l)f(a), (14)
0

By replacing the equalities (13) and (14) in (12) and applying a multiplication operation to the resulting expression using
b—a

—— , we arrive at the following equalit
ZYA(b—a)(“rl) geq \

_ b-a N _ o(atby (@) (@) (@)
2 Y/l(b—a)(a' 1) — Ik B f( 2 ) 2 Ym,_a)(a, 1)(b - a)“ {]a+ f(b) +]b_ f(a)}

This completes the demonstration of the statement.

Theorem 6. Suppose that f: [a, b] — R be a differentiable function on the interval (a, b) with f, f' € L,[a, b] and |f|
is a convex function on [a, b] with a < b. Then, we have the following inequality for @ > 0, 1 = 0 and the Tempered
fractional integrals

(50 - o U ) + 1P @) < AP @b @ + 1 D) (15)
where
Aga‘l) (a, b) = m {fol/z Yl(b—a) ((X, t) dt + f11/2 [Y}.(b—a) (a, 1) - Y/l(b—a) (a, t)] dt}

Proof. By taking the absolute value of both sides of the equation in Lemma 5, we obtain

4
- PE®) + ISP F @) < 5 D Ikl
| () - To—mmve @ n O @) S 2,
Using the convexity of the function |f’|, we get
1/2
=] Yio-olwo £+ - Dayde (16)

0
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1/2

< f | Yap—ay (@, O If'(th + (1 — Da)|dt

1/2

< f Yatoma (@ 0 [t )] + (1 = O)If (@) []dt
1/2 1/2

~ I (@) f (1 = s (@ Odt + [f'(D)] f EY s (@ D).

Utilizing the same approach for the other integrals, the listed expressions are appeared

1/2 1/2

] < If’(a)lf t Yap-ay(a, t)dt + If’(b)lf (1 - ) Yip-o(a t)dt, (17)
0 0

5] < |f"(a)l f(l — ) Yagp-ay(@ 1) = Yo (@, 0)]dt (18)
1/2

PO f [ Yatoo (@ 1) = Yagp—ay(ct, D] dt

1/2
and

1
L] < If" (@) ft [Yao-ay(@ D) = Yap-ay(a, )]dt (19)

1/2
1

HF®)) f (1 = O Yagr-a(@ 1) — Yoo (, O)]dt.
1/2

By taking the sum of the inequalities from (16) to (19) and after that multiplying the outcome of expression by
b—a

——— , we conclude that
2Y(p—g)(@.1)

b

m& = A" (@, b)(If' (@] + If' (B)]).

The proof is completed.

Remark 7. Setting A = 0 in inequality (15) and applying the property that is [t;* — t,%| < |t; — t,|* for t,,t, € [0,1]
and a € (0,1] to the obtained inequality, then it follows that:

| (42) - L g 0) + I3 @)}

a+b F(a+1)

_mﬂf @I+ 1B,

which is proved by Igbal et al. in [19].

Remark 8. Settinga = 1 and A = 0 in (15), we obtain

b
a+b 1 b—a ,
£(557) - 5= [ reoax| < 22 ar @i+ ir oD,

which is proved by Kirmaci in [17].

Theorem 9. Assuming that f: [a, b] —» R is a differentiable function on (a, b) with f, f' € Ly[a,b] and |f'|?,q > 1isa
convex function on [a, b], the subsequent inequality is satisfied
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a+b I'(a) ) (@)
b 20
|f( ) - TG @D Ve O + @) (20)
31F'(@)|? + |f/(B)]9) "1 @)+ 31F/(b)|7\ 1
< 4,9 (g, b) If' @17+ |f' ()] N If'(a) lf'(b)] ’
8 8
where
1/2 1/p 1 1/p
b—a
Aga"l)(a, b) = f [Yl(b—a)(al t)]p dt + J.[Yl(b—a) ((I, 1) - Y/l(b—a)(a' t)]p dt
2 YVip-oy(a, 1)
0 1/2
and 2 +1=1.
P q
Proof. By utilizing the properties of the modulus function and Lemma 5, we can conclude that
| (a + b) B I'(a) {](M)f(b) _I_](a/l)f(a)} ZV
2 ) 20-a)*Vypgla DV b 2 m a)(a DLt
The Hélder inequality and the convexity of |f'|? allow us to arrive the following inequality
1/2
1= | Yiomal@ 0 @+ (- o 21)
0
1/2 p 172 1/q
< f [ Y- (@ )]’ dt f If'(th + (1 — t)a)|? dt
0 0
s " aIF @I P oI
a)l|® +
< f [ Yooy (@ t)]” dt < 5 ) .
0
In the same way,
1/2
it = || =Yao-a@0 fa+ @ - b 22)
0
1/2 1/p e
If' (@19 + 3|f' ()]
f [ Y-y (@ )]’ dt < = ,
0
13| = f [Yap-a)(@ ) = YVap-ay(@ D]f'th + (1 - t)a)dt (23)
1/2
g " 1@l + 17 @)
a)|® +
< f[y)l(b—a)(a: 1) = Vyp-(a, )] dt ( 3 ) )
1/2
and
1
1] = f [Yap-a)(@ D) = Vap-g(@ O)]f'(ta + (1 - t)b)dt (24)
1/2
g " P @I+ 3B
a)|®+
< J-[ Y)L(b—a) ((Z, 1) - Y/l(b—a) ((Z, t)]p dt ( 3 ) .
1/2
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When the inequalities are added up (21)-(24) and subsequently the result is multiplied by zyb;a(al) , the next
Ab-a)\&,
expression is displayed:
4

b—a @) 3IF(@17 + £/ BINYT (1 (@19 + 31/ (b)|7)
o@D 1)k=1”k| <A (a,b) [( 5 ) + 5 :

Thus, the hypothesis of the theorem is obtained.

Remark 10. The inequality can be obtained by setting A = 0 in (20):

a+b I(a+1)
Z(b—a)“

Uasf (D) +Jp-f(a)}

__ b-a IF @I+ 1P BN (I @I + 31 1)1\
T 20+l (gp + 1)1/p 4 4 ’

(%5

which is proved by Igbal et al. in [19].
Remark 11. The inequality can be obtained by setting @ = 1 and A = 0 in (20):

1/p

) {[3|f'(a)|p/(p—1) + |f'(b)|p/(p—1)](p'1)/p

b
i=a ) o= () <

+[|f’(a) |P/(p—1) +3 |f’(b) |p/(p_1)](p—1)/p}‘

which is proved by Kirmaci in [17].

Theorem 12. Let f:[a, b] — R be a differentiable function on (a, b) such that f, f' € L;[a, b]. If the function |f'|? is
convex on [a, b] with g = 1, then the following inequality holds:

a + b I'(a) (@ (@)
Deipy 4 1@ 25
|f 2 (b _ a)a Yl(b—a)(a' 1) {]a+ f( ) +]b— f(a)} ( )
1/2 1-1/q
< @I+ O A @) | [ Yoot od
2 Y/1(b a)( 1) 0
1-1/q
+AS{“’A) (a,b) J[ Yi-o)(@ 1) = Yyp-go(a, t)] dt ’
1/2
where
1/2 Va2 Ha
AP (a,b) = f t Vap-o(a t)dt + J A=80 Nap-o(@t)dt |
0 0
) 1/q L 1/q
48 (a,b) = ft [Yap-a)(@1) = Vap-g(a.O]dt |+ j(l =0 [Yag-o (@ 1) = Yap-o (@ O]dt
172 1/2

Proof. The absolute value of Lemma 5 yields:

| (a + b) B I'(a)

A ICET ) &P + 1P @) <

b—a le |
"2 V- (@) & -

AppIying the power-mean integral inequality for g>1 and wusing the fact that for 0<r<
1,Y5 (a;+ b)) <X al + X, b witha;, b; 20,i =12, ...,n, then we obtain:
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1/2
I = f Yoo (@) £(th + (1 — Da)dt 26)
0
1/2
< f | Yoo (@ O] 1 (th + (1 — D) dt
0
1/2
_ 1/p 1/q | -
- f [Yat—o (@ O] [ Yoo (@ O] 77 1 (th + (1 — Da)lde
0
1/2 1-1/a ;172 1/q
<\ [ Yow@de| || Vioo@olreh+a-oala
0 0
1/2 1-1/q 1/2 1/q
< f Yoo (@ ) dt f Yatooo (@) (LI + (1= OIf (@)]9] dt
0 0
1/2 1-1/q 1/2 1/2 1/q
= f Yap-a) (@, t) dt x| If )1 f t Yap-o (@, )dt+|f'(@)]? f A =t)Yap-ay(a t)dt
0 0 0
1/2 1-1/q
< f Y;{(b_a)(a,t)dt
0
1/2 1/q 1/2 1/q
< |1F/ @)l ftvm_@(a.t)dt +1f @ f (1= £) Yy(poay(a, O)dt
0 0
In the same way,
1/2
L] = f Ny (@ ) f(ta + (1 — Dbt @7)
0
1/2 1-1/q 1/2 1/2 1/q
| [ voo@ode ] x[1r@I [ io-a@ode+1FGI [ =0 Vipg@ode
0 0 0
1/2 1-1/q
< f Y/l(b—a) (CZ, t) dt
0
1/2 1/q 1/2 1/q
< |If @l ftm_a>(a,t)dt + I ) j 1-t) Vap-o (@bt | |
0 0
1
II,| = f Va0 (@ ) — Yoo (@ D]F'(th + (1 — Da)de 28)
1/2
1
1 1_5 1
< f[Ym,_@(a.l)—Ym_@(a.t)]dt x 1 1)l f [ Yot (@ 1) = Yoo (@ O]de
1 1/2
2
1 1/q
HIF @) f (1= ) [Yatome (@ 1) = Yagpoe (@ D] dt

1/2
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1 1-1/q
< f[yl(b—a)(afl)_ Yap-ay (@, )]dt
1/2
1 1/q
< {17 ()| f [ Yot (@ 1) = Yoo (@ D)]dt
1/2
1 1/q
+If @) f A= [Yipw@D - Yipo@dld | |
172
and
1
L] = f [Yatome (@ 1) = Yagp—o (e O]F'(ta + (1 — D)b)dt 29)
172

1 1-1/q
= f [Yl(b—a) (a,1) = Yl(b—a) (a, t)]dt
172
1
x{ If'(a)]? f t[ Yap-ay(@ 1) = Yap-a(a, O)]dt
1/2
1 1/q
+|f’(b)|q f(l - t) [Y}L(b—a)(a: 1) - Yl(b—a) ((X, t)]dt
1/2
1 1-1/q
= f [Yl(b—a)(a, 1) - Ya(b_a)(a, t)]dt
1/2
1 1/q
x A 1f' (@] f t[YA(b—a)(a, 1) — Ya(b_a)(a, t)]dt
172
1 1/q
+1f' (D) f(l — ) [Yag-ay(@ 1) = Yagp-o (@ t)]dt
1/2

By totaling the inequalities from (26) to (29), it follows that

4 1/2 1-1/q
NAE f Vip-w@t)dt | {45V @b)IIf @] +1f 1)l
k=1 0

1-1/q

H [ Moo@D = Yoo@olde| {4 @nliF @I+ o)

1/2

This completes the proof.

Remark 13. The inequality can be obtained by setting A=0 in (25) and using for 0<r<1
Yiti (@i +b)" < XL, af + XL, by witha;,b; 20,i=12,..,n

b—a

= mﬂfl(aﬂ + |f’(b)|]{

a+b Ma+1) .
|f( ) 20— e U 0) + I f (@)

(a + DY+ (a + 3)M4
[2(a + 2)]"/a
which is proved by Igbal et al. in [19].
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Remark 14. The inequality can be obtained by setting @ = 1 and A = 0 in (25):

b
[ reoax—r (%5

a+b b—a<1+21/q
)<

8 31/q

which is proved by Kirmaci et al. in [17].
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