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Abstract
In this work, the concept of the generalized Poincaré distance is given and the distance between two points
on vertical lines, horizontal lines and semi-ellipses in the upper half-plane are examined. It is also shown that
translations parallel to the x-axis and reflections in the vertical lines preserve the generalized Poincaré distance
in the upper half-plane.
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1. Introduction
Hyperbolic geometry, also known as Lobachevskian geometry, is a non-Euclidean geometry that has been the subject of intense
study and fascination for over a century. One of the most popular models of hyperbolic geometry is the classical Poincaré upper
half-plane, which has been widely used to represent various hyperbolic structures in mathematics, physics, and other fields.

In 1854, Riemann proposed a general modification of planar distances, suggesting that mathematicians studied geometries
where the length of an arbitrary curve γ in the plane was expressed as

L =
∫
γ

√
(Edx2 +2Fdxdy+Gdy2.

In this equality, the functions E, F and G are subject to the constraints E > 0, G > 0 and EG−F2 > 0. The expression
Edx2 +2Fdxdy+Gdy2 is known as the Riemann (or Riemannian) metric. The Euclidean metric, dx2 +dy2, and the Poincare

metric,
dx2 +dy2

y2 , are special cases of this general metric, [1]. It is important to note that many metrics are only defined in

specific regions of the plane. For example, the Poincare metric is undefined on the x-axis and is typically restricted to the upper
half-plane. Riemannian geometry is a branch of mathematics that studies the properties of curved spaces using the concept of
metrics. Every metric, which describes the distances and angles in a space, has associated geodesics. Geodesics are the paths
that locally minimize distance between points. Riemannian geometry provides a powerful framework for understanding the
geometry of curved spaces and has found applications in physics, computer science, and other fields. Its success lies in its
ability to capture the rich geometric structures and phenomena that arise in curved spaces, offering deep insights into the nature
of space itself.

The upper half-plane refers to the positive ordinate region of the Cartesian coordinate system. By considering half-lines
perpendicular to the x-axis and half-circles centered on the x-axis as lines within the upper half-plane, a model for the hyperbolic
plane can be constructed. Various models for hyperbolic plane geometries exist, including the one mentioned in this paper and
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other models described in [1–4]. In this particular model, the hyperbolic length of a curve γ is defined by an integral involving
dx, dy and known as the Poincaré metric, which serves as a distance function and metric. The Poincaré half-plane refers to the
Euclidean half-plane equipped with the Poincaré metric. Numerous generalized metrics have been developed in recent years, as
highlighted in [3–9].

In the Poincaré Half-Plane Model, the geodesics are represented by either vertical lines perpendicular to the x-axis or
circular arcs centered on the x-axis. It’s important to note that geodesics in the Poincaré Half-Plane Model are different from
the Euclidean straight lines.

In 2019, R. Kaya gave some generalizations of the classical Poincaré upper half-plane model by replacing the circular arcs
with elliptical arcs with center on the x-axis and foci on the x-axis or on the lines perpendicular to the x-axis at the center, in the
upper half-plane. This approach leads to a class of generalized upper half-planes with an infinite number of members, each
with its own unique hyperbolic structure. The paper showed that using the Poincaré distance function, the generalized upper
half-plane can be used to create a metric geometry known as Hk [4].

The purpose of this work is to introduce an alternative distance function that differs from the traditional Poincaré distance
function and to examine the distance between two points on vertical lines, horizontal lines and semi-ellipses with the center on
the x-axis in the upper half-plane. It is also shown that translations parallel to the x-axis and reflections in the vertical lines
preserve the generalized Poincaré distance in the upper half-plane.

By investigating this alternative distance function, we aim to unveil new insights into the geometric properties and
characteristics of the upper half-plane. The findings presented in this paper contribute to the understanding of non-traditional
distance metrics and their implications for determining optimal paths in different geometrical contexts.

2. The generalized Poincaré metric
In the upper half Poincaré model, the hyperbolic length of an arbitrary curve γ is defined by using the Poincaré distance function∫
γ

√
dx2 +dy2

y
. The Riemann metric with E =

1
a2y2 , G =

1
b2y2 , F = 0, where a > 0,b > 0 and a,b ∈ R can be expressed as

Edx2 +2Fdxdy+Gdy2 =
dx2

a2y2 +
dy2

b2y2 .

This metric is a generalization of the Poincaré metric in the upper half-plane. In the Poincaré metric, the expressions for the
metric coefficients are E = G = 1/y2 and F = 0. By introducing additional parameters a and b, the given metric extends the
Poincaré metric and allows for a more generalized representation of distances in the upper half-plane. So both metrics serve to
calculate the lengths of curves in this region, but they differ in their constant coefficients.

Definition 1. In the upper half-plane, the distance between two points P and Q along the γ curve is given by the integral

∫
γ

√
dx2

a2 + dy2

b2

y
, a,b ∈ R+.

The differentials dx and dy represent infinitesimal changes.

Theorem 2. Let P and Q be two points with equal x-coordinates in the upper half-plane. The generalized Poincaré length

of the Euclidean line segment connecting P and Q is given by
1
b

ln
y2

y1
, where y1 and y2 are the y-coordinates of P and Q,

respectively.

Proof. Let P(x1,y1) and Q(x2,y2) be on the vertical line x = h. The generalized hyperbolic length of the Euclidean vertical
line segment x = h joining the points P and Q

y2∫
y1

√
dx2

a2 +
dy2

b2

y
.

In this case, dx = 0 and dy = y2 − y1. Considering y1 ≤ y2, we have the generalized Poincaré length of the line segment
joining the points P(x1,y1) and Q(x2,y2)
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1
b

y2∫
y1

dy
y

=
1
b

ln
y2

y1
.

This proves that the distance between two points P and Q on the line x = h in the upper half-plane is given by
1
b

ln
y2

y1
. ■

Theorem 3. Let P and Q be two points with equal y-coordinates in the upper half-plane. The generalized Poincaré length

of the Euclidean line segment with the equation y = k connecting P and Q is given by
1
ak

(x2 − x1), where x1 and x2 are the
x-coordinates of P and Q, respectively.

Proof. Let P(x1,y1) and Q(x2,y2) be on the horizontal line y = k. The generalized Poincaré length of the Euclidean horizontal
line segment joining the points P and Q is

x2∫
x1

√
dx2

a2 +
dy2

b2

y
.

In this case, dy = 0 and dx = x2 − x1. Considering x1 ≤ x2, we have the generalized Poincaré length of the line segment
joining the points P(x1,y1) and Q(x2,y2):

1
a

x2∫
x1

dx
k

=
1
ak

(x2 − x1).

This proves that in the upper half-plane model, the generalized Poincaré distance between two points P and Q on the line y = k

is given by
1
ak

(x2 − x1). ■

Proposition 4. Let γ be semi-ellipse having the equation ((x− c)2/a2)+ y2/b2 = 1, with the center C = (c,0). If P and Q
are points of γ such that the rays CP and CQ make angles α and β (α < β ), respectively, with the positive x-axis, then the
generalized Poincaré length of arc PQ is

1
b

ln
cscβ − cotβ

cscα − cotα
.

Proof. Consider the semi-ellipse γ with the equation ((x− c)2/a2)+ y2/b2 = 1, centered at C = (c,0), and points P and Q on
γ such that the rays CP and CQ make angles α and β (α < β ) with the positive x−axis, respectively. If the semi-ellipse γ is
parameterized by using t, then

x = c+acost, y = bsin t.

Let tP and tQ denote the values of t corresponding to the points P and Q, respectively. Using the parameterization, we can
express

dx
dt

=−asin t,
dy
dt

= bcos t.

So the generalized Poincaré length of the arc PQ can be written as

∫
γ

√
dx2

a2 + dy2

b2

y
=

1
b

tQ∫
tP

dt
sin t

.

Since α = tP and β = tQ, we can rewrite the formula as

1
b

ln
cscβ − cotβ

cscα − cotα
.

■
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Theorem 5. If PQ and P′Q′ are the arcs of Euclidean similar ellipses which have the same center C on the x-axis and foci on
the x-axis or on the lines perpendicular to the x-axis at the center C and such that each of the triples C,P,P′ and C,Q,Q′ is
collinear in the upper half plane, then two arcs PQ and P′Q′ have the same generalized Poincaré length.

Proof. Let PQ be an arc on the ellipse α with the center C(c,0) and equation

(x− c)2

A2 +
y2

B2 = 1, A,B ∈ R+

and let P′Q′ be an arc on the ellipse α ′ with the same center C and equation

(x− c)2

A′2 +
y2

B′2 = 1, A′,B′ ∈ R+

such that C, P, Q and C, P′, Q′ are collinear points in the upper half plane. Also the angles tP and tQ, tP < tQ be the angles
between the rays CP , CQ and positive x-axis, respectively. Since α and α ′ are similar ellipses, we get

A
A′ =

B
B′ = k.

If the semi-ellipse α is parameterized by using t, then

x = c+Acos t, y = Bsin t.

Determine the values of t corresponding two points P and Q, as tP and tQ respectively. Using the parametrization, we can
express

dx
dt

=−Asin t,
dy
dt

= Bcos t.

So the generalized Poincaré length of the arc PQ is given by

tQ∫
tP

√
A2

a2 sin2 t + B2

b2 cos2 t

Bsin t
dt.

Using A = kA′ and B = kB′,

tQ∫
tP

√
A′2 sin2 t

a2 +
B′2 cos2 t

b2 dt

is obtained. Since the last integral is the generalized Poincaré length of the arc joining P′ and Q′, two arcs PQ and P′Q′ have
the same generalized Poincaré length. ■

Theorem 6. In the upper half-plane, translations parallel to the x-axis preserve the generalized Poincaré distance.

Proof. Let τ be the translation defined by τ(x,y) = (x+h,y), where h is a fixed number. Consider a curve γ parametrized as
[u(t),v(t)] for t1 < t < t2. The translated curve τ(γ) has the parametrization [u(t)+h,v(t)] for the same interval t1 < t < t2. The
differentials dx and dy along both γ and τ(γ) can be expressed as dx = u′(t)dt,dy = v′(t)dt. By substituting these differentials
into the generalized Poincaré distance formula, we have

t2∫
t1

√
u′(t)2

a2 + v′(t)2

b2

v(t)
dt.

Consequently, both γ and τ(γ) have the same the generalized Poincaré length, given by the above integral. Therefore,
translations parallel to the x-axis preserve the generalized Poincaré distances. ■

Theorem 7. Reflections in the lines perpendicular to the x-axis in the upper half-plane preserve the generalized Poincaré
distance.
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Proof. Let l be a line perpendicular to the x-axis having equation x = h in the upper half-plane. If γ is any curve parametrized as
[u(t),v(t)], t1 < t < t2, then ρl(γ) has parametrization [2h−u(t),v(t)], t1 < t < t2. The differentials dx and dy along γ and ρl(γ)
can be expressed as: dx = u′(t)dt,dy = v′(t)dt and dx =−u′(t)dt,dy = v′(t)dt, respectively. By substituting these differentials
into the generalized Poincaré distance formula, we have:

t2∫
t1

√
u′(t)2

a2 + v′(t)2

b2

v(t)
dt.

Consequently, both γ and ρl(γ) have the same generalized Poincaré length. ■

3. Conclusions
This paper provides an in-depth exploration of the generalized Poincaré distance in the upper half-plane. It establishes formulas
for calculating the generalized Poincaré length in various scenarios, considering equal x-coordinates, equal y-coordinates, and
arcs of a semi-ellipse. It is show that the generalized Poincaré arc lengths on the similar semi-ellipses with the same center on
the x-axis and foci on the x-axis or on the lines perpendicular to the x-axis at the center subtending the same angle at the center
in the upper half-plane are equal. Furthermore, it demonstrates that translations parallel to the x-axis and reflections in the
lines perpendicular to the x-axis preserve the generalized Poincaré distance. These findings contribute to the understanding and
application of the generalized Poincaré distance in geometric contexts within the upper half-plane.
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