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almost C(@)- manifold with respect to the W;- curvature tensor, such as W;-flat and W;- semi-symmetry, are
investigated. The relationship of W,- curvature tensor with Riemann, Ricci, projective, concircular and quasi-
conformal curvature tensor is discussed on the almost € (a)- manifold and many important results are obtained.

In addition, W;5- pseudo symmetry and W;- Ricci pseudo symmetry are investigated for the almost C(a)-
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Introduction

In recent years, many geometers have defined
different curvature tensors on many different manifolds
such as Sasakian, para-Sasakian, Lorentzian paracontact,
Lorentzian para-Sasakian. The curvature tensor is a very
important concept for manifolds. These defined curvature
tensors have been characterized in accordance with the
properties of the manifold used and their relations with
different curvature tensors have been established. Many
authors have studied the symmetry case of various
manifolds. The flatness of the curvature tensor and the
semi-symmetrical  curvature  conditions revealed
interesting properties of manifolds.

Motivated by the work of many geometers using
different manifolds and different curvature tensors, this

T(w, w,)w; =

manifold. The results obtained are interesting and give an idea about the geometry of the almost C(a)-
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research paper deals with some curvature properties of
the almost C(a)- manifold, which is a subclass of almost
contact metric manifolds and the general form of co-
Keahler, Kenmotsu, Sasakian manifolds.

The paracontact geometry was studied at first time by
Kaneyuki and Williams. And then Zamkovoy gave a
characterization of the paracontact metric manifolds and
their subclasses [1-2]. Paracontact metric manifolds are
studies widely by geometers and they defined a new type
of paracontact geometry that is called paracontact metric
(k, u)- spaces [3-8]. And also, semi-symmetric spaces
which are generalization of locally symmetric spaces were
introduced by some authors [9-10].

A (1,3)-type curvature tensor

agR (@, @,)w; + a,S(@,, @3)w; + a5 (@, @3) @,

ta;S (@, w,)w3 + a,9(@,, w3)Qw; + asg(wy, w3)Qw, (1)

t+agg (@, @) Qw; + a;7[g(@,, @3)w, — g(@,, @3)w,]

on an n-dimensional semi-Riemann manifold was defined by M. Tripathi and P. Gupta [11]. Here a,,ay,...,a, are

regular functions; R,S,Q and r are respectively Riemann curvature tensor, Ricci tensor, Ricci operator and scalar
o -1 . .
curvature. If we specifically choose ay =1,a, = —a, = T =03 =05=0as =0a; = 0 in equation (1), the

W5 —curvature tensor of a (2n 4+ 1)-dimensional manifold is obtained as
1
W (@, @;) w3 = R(wy, @,)w3 — P [S (@1, @3)w, — g(@,, @3)Qw]. (2)

In recent years, many geometers have defined different curvature tensors on many different manifolds such as
Sasakian, para-Sasakian, Lorentzian paracontact, Lorentzian para-Sasakian [12-17], [18-19],[23-25]. Based on the many
studies mentioned above, in this article, the curvature conditions of almost C(a) —manifold such as W;(@,, @w,)R =
0, R(w,, w,)W5 = 0, W3(wy, @,)P = 0, Wy (w0, @,)Z = 0, W5 (w,,@,)S = 0 and W5 (w,,@,)C = 0 are searched. In
addition, W; —pseudo symmetry and W5 —Ricci pseudo symmetry are investigated for the almost C(a) —manifold.

Preliminary
Let M be a differentiable manifold with (2n + 1) —dimensional. If the condition
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¢*w, = —wy +n(wy)¢ and n(¢) =1 (3)

satisfies on M where ¢ is tesor field with type (1,1), ¢ is a vector field and 1 is a 1 —form, then we say that (¢, &, 1) is
an almost contact structure. Also, we say that (M, ¢, €, 1) is an almost contact manifold. Let g be a metric with condition

9(@w,, pw,) = g(@,, @,) — n(w)n(@;) and g(wy, §) = n(w;), (4)

for all w;, @, € y(M) and & € y(M). In this case, we say that (¢,¢,n,g) is almost contact metric structure and
(M, ¢, &,1, g) is almost contact metric manifold. Moreover, we have the property

9(pwy, @;) = —g(@, pw3)

for all @, @, € y(M) on M manifold with (2n + 1) —dimensional. The fundamental 2 —form of (¢, ¢,n, g) almost
contact metric structure is the ® transformation such that

D (wy, ;) = g(wy, pw,), n AP™ # 0.

for all @, w, € y(M).

Let M be almost contact metric manifold and R be Riemann curvature tensor of it, which provides the following

R(wy, @y, @3, @) = R(wy, @y, w3, pw,) + a{—g(wy, @3) g (@, @,)
+9(@1, @,) g (@2, @3) + g(@1, pw3) g (@2, pw,) (5)
—9(@,, pw,) g(w,, pws3)}

for all w,, w,, w3, @, € y(M), at least one a € R. In this case, we say that M is almost C(a)-manifold [20]. By the way,
we give the Riemann curvature tensor of an almost C(a)-manifold which has ¢ —constant sectional curvature by

R(wy, wy)w; = (C+43a) {9(@,, w3)w, — g(w,, @3)@,}

+ (?) {9(@,, pw3)pw, — g(w,, pws)pw,;
+29(w,, pw,)pw; + n(w)n(w3)w, — n(w,)n(w3)w;
+9(@,, w3)n(w@,)¢ — g(@,, w3)n (@, )¢}

(6)

So, if we take @w; = £ in (6), then we obtain

RE @y)ws = alg(@,, @3)§ — n(@3)w,]. (7)
If we take w3 = £ in (6), then we have

R(@y, @,)¢ = aln(w;)w, — n(w)w,]. (8)
Moreover, if we take @, = £ in (8), then we get

R(@y,§)§ = alw, — n(@,)¢]. (9)
Let us take inner product of (6) by & € y(M). Then, we get

NR (@, @,)w3) = alg(@,, @3)n(w,) — g(@, @3)n(@,)]. (10)

Let M be an almost C(a) —manifold with (2n 4+ 1) dimensional. Then, we have the following equations.

a(3n—-1)+c(n+1) (a=c)(n+1)

S(w,, @) = [ 2 ]g(wl:wz) + P n(@)n (@) (11)
S(@y,§) = 2nan(w,) (12)
Qm_l — [a(3n—1)2+c(n+1)] @, + (af—c)z(n+1)n(m_1)f (13)
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Q¢ = 2nag (14)

r—2na

Qopw, = Qw, (15)

2n
for each w,, @w,, € y(M), where Q, S and r are the Ricci operator, Ricci curvature tensor and scalar curvature of manifold
M, respectively.

Let M be a (2n + 1) —dimensional Riemannian manifold. Then the Z concircular curvature tensor is defined as

r

Z(?Upwz)ws = R(wy, w,)w; — 2nznt1)

9 (@, w3)w; — g(w@y, w3)w,] (16)

for each w,, w,, w5 € y(M), where r is the scalar curvature of the manifold [21]. If we choose @; = ¢ in (16), we get

2 @)ws = (o = 5—) [9(@2, )¢ = n(@3)w,] (17)
and if we choose w53 = £ in (17), we get
2,@)¢ = (@ = 5o ) 1@2)6 = ). (18)

The concept of the quasi-conformal curvature tensor was defined by Yano and Sowaki as

C~(ZD'1,ZD'2)ZD'3 = aR(wy, @,)w3 + b[S(@,, w3)w;, — S(@;, w3)@,
+9(@,, w3)Qw, — g(w,, w3)Qw,]

- 2nr+1 [i + Zb] [9(@2, m3)@, — g(@y, w3)w,],

(19)

where a and b are constants, Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of the manifold
[22]. If C = 0, then this manifold is called a quasi-conformal flat. If @, = & is chosen in equation (19),

5(€,w2)w3 =[bc(n+1)+a(2a+7bn—b)_ r (i+2b)]

2 2n+1 \2n
(20)
® [9(w@,, w3)§ — n(w3)w,].
and if w3 = & is chosen in (20), we reach at
CE¢ @)é = [aa + 2nba — ﬁ(% + Zb)] n(@,)¢ — @,]
(21)
+b[2nan(@,)¢ — Qw,].
The projective curvature tensor P is defined as
P(w,, w;)w; = R(@,, w,)w3 — % [S (@, w3)@, — S(wy, @3)w,] (22)

for all @, @,, w3 € y(M), by K. Yano and S. Sowaki [22]. If w; = &, @, = § and w3 = & are chosen respectively in (22),
then we get

P(§, my)w; = ag(w,, w3)¢ _%5(572;573)5; (23)

P(@y,§)@; = —ag(@y, @) + - S(@y, @3)¢ (24)
and

P(w,,@,)& = 0. (25)

Again, if the inner product of both sides of equation (22) is taken by £ € y(M), we get

n(P(w,, w)w;) = n(w;) [ag(wz’ws) - %S(Wz’wﬂ]

1 (26)
—n(@,) [ag(@, @) - - S(@y, @3)| .

Finally, if we choose @; = ¢ in the equation (2), then it reduces the form
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W3, @y)w; = 2a[g(w,, @3)¢ — n(ws3)w,] (27)

and if we choose @w; = £ in the same equation, we get

(7n-1)+c(n+1)
Wi(wy, @,)§ = (%)77(@2)51 — 2an(m)@,
(28)
(a=c)(n+1)
+ (22 (@) (@2)E
Similarly, if we choose @, = ¢ in equation (2), we get
(7n-Da+c(n+1)

Wy(@y, )m; = (T2 D) [~ g (@, @3)¢ + 1(w3),] 29)

Almost C(a)-Manifold Satisfying Some Important Conditions on the W3- Curvature Tensor

In this section, let us first examine the case where the (2n + 1) dimensional almost C(a)- manifold is W5- flat, and
then consider the special curvature conditions. For this, we give the following theorems.

Theorem 1 If the (2n + 1) dimensional M is an almost C («)- manifold W5- flat, then the manifold M is an n- Einstein
manifold.

Proof. Let us assume that manifold M is W5- flat. From (2), we can write
Wi (@, @z)w; =0,
for each w,, w,, w3 € y(M).Then from (2), we obtain

R(wy, @,)ws = i[s(wpa%)wz — 9(@,, w3)Qw, ] (30)
for each @, w,, w3 € y(M). In (30), if w3 = & is written and (8), (12) are used, we obtain
i’?(wz)sz = 2an(w))w, — an(w,)w;. (31)

Taking the inner product on both sides of the last equation by w3 € y(M) and if we choose @, = &, we get
S(@,, w3) = —2nag(w;, w3) + 4nan(wy)n(ws).
This proves our assertion.

Theorem 2 Let M be a (2n + 1) dimensional almost C(a)- manifold. Then W5 - R = 0 if and only if M is either co-
Keahler manifold or M reduces real space form with constant sectinal curvature.

Proof. Suppose that W5 (@w;, @,) - R = 0. Then, we have
(W3 (@1, @) R) (@4, @s, @3) = W3(@y, @) R(@y, @)@ — R(W5 (@1, @)@y, @s) @3

—R(wy, W3 (@, @,)@s)w3 — R(w,, @s)Ws (w1, @,) w3
= 0.

If we choose @w; = £ in here, we get

W3, @) R) (@4, ws, @3) = W5(§, @) R(@y, @s)wz — RW;(E, @,)w,, @s)w;
—R (@, W3 (&, @) ws)w; — R(@y, ws)Ws(E, @3) w3 (32)

=0,
for each w,, w5, @, ws € y(M). In (32), using (27), we obtain

2a[g(@, R(@y, ws5)w3)¢ — n(R(wy, @s)w3)@,
—g9 (@, )R, @s)w; + (@) R(w,, @s) w3
—9 (@, @s)R (@, §) w3 + n(ws)R(w,, @,;)w; (33)

—9 (w5, @3)R (@, ws)¢ + n(@s3)R(wy, @s)w,] = 0.
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Substituting @, = ¢ in (33) and using (7), we conclude

2a[R(w,, ws)w; — a(g(@s, w3)w, — g(@,, w3)ws)] = 0. (34)
From (34), we have
a=0
or
R(@,, ws)w; = al[g(ws, w3)w, — g(@,, @3)ws].

Thus, M is co-Keahler manifold or M is reduced to the real space form with constant sectional curvature. The converse
is obvius, and the proof is complete.

Theorem 3 Let M be a (2n + 1) dimensional almost C(a)- manifold. Then W - Z = 0 if and only if M is either co-
Keahler manifold or M reduces real space form with constant sectinal curvature.

Proof. Suppose that W; (@, @,) - Z = 0. Then we have
(W3 (wl,wz)Z)(w4, @5, w3) = W3 (@, ) Z(@,, ws)w3 — Z(W3 (@, @)@y, @s) w3

—Z(w4, W3 (@, @,)ws)w; — Z(m4, @5)W; (@, @,)w;3

=0.

If we choose @w; = & in here, we get
W3, @) w3) (@, @s, w3) = W3(E, @) w3 (w0, @s)ws; — @3 (Ws(E, @)@y, @s) w3

—w3(wy, W3 (&, @) ws) w3 — @3 (@, @s) W5 (S, @,)ws

(35)
=0,
for each @w,, w3, @y, ws € y(M). In (35), using (27), we obtain
Za[g(wz, 2(134» ws)w3)f - n(Z(zm}, 55)133)732
—9 (@2, @) Z(E, @5)w3 + (@) Z (@2, @5) w3 — (@2, @5)Z (@4, §) w5 (36)
+1(@5) Z (@4, @) w3 — (@2, ©3)Z (@4, @5)E + 1(@3)Z (@4, Ts5)@,] = 0.
Taking @, = & in (36) and using (17), we obtain
26 |2(@, 5)w3 — (& = 575=5) (9 @5, 5)w; — 9 (@5, @3)w5)| = 0. 37)
In (37), using (16), we conclude
2a[R(w, ws)w3 — a(g(@s, w3)w, — g(w@,, @3)ws)] = 0. (38)

This proves our assertion. The converse obvious.

Theorem 4 Let M be (2n + 1) dimensional an almost C(a)- manifold. Then W5 - S = 0 if and only if M is either co-
Keahler manifold or an Einstein manifold.

Proof. Suppose that W5 - S = 0. Then we can easily see that
SWs (w1, @p)@3, @) + S(@s3, W (@, @,)w,) = 0.
If we choose @w; = £ in here, we get

SW5 (&, @wy)w3, @y) + S(@s3, W3 (§, w,)w,) = 0. (39)
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In (39), using (27), we obtain
2a[2nan(w,) g(@,, w3) — 1(w@3)S(w,, @s)

+2nan(ws3) g(w,, w,) — n(w,)S (w3, @,)] = 0. (40)
Substituting w; = & in (40), we find
2a[—S (w,, w,) + 2nag(w,, @,)] = 0. (41)
From (41), we get
a=0
or
S(wy, @,) = 2nag(w,, @,).

This proves our assertion. The converse is obvious.

Theorem 5 Let M be a (2n + 1) dimensional almost C(a)- manifold. Then Wy - C = 0 if and only if M is either co-
Keahler manifold or M reduces real space form with constant sectinal curvature.

Proof. Suppose that W; (@, @,) - C = 0. Then, we have
(Ws (@1, wz)é)(w3: @, @s) = Ws(wy, wz)(j(zzr3, @, )Ws — E(W3 (w1, @) W3, Wy )@s
—5(w3, Ws (@, @, )w,)ws — 5(5’3» @ )Ws (@, @)@

=0.

If we choose @w; = £ in here, we get
(Ws ¢, wz)é)(w3; oy, ws) = Ws(¢, wz)f(w& W, ) W5 — €(W3 & @y)w3, w,)@s
—C (w3, W (¢, @)W, ) W5 — C (w3, w )Ws (&, @,)@s (42)
=0,
for each @w,, w3, @y, ws € y(M). Using (27) in (42), we get
Za[g(wz, C(G’& 7174)135)5 - 77(5(573' 734)735)132
—9(@,, @3)C(E, w)ws + n(@3) C (w,, ) ws — g(@,, w,)C (w3, ) ws (43)

+1(@,) C (w3, w,)ws — g (@, ws)C (w3, @,)E + n(wS)C(w3,w4)w2] =0.

Taking w3 = & in (43) and using (20), (21), we obtain
bc(n+1)+a(2a+7bn—b) 4 a
2a | i (et 20)] ®

2 2n
N (44)
L9 (@,, ws)w, — g(@,, @s)w,] + C(wz;ﬁh)ws} = 0.
Substituting @, — ¢w, and @, - ¢pw, in (44), we conclude
bc(n+1)+a(2a+7bn-b) r a
20({[ 2 - 2n+1 (Z-'_ Zb)] ®
N (45)
g (pw,, @s)pw, — g(Ppwy, @s)pw, ] + C(Ppw,, ¢ZU4)ZU5} =0.
In the last equation, if (19) is written in its place and necessary adjustments are made, we get
a=0 (46)
or
R(¢pw,, pwi)ws = Alg(pws, ws)pw, — g(pw,, ws)pw,], (47)
where

a[(2a+7nb-5b)+b(4r-3n+1)] _ rl2(n+1)a+(6n+1)b]
2a 2n(2n+1)a

A=
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It is clear from (46) and (47) that M is either co-Keahler manifold or M reduces real space form with constant sectinal
curvature. The converse is obvious.

Theorem 6 Let M be a (2n + 1) dimensional almost C(a)- manifold. Then W5 - P = 0 if and only if M is either co-
Keahler manifold or n- Einstein manifold.

Proof. Suppose that W5 - P = 0. Then we have
W3 (@1, @) P) (@4, @s, w3) = Wi(wy, @) P(w,, @s)ws — P(W3(wy, @)@y, @s)w3
—P(w@y, W3 (@, @,)ws)w; — P(w,, @s)Ws (@7, @,)ws

=0.

If we choose @w; = £ in here, we get
W3(&, @) P) (@, ws, @3) = W3(E, @) P(w,, ws)ws — P(W5(§, @,)w,, ws)w;
—P(w,, W3(§, @3)ws)ws — P(wy, @s)Ws(§, @,)w; (48)

=0,
for each w,, w5, @, ws € y(M). In (48), using (27), we obtain

2a[g(w;, P(@,, @s)w3)E — N(P(@,, @s)w3)w,
—9(@,, @w,)P(§, ws)w3 + 1n(w@y) P(w,, Ws)w3 — g(w, @s) P (w,, §) w3 (49)

+1(@s) P(@,, @) w3 — g(w,, @3) P (@, @s)E + n(@3) P(@,, @s)w,] = 0.
If (22) and (23) are used in (49), then we get

20 {g(w@y, R(@y, m5)w3)¢ — - S(@5,@3) 9 (@, B1)§
+ = S(@,, @3)g (@, B5)¢ — N(R (@4, @5 )w3)w,

+ = S(@s, B3)1(@,)@, — 5= S (@4, @3)n(@s)w,
—ag (@2, ©,)9(@s, @3)§ + 5= 9 (@2, ,)S (s, )¢
+1(@,)R (@, @53 — - S (@5, @3N (@)@, 50
+ S (@2, @)N(@,)Ts + ag(@y, @s) g (@4, @3)§
— - 9(@,, @5)S (@4, B3)¢ + (@) R(@,, @) w3
— o= S(@2, B3)N(@5) @, + 5 S (@4, 3N (@5
+1(@3)R (@4, @5)w; — oS (@5, )N (@3)w,

+ = 8@, @0 (@ )5} = 0

Taking @w, = & in (50) and using (7), we obtain

2a{ag(@s, w3)n(@,)¢ — ag(@s, @3)w;

+— S (@5, @3)w; — g(@s, @3)n(@)§

+R(w,, ws)w3 — iS(ws,waz

+i5(w2,w3)w5 + ag(@,, ws)n(@w3)é (51)
+an(@5) 9 (@, 3)§ — - S (@, @30 (@s)§

—iS(ws,wz)n(zm)f} =0.

If we take the inner product of both sides of (51) by & € y(M), we have
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2a{—g(@s, w3)n(w,) + ag(ws, w3)n(w,)

+ag(w,, ws)n(w;) — %S(ws,wz)n(@%)} =0. (52)

If we choose w3 = € in (52), we get

2a[(a = Dn(@s)(@,) + ag(w@y, @s) - - S(@s, @) = 0. (53)
It is clear from (53) that

S(ws, @) = 2nag(@s, @,) + 2n(a — Dn(@s)n(w@,)
or
a=0.
This proves our assertion. The converse obvious.

Definition 1 Let M be a (2n + 1) dimensional almost C(a)- manifold, R be the Riemann curvature tensor of M and S

be the Ricci curvature tensor of M. If the pair R - W;and Q(g, W5) are linearly dependent, that is, if a A; function can
be found on the set M; = {wm; € M|g(w;) # W;(w,)} such that

R-W; =2,Q(g, Ws) (54)

the M manifold is called a W;- pseudo symmetric manifold. Particularly, if A; = 0, then this manifold is said to be semi-
symmetric.
Let us now investigate the case of W;- pseudo symmetry.

Theorem 7 Let M be a (2n + 1) dimensional almost C(a)- manifold. M is W5- pseudo symmetric if and only if
M is either Einstein manifold or A; = a.

Proof. Let us assume that the manifold M is a W;- pseudo symmetric manifold. Then, we can write
R(@y, @) - W3) (@3, @s, Wy, ) = A1Q(g, W3) (@3, @y, Ws; @1, @3), (55)
for each @, @,, W3, W4, @s € x(M). In this case, we get
R(@1, ©,)W; (@3, ©5) @, — W3 (R(@, @) B3, ©5) @,
—W; (@3, R(@, ) w5) @, — W; (@3, ©5)R(w, ©,) @,

= -\ {W3 ((mlAgmz)m3,m5,m4) + W, (m3, (mlAgmz)ms,m4) (56)

+W; (m3, s, (mlAgmz)m4)}.
If necessary arrangements are made here, we obtain and we choose @; = §in (56), we get
R(E ©,)W; (@3, W5 )@, — W3 (R(E, @) @3, @5 )@y
—W; (@3, RE, @) ®5)w, — Ws (w3, @5)R(E @) o,
= =M {g(@2, ©3)W5(§, @s) w4 — 8(§, w3) W (@, ©s) @, (57)
+8(@,, ©5)Ws (@3, 5@y — 8§, ©5) Ws (@3, ©,) w4

+8(@2, W) W; (@3, @5)§ — 8§, w,) W3 (@3, @s)w, ).

Using (7), (27), (28) and (29) in the last equation, we obtain
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ag(w,, Ws (@3, ws)w,)é — an(Ws (@3, ws)w,)w, — 2a*g(w,, w3) g(ws, @, )E
+2a2n(w4)g(w2,w3)w5 + an(w3) Wi (@, ws)w, +

al[(7n-1)a+c(n+1)]
an

al[(7n-1D)a+c(n+1)]

9 (@, @s) g (@3, @, ) — ™ n(w@,) g(@,, ws)w;

al[(7n—-1D)a+c(n+1)]

+an(ws)Ws (w3, w,)w, — n

n(w@s)g(w,, @) w3

ala—c)(n+1)

+2a*n(ws3)g(@,, w,)ws — n

9 (@3, @ )n(@3)n(@s)é

+an(w)Ws (@3, ws)w, = —A{2ag(w,, @3) g(@s, @,)¢ (58)

—2an(w,) g(@,, @3)ws — N(w3) W3 (@, @5) @,

[(7n-1Da+c(n+1)]

O il (g, w35) g (s, )8 +

[(7n-Da+c(n+1)]
%n(m)g(wbw&;)@

—n(ws) W3 (@3, @)@y — 1(w,) W3 (w3, @5)

[(7n-1Da+c(n+1)]

LD D] 3, 31 (@ )5 — 2001 (@) g (w73, @)

(a—c)(n+1)

+————g (@, w4)n(w3)n(w5)f}.

an

If we choose w3 = ¢ in (58), we get
—2a*g(ws, w,)w, + aWs(w,, ws)w, + 2a° g(w,, @,) w5

= ML {2ag(ws, w )N (@) — Wi (@, ws) @y + 2an(ws)n(w,) @, (59)

—2ag(@s, w,)Nn(@,)¢ — 209 (w3, wy)ws}.
If we use (2) in (59), we have

—Zazg(ws, @, )W, + aR (@, Ws)w, — %S(WZ; W, )Ws

+%g(w5,w4)Qw2 + 2a%g(w,, w)ws = -4 {2ag(@s, w)n(@,)E

(60)
1 1
—R(w,, ws)w, + 55(7172' @, ) W5 — ag(ws, @,)Qw,

+2an(@s)n(@y)w, — 2ag(@s, w)n(@,)¢ — 209 (@,, W, )ws}.

In (60), if we choose @, = & and we use (8) and (12), we get
—a’n(ws)w, + %Tl(ws)sz

=~ {2an(w,)n(@s)¢ + an(ws)w, (61)

- w00, 2]

If wg = & is chosen in the last equation and we take the inner product of both sides of (61) by w, € y(M), then we
have

M — @) [ag(@,, @) = 5-S(@y, )| = 0 (62)
It is clear from (62) that either

/‘11 =a
or the manifold M is an Einstein manifold. This ends our proof.
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Corollary 1 Let M be a (2n + 1) dimensional almost C (a)- manifold. M is a semi-symmetric manifold if and only if M is
either a co-Keahler manifold or an Einstein manifold.

Definition 2 Let M be a (2n + 1) dimensional almost C(«)- manifold, R be the Riemann curvature tensor of M and S
be the Ricci curvature tensor of M. If the pair R - W and Q(S, W5) are linearly dependent, that is, if a A, function can
be found on the set M, = {w, € M|S(w,) + W5(w,)} such that

R-W; = 2;Q(S,Ws)
the M manifold is called a W5 —Ricci-pseudo symmetric manifold.

Theorem 8 Let M be a (2n + 1) dimensional almost C(a)- manifold. M is W5- Ricci pseudo symmetric if and only if M
is an n- Einstein manifold provided A, # i

Proof. Let us assume that the manifold M is a W5- Ricci-pseudo symmetric manifold. Then, we can write
(R(@y, @,) - W3) (@3, @5, @) = 21,Q(S, W3) (@3, @y, @s; @y, @), (63)
for each @, w,, w3, w,, w5 € y(M). In this case, we get
R(wy, @, )Ws(@3, ws)w, — W3(R(wy, @) w3, @s )@,

—Ws (@3, R(@y, @) w5 )@, — W3 (@3, @s)R (w7, @),
(64)
= _12{W3((W1Aswz)wsrwsﬂv4) + W3 (@3, (@1 As@,) @5, @4)

+W; (w3, @5, (0, Asw,) @)}
If necessary arrangements are made here, we obtain and we choose @w; = ¢ in (64), we get

R(E, @)W (w3, ws)w, — W3(R(E, w2)ws, ws)w,

—Ws (@3, R(§, wy)ws)w, — W3 (@3, ws)R(, w,)w,

= —{S (@, w)W3(§, ws)wy — S(§, w3) W3 (w2, ws)w, (65)
+5 (@2, ws)Ws (@3, §)wy — S(§, ws) W (w3, w2)w,

+S (w,, W) Ws (w3, @s)¢ — S(&, wy) Wa (w3, @s)w, ).

Using (7), (27), (28) and (29) in the last equation, we obtain
ag(@,, Wi (@3, @ws)w,)§ — an(Ws (@3, @s)w,) @,

—Zazg(wz, w3)g(ws, @, )¢ + 2azr)(w4)g(w2, @3)Ws

al[(7n-1)a+c(n+1)

e (@) Ws (@, @), + LD g (o5 ) g (s, w,)€

[(7n-1a+c(n+1)]
_%U(wﬂg(zﬁz,ws)zﬁ + an(ws)W; (w3, ,)w,

[(7n-1)a+c(n+1)]
- %U(ws)g(wz» wy) w3 + 2a°n(w3) g(@,, w,)ws
_ a(a—c)(n+1)
4n

9@z, @ )n(@3)n(@s)¢ + an(@,)W; (w3, @s) @, (66)

= —1,{2a85(w,, @3) g(@s, @, )¢ — 2an(w,)S (w,, @3)ws

[(7n-1D)a+c(n+1)] S(ZD'
27

—2nan(@;)W;(w,, @s)w, — n

@5) g (@3, @, )§

[(7Tn—-1)a+c(n+1)]

+ T (@) S (@, ws )@ — 2nan (@s)Ws (@3, @)@,
[(7Tn—-1)a+c(n+1)]

— 0 (@5)S (@, 4) w5 — 2nan (@,)Ws (@3, T5)w,

—2an(@3)S (@, @,)w5 + R S (@, w0 (@) (@5)¢ |
In (66), if we choose w3 = &, we get
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—2a’g(@s, W)@, + aWs (@, @s)w, + 2a*g(w,, w,)ws

= _/12{471“2.9(?175,574)77(732)5 — 2naW;(w,, ws)w, — 4"“29(732‘734)77(575)5

+4na2n(w4)n(ws)wz + 2an(@s)S(@,, @, )¢

—2aS(w,, wy)ws — 4na’g(ws, w,)n(@,)E}.

If we use (2) in (67), we have

(67)

—2a*g(ws, w,)w, + aR(w,, ws)w, — %S(WZ‘ W, )Ws

+%g(ws,w4)(2w2 +2a%g(w,, w)ws = —A {4na’g(ws, wy)n(@,)¢

—2naR (w,, ws)w, + aS(w,, w,)ws — ag(ws, w,) Qw,

(68)

—4na? g(w,, wy)n(@s)¢ + 4na’n(ws)n (@)@, + 2an(ws)S (w,, w,)é

—2aS(w,, w,)ws — 471“2.9(135» @) ()¢}

If we choose @, = ¢ in (68) and we use (8) and (12), we get

—a*n(ws)w, + %U(ws)sz

= A (2na’*n(ws)w, + 4na’n(w,)ws

—an(ws)Qw,}.

(69)

If wg = & is chosen in the last equation and we take the inner product of both sides of (69) by w, € y(M), then we

have

2na(1-2n)

S(w,, @) = (-2niy)

8n?
9(@2,04) = iy 1@ (@),

(70)

It is clear from (70) that the manifold M is an n —Einstein manifold provided A, # i This ends our proof.
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