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CdTe solar cells on ultra-thin glass substrates are light and flexible. Flexible cells are widely preferred modules 
in technological fields. The flexibility of these cells enables them to cope with deformations. The efficiency of 
these has reached 19%. In this work, we used artificial neural network (ANN) method for the determination the 
performance of flexible CdTe solar cells despite bending and time. The performances of the solar cell before and 
after bending have been predicted. According to the results from the ANN calculations using the experimental 
data in the literature, MSE values of ANN estimates range from 0.06% to 0.28%. 
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Introduction 

Solar energy has become one of the most essential 
resources of the world in the last decades, due to the 
restriction of resource reserves and environmental 
problems of fossil energy. Unlike other non-renewable 
resources of energy, use of solar energy does not yield any 
harm to the environment. The silent and clean operation, 
little maintenance, long life, unobtrusiveness, and direct 
conversion of solar energy into electricity without moving 
parts and without producing atmospheric emissions are 
the main advantages of Photovoltaic (PV) energy systems 
[1]. Thin-film solar-cells are lightweight and flexible as 
compared with modules built by traditional crystalline 
silicon cells. Moreover, thin-film cells may be easily 
molded into various shapes and sizes. The rapid 
development of flexible PV panels in recent years makes 
it the main source of energy for the future. The 
investigation of the performances of solar cells when 
flexed is important for the applications of flexible devices. 
CdTe solar cells which are commonly used in alternative 
energy source studies were introduced about 50 years ago 
and they have been particularly studied recently. CdTe 
solar cells on ultra-thin glass surfaces are advantageous 
because they are light and flexible. These characteristics 
of batteries are important in applications that require high 
specific power, unique form factors and low 
manufacturing costs. Solar modules based on CdTe are 
due to its remarkable qualities such as having a direct 
energy band gap of 1.45 eV, a high absorption coefficient 
(> 1×104 cm-1) and excellent thermodynamic stability [2-
5]. The performance of lightweight and flexible CdTe 
depends on flexing as well.  

In recent years artificial neural network (ANN) has 
been used in solar energy field. Qian et al. [6] predicted 
the mass proportion of trichromatic colorants and acrylic 
substrate on the optical and thermal performance of 
external wall coatings by using an artificial neural 
network. Wang et al. [7] performed PV output prediction 
using artificial neural network with overlap training range. 
Su et al. [8] applied machine learning techniques to study 
the large-lattice-mismatched CdS/CdTe interface. Jaber et 
al. [9], predicted the performance of different pv modules 
using artificial neural networks. Few studies exist in the 
literature on the effect of flexing photovoltaic on Ultra-
thin glass (see Ref. [5] and reference therein). Teloeken et 
al. investigated experimentally the performance of CdTe 
flexible solar cells due to the effect of bending and time. 
In their work, the photovoltaic performance was 
measured by current density versus voltage. The 
measurements were performed for planar (before and 
after flexing) and flexed states in a bend Radius of 32 mm 
[5]. In this study, we have borrowed the data from their 
experiments and used in our present machine learning 
applications. From the study from which the data was 
obtained, solar-cell performances are available after a 
bending radius and different waiting times. However, 
determining the performance for different bending radius 
and waiting times is also important in terms of increasing 
efficiency. An alternative simpler way to make this 
determination is to perform machine learning with 
existing data to estimate performance for the desired 
bending radius and waiting times. This is the main 
motivation of our work. Thus, we can state that the main 
goal of the study is whether ANN method is a suitable tool 
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for the prediction of the performances of flexible solar 
cells in different conditions. According to the results 
obtained from the present study, seeing that the 
performances of the solar cells at new bending angles are 
accurately estimated by this method, through machine 
learning without the need for any extra new experiments, 
revealed the importance of the ANN method. Therefore, 
we conclude that the ANN method is highly successful in 
predicting the performance of flexible solar cells. 

 

Materials and Methods 

In this work, the artificial neural network (ANN) 
method [10] has been used for the prediction of the 
performance of the flexible CdTe solar cell. The data is 
borrowed from Teloeken et al. [4] which is available in the 
literature. The photovoltaic performance was measured 
by J-V under AM1.5G at 25 ⁰C following a 10-minute light 
soak, using an ABET Technologies Sun 2000 Solar 
Simulator [5]. The measurements were performed when 
the cell was in a planar state (0F], and then when flexed to 
a 40 mm and subsequent 32 mm bend radius (0B). After 
flexion the device was relaxed and measured flat. In 
addition, the sample was held at a bend radius of 32 mm 
for 168 hours with measurement at 0, 24, 48, 120, 144 and 
168 hours. Again, the sample was measured flat before 
(168F) and after (168B) the bending test. As a nonlinear 
mathematical method, ANN mimics the brain 
functionality and consists of several processing units 
which are called as neurons [11]. The neurons in different 
layers have connected to each other by weighted 
connections. Input layer neurons receive the data and the 
output layer neurons give the result as close as to the 
desired results. There is no rule for the determination of 
the number of hidden layers which are located between 
the input and output layers. In the training of the ANN, 
Levenberg-Marquardt algorithm and tangent hyperbolic 
activation function were used which give the better 
results [12,13]. 

ANN includes two main stages: training and test. The 
whole data belonging to the problem is separated into 
two different parts. One part (%75) is for the training of 
ANN and the second part (%25) is for the test. In the 
training stage, the weights between neurons are modified 
correctly to construct ANN for the true solution of the 
given problem. If weights are modified well, constructed 
ANN works for all similar type data that is never seen in 
the training stage. Training stage continues until the 
acceptable error level between desired and obtained 
outputs. The error is calculated by the mean square error 
(MSE) formula as given below in Eq.(1).  
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Our study consisted of three different stages 

performed with ANN. In the first stage, we considered the 
wavelength (λ) of the light on the flexible CdTe solar cells 
as the input of the ANN. The outputs of the ANN were 
before 0F, 0B, 168F and 168B external quantum 

efficiencies of the solar cell. After the calculations for the 
number of hidden layer neurons 4, 7 and 10, the results 
were presented for each calculation. In Fig.1, 1-7-4 ANN 
topology has been presented.  The total number of 
adjustable weights was 20, 35 and 50 for 4, 7 and 10 
hidden neuron numbers. 

 

 

Figure 1. ANN structure (1-7-4) for the prediction of 
the solar cell performance. 

 
In the second stage of the work, the inputs were the 

wavelength (λ) of the light on the flexible CdTe solar cells 
and external quantum efficiencies of 0F. The output was 
external quantum efficiencies of 0B. After the trials with 
low (h=4), medium (h=7) and high (h=10) neuron 
numbers, it was seen that the number of neurons giving 
the best results was 10. At this stage, we examined the 
effect of the bending flexible solar cells on performance. 
The total number of adjustable weights was 12, 21 and 30 
for 4, 7 and 10 hidden neuron numbers in this stage. In 
Fig.2, we have shown the 2-7-1 ANN topology as an 
illustration 

 

 

Figure 2. ANN structure (2-7-1) for the prediction of 
the solar cell performance by bending. 
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In the last stage of the work, the inputs were the 
wavelength (λ) of the light on the flexible CdTe solar cells 
and external quantum efficiencies of 0F. The output was 
external quantum efficiencies of 168B. Again, the hidden 
neuron numbers were taken as 4, 7 and 10, separately. 
InFig.3, 2-7-1 ANN structure has been given with the total 
number of adjustable weights of 21. For the 4 and 10 
hidden neuron numbers, the weights numbers were 12 
and 30, respectively. In the study we carried out at this 
stage, we examined the effect of time on the performance 
of solar cells.  

 

Figure 3. ANN structure (2-7-1) for the prediction of 
the solar cell performance by time. 

 

Results and Discussion 

For all three stages, the results of the calculations in 
which the number of hidden neurons is used as seven are 
presented in detail with their graphics. However, the 
statistical values of the calculations in which the number 
of hidden layer neurons are four and ten are also given in 
Table 1 in tabular form. The results obtained from the 
artificial neural networks (ANN) calculations carried out in 
the first stage of the study are shown separately on the 
training and test data. In Fig. 4, the results of the 
predictions of the ANN over the training data are 
presented. As can be seen from these results of 
calculations in which 0F, 0B, 168F and 168B values are 
estimated against wavelength, the difference between 
the experimental data of external quantum efficiency (%) 
values and the result of the ANN shows a maximum range 
of +4 to -4 for h=4 and h=7, +1 to -1 for h=10. However, it 
is seen that the distribution is concentrated in zero-line for 
h=10 ANN structure. It is clear from the graph that the 
variation is larger around the wavelength of around 400 
and 800 nm for h=4 and h=7 and around 600 nm for h=10. 
For h=10, the RMSE values of the estimations of all 
wavelengths on the training data were obtained as 0.32, 
0.35, 0.33 and 0.35 for 0F, 0B, 168F and 168B, 
respectively. The maximum absolute deviation of the ANN 
results from experimental values are 1.34, 0.80, 1.12 and 
1.11 for 0F, 0B, 168F and 168B. For the other hidden 
neuron numbers, the statistical values on the results were 
presented in Table 1.  

 

 

 

 

Figure 4. Difference between the experimental and 
ANN prediction values for external quantum 
efficiencies of the solar cells on training data for 
hidden neuron numbers 4 (top), 7 (middle) and 10 
(bottom). 

The results of the ANN predictions on the test data are 
shown in Fig. 5 for h=4, h=7 and h=10 ANN structures. In the 
graph where the ANN estimates against the experimental data 
are drawn, it is seen that the data points are concentrated on 
the diagonal line, especially for h=10. This indicates that the 
ANN structure with 10 hidden layer neurons is more successful 
in estimating external quantum efficiency values. For h=10, the 
RMSE values of the estimations of all wavelengths on the test 
data were obtained as 0.45, 0.42, 0.43 and 0.36 for 0F, 0B, 
168F and 168B. The maximum absolute deviation of the ANN 
results from experimental values are 0.90, 1.00, 0.90 and 1.00 
for 0F, 0B, 168F and 168B, respectively. For h=4 and h=7, the 
statistical indicators were presented in Table 1. 
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Figure 5. The experimental versus ANN prediction 
values for external quantum efficiencies of the 
solar cells on test dataset for hidden neuron 
numbers 4 (top), 7 (middle and 10 (bottom). 

In the second stage of our study, the wavelength and 0F 
external quantum efficiency values were accepted as the input 
values of the ANN, and the 0B values were estimated. As can be 
seen from Fig. 6, the results of the ANN predictions are also in 
good agreement with the experimental data in this study. In other 
words, it has been seen that ANN can be used as an alternative to 
experimental studies in examining the effects of bending on solar 
cell performances. According to the ANN results, it is seen that the 
highest efficiency is in the range of about 500 to 800 nm. For the 
training stage, the RMSE and maximum absolute deviation values 
were obtained as 0.59 and 1.42 for hidden neuron number 10. For 
the other hidden neuron numbers, the statistical values were 

given in Table 1. These results indicate that the ANN trained for 
the current bending radii of the experimental data can successfully 
yield results for other radii. In addition, for wavelengths that are 
not used experimentally, if we have the external quantum 
efficiency information in the flat state, the bending value might be 
estimated by ANN. The usefulness of the method is evident from 
Fig. 7, where the ANN results on the test dataset are compared 
with the experimental data. In the graph where the results of the 
ANN against the experimental data are presented, it is seen that 
the data points are concentrated on the diagonal line. The RMSE 
and maximum absolute deviation values of the predictions on the 
test data were obtained as 0.53 and 1.34, respectively, for h=10. 
For h=4 and h=7 ANN structure, the statistical values can be seen 
in Table 1. 

 

 

 

Figure 6. The experimental and ANN prediction values 
for 0B external quantum efficiencies of the solar 
cells on training data for hidden neuron numbers 
4 (top), 7 (middle) and 10 (bottom). 
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Figure 7. The experimental versus ANN prediction 
values for 0B external quantum efficiencies of the 
solar cells on test dataset for hidden neuron 
numbers 4 (top), 7 (middle) and 10 (bottom). 

In the last stage of the study, the wavelength and 0F 
external quantum efficiency values were taken as inputs 
of the ANN and the 168B value was tried to be estimated. 
Thus, it is planned to investigate the effects of both 
bending and elapsed time on external quantum efficiency. 
In Fig. 8, the ANN predictions on the training data are 
presented together with the experimental data. As can be 
clearly seen from the figure, the ANN results are in good 
agreement with the experimental data. It is seen that the 
highest efficiency is obtained in the range of about 500 to 
800 nm. For h=10, the RMSE and maximum absolute 
deviation values of the estimations on the training data 

were calculated as 0.18 and 0.55. For the other ANN 
structures with h=4 and h=7, the results can be seen in 
Table 1. In Fig. 9, the results of the studies at this stage on 
the test data are presented. The RMSE and maximum 
absolute deviation values belonging to the results are 0.45 
and 0.69, respectively, for hidden neuron number 10. For 
the other hidden neuron numbers, statistical values were 
presented in Table 1.  It is seen that the ANN estimates 
against the experimental data are almost on the diagonal 
line in the graph. This indicates that the method is quite 
useful for this purpose. Knowing the external quantum 
efficiency value of the solar cell in its flat state at the 
beginning and revealing how the external quantum 
efficiency value will change after time and bending point 
out how powerful a tool the ANN is. 

 

 

 

Figure 8. The experimental and ANN prediction values 
for 168B external quantum efficiencies of the solar 
cells on training data for hidden neuron numbers 4 
(top), 7 (middle) and 10 (bottom). 
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Figure 9. The experimental versus ANN prediction 
values for 168B external quantum efficiencies of 
the solar cells on test dataset for hidden neuron 
numbers 4 (top), 7 (middle) and 10 (bottom). 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Statistical indicators of the ANN results for hidden 
neuron numbers 4, 7 and 10 (RMSE: root-mean square 
error, MAXE: maximum absolute error). 
 

 Training Data 
(h=4) 

Training Data 
(h=7) 

Training Data 
(h=10) 

MAXE RMSE MAXE RMSE MAXE RMSE 

1 0F 3.87 1.43 4.97 1.24 1.34 0.32 

0B 4.07 1.43 5.32 1.23 0.80 0.35 

168F 3.97 1.49 5.09 1.27 1.12 0.33 

168B 3.94 1.46 5.28 1.22 1.11 0.35 

2 0B 1.50 0.56 1.31 0.36 1.42 0.59 

3 168B 0.78 0.25 0.85 0.20 0.55 0.18 

 Test Data (h=4) Test Data (h=7) Test Data 
(h=10) 

MAXE RMSE MAXE RMSE MAXE RMSE 

1 0F 4.98 1.80 5.66 1.94 0.90 0.45 

0B 5.51 1.81 6.12 1.94 1.00 0.42 

168F 5.17 1.87 5.75 1.94 0.90 0.43 

168B 5.50 1.81 6.19 1.98 1.00 0.36 

2 0B 1.56 0.51 1.23 0.44 1.34 0.53 

3 168B 1.06 0.45 1.09 0.41 0.69 0.34 

 

Conclusion 

In this study, it was investigated whether external 
quantum efficiency values can be predicted by the 
artificial neural networks (ANN) method using the data of 
a previous experimental study on CdTe flexible solar cells. 
Efficiency values in the flat state, 32 mm bent state, and 
after bending were estimated for different wavelengths of 
light. In the first stage of the study, the external quantum 
efficiency values in all cases were produced against the 
wavelength values. According to the results obtained, the 
RMSE value was obtained as approximately 0.40. In the 
second step, the effect of bending was estimated by ANN 
by using the untwisted efficiency value. When the results 
obtained at this stage were examined, it was seen that the 
RMSE value was around 0.50. In the last stage of the study, 
the efficiencies of the bent solar cell after 168 h of time 
were estimated from the measured efficiency value in the 
initial flat state. According to the results obtained, the 
RMSE value is around 0.45 for this stage. When the results 
are evaluated as a whole, it is concluded that the ANN 
method is an alternative powerful tool for estimating the 
external quantum efficiency of flexible CdTe solar cells.  
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The results of the study in which bending tests were 
carried out showed the results of using CdTe solar cells, 
where it is beneficial to store them in a flexible state 
before use, or producing curved modules without 
compromising performance. It has been supported in this 
study that CdTe solar cells do not show a significant 
deterioration in performance when exposed to a small 
bending radius. We also examined the effect of the 
number of hidden layer neurons in predicting the 
performance of flexible solar cells, it is seen that RMSE 
values generally decrease from h=4 to h=7 and then to 
h=10 for the training data set. After h=10, it increases 
again. However, examinations on the test data set showed 
that RMSE increased from h=4 to h=7, and then decreased 
at h=10. It has been observed that the optimum number 
of hidden layer neurons for the ANN structure may be 
around 7. 
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