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ABSTRACT

In this paper, almost product-like Riemannian manifolds are investigated. Basic properties
on tangential hypersurfaces of almost product-like Riemannian manifolds are obtained. Some
examples of tangential hypersurfaces are presented. Some relations involving the Riemannian
curvature tensor of a tangential hypersurface are computed.

Keywords: Riemannian product manifold, hypersurface, statistical manifold, curvature.

AMS Subject Classification (2020): Primary:53C05 ; Secondary: 53C40; 53C42.

1. Introduction

The concept of statistical manifolds has important application areas and various properties of statistical
structures in geometric and physical terms have been studied intensively recently. In physics, there exist
various application areas of statistical manifolds such as neural networks, machine learning, artificial
intelligence, black holes [7, 11, 19, 27]. Statistical manifolds were firstly introduced by S. Amari [4] in 1985.
Later, these structures drew attention of several authors. Some basic properties of hypersurfaces of statistical
manifolds were presented by H. Furuhata, I. Hasegawa, N. Hu and L. Vrancken in [15, 16, 18], hypersurfaces
of Sasakian statistical manifolds were investigated by F. Wu, Y. Jiang, and L. Zhang in [14], hypersurfaces of
almost Hermitian statistical manifolds were investigated by H. Akbari and F. Malek in [3], etc.

As a new perspective on Hermitian statistical manifolds, the second author was firstly introduced the notion
of Hermite-like manifolds in [23, 24]. The most important aspect of this point of view is that it reveals to us
a more general form of Hermitian geometry, which has a long history and on which many mathematicians,
physicists, and engineers have investigated. In fact, a Hermite-like manifold becomes a Hermitian manifold
when two almost complex structures J and J∗ are equal.

Inspired by the definition of Hermite-like manifolds, contact-like manifolds were studied in [5, 12, 23, 24],
para-Kaehler-like and quaternionic-like Kaehler manifolds were investigated in [25, 26], the Wintgen-like
inequality on statistical warped product manifolds was computed in [21], etc.

The main purpose of this paper is to present the basic properties of almost product-like Riemannian
manifolds and their hypersurfaces. With these reviews and using some obtained properties for hypersurfaces
of almost product-like Riemannian manifolds, we will be able to the opportunity to give some basic definitions
of para contact-like Riemannian manifolds.

2. Preliminaries

Let (M̃, g̃) be a Riemannian manifold. Denote a torsion-free affine connection by ∇̃. The triple (M̃, g̃, ∇̃) is
called a statistical manifold if ∇̃g̃ is symmetric. For the statistical manifold, we define another affine connection
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∇̃∗ by
Zg̃(X,Y ) = g̃(X, ∇̃∗

ZY ) + g̃(∇̃ZX,Y ), (2.1)

for any vector fields X,Y and Z on M̃ . The affine connection ∇̃∗ is called dual of ∇̃ with respect to g̃. The
affine connection ∇̃∗ is torsion-free and satisfies (∇̃∗)∗ = ∇̃. It is clear to see that ∇̃◦ = 1

2

(
∇̃+ ∇̃∗

)
is a metric

connection. The pair (g̃, ∇̃) is a statistical structure on M̃ is and only if so (g̃, ∇̃∗). Therefore the triple (M̃, g̃, ∇̃∗)

is a statistical manifold, too. We denote by R̃ and R̃∗ the curvature tensors on M̃ with respect to the affine
connection ∇̃ and its conjugate ∇̃∗, respectively. Then we find

g̃(R̃(X,Y )Z,W ) = −g̃(Z, R̃∗(X,Y )W ), (2.2)

where R̃(X,Y )Z = ∇̃X(∇̃Y Z)− ∇̃Y (∇̃XZ)− ∇̃[X,Y ]Z. Therefore R̃ vanishes identically if and only if so is R̃∗.
We call flat if R̃ vanishes identically. If the curvature tensor R̃ with respect to the affine connection ∇̃ satisfies

R̃(X,Y )Z = c̃ {g̃(Y, Z)X − g̃(X,Z)Y } ,

then the statistical manifold (M̃, g̃, ∇̃) is called a space of constant curvature c̃.
Suppose that J and J∗ are almost complex structures of type (1, 1) satisfying the condition

g̃ (JX, Y ) = −g̃ (X, J∗Y ) (2.3)

for any tangent vector fields X,Y ∈ Γ(TM̃). Then (M̃, g̃, J) is called an almost Hermite-like manifold.
Let F be a tensor field of type (1, 1) on M̃ . If

F 2 = I, (2.4)

where I denotes the identity map, then the pair (M̃, F ) is called an almost product manifold with almost
product structure F . For any almost product manifold, there exist two projections P and Q satisfying

F = P −Q.

If F = I (resp. F = −I), we find P = I , Q = 0 (resp. P = 0, Q = I). We discuss the case of F ̸= ±I in this paper.
If an almost product manifold admits a Riemannian metric g̃ such that the condition

g̃(FX, Y ) = g̃(X,FY )

or, equivalently,

g̃(FX,FY ) = g̃(X,Y )

is satisfied for any X,Y ∈ Γ(TM̃), then (M̃, g̃, F ) is called an almost product Riemannian manifold [28].
Let (M̃, g̃, F ) be an almost product Riemannian manifold and ∇̃◦ be the Levi-Civita connection of (M̃, g̃, F ).

In particular, if ∇̃◦F = 0, then (M̃, g̃, F ) is called a locally product Riemannian manifold [28].
For any hypersurface (M, g) of (M̃, g̃, F ), the Gauss and Weingarten formulas are given as follows:

∇̃◦
XY = ∇◦

XY + g(A◦
NX,Y )N, (2.5)

∇̃◦
XN = −A◦

NX (2.6)

for any X,Y ∈ Γ(TM), where N is the unit vector field, ∇◦ is the induced linear connection and A◦
N is the shape

operator on (M, g).
The hypersurface is called totally geodesic if A◦

N vanishes identically, and it is called totally umbilical if there
exists a smooth function ρ◦ on M such that

A◦
NX = ρ◦X (2.7)

for any X ∈ Γ(TM). Furthermore, (M, g) is called minimal if

trace A◦
N = 0. (2.8)

For more details related to hypersurfaces and submanifolds, we refer to [8].
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3. Almost product-like Riemannian manifolds

Definition 3.1. If the Riemannian manifold (M̃, g̃) with the almost product structure F which has another
tensor field F ∗ of type (1, 1) satisfying

g̃(FX, Y ) = g̃(X,F ∗Y ) (3.1)

for any X,Y ∈ Γ(TM̃), then the triple (M̃, g̃, F ) is called an almost product-like Riemannian manifold.

We see that (F ∗)∗ = F , (F ∗)2 = I and

g̃(FX,F ∗Y ) = g̃(X,Y ). (3.2)

Lemma 3.1. The triple (M̃, g̃, F ) is an almost product-like Riemannian manifold if and only if so is (M̃, g̃, F ∗).

Example 3.1. Let R4 be a smooth manifold with local coordinate system (x1, x2, x3, x4), which admits the
following almost product structure F

F =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Thus the pair (R4, F ) is an almost product manifold. If we put

g̃ =

1 + e−x1+x3 0 0 0
0 ex1−x3 0 0
0 0 e−x1+x3 0
0 0 0 ex1−x3


and

F ∗ =

 0 0 (1 + ex1−x3)−1 0
0 0 0 1

1 + ex1−x3 0 0 0
0 1 0 0

 ,

then the triple (R4, g̃, F ) is an almost product-like Riemannian manifold and so is (R4, g̃, F ∗).

Definition 3.2. If F is parallel with respect to ∇̃, then (M̃, g̃, ∇̃, F ) is called a locally product-like statistical
manifold.

From (3.1), we get

g̃
(
(∇̃XF )Y,Z

)
= g̃

(
Y, (∇̃∗

XF ∗)Z
)
.

Hence we have

Lemma 3.2. (M̃, g̃, ∇̃, F ) is a locally product-like statistical manifold if and only if so is (M̃, g̃, ∇̃∗, F ∗).

Lemma 3.3. Let (M̃, g̃, ∇̃, F ) be a locally product-like statistical manifold. If M̃ is of constant curvature c̃, then c̃ = 0,
that is, M̃ is flat.

Proof. From R̃(X,Y )FZ = FR̃(X,Y )Z, we find

c̃ {g̃(Y, FZ)X − g̃(X,FZ)Y } = c̃ {g̃(Y,Z)FX − g̃(X,Z)FY } .

If c̃ ̸= 0, then we get mFX − (trF )X = 0, where m = dimM̃ and trF =
m∑

α=1

g̃(Feα, eα) for local orthonormal

basis {e1, . . . , em} of M̃ . It is clear that trF = ∓m, which yields that F = ∓I holds. Thus, we obtain c̃ = 0.
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Example 3.2. Let (R4, g̃, F ) be an almost product-like Riemannian manifold of Example 3.1. We put the affine
connection ∇̃ as follows:

∇̃∂1
∂1 = ∇̃∂1

∂3 = ∇̃∂3
∂1 = ∇̃∂3

∂3 = e−x1+x3(∂1 + ∂3),

∇̃∂1∂2 = ∇̃∂2∂1 = ∇̃∂3∂4 = ∇̃∂4∂3 = −e−x1+x3∂2 − (1 + e−x1+x3)∂4,

∇̃∂1
∂4 = ∇̃∂4

∂1 = ∇̃∂2
∂3 = ∇̃∂3

∂2 = −(1 + e−x1+x3)∂2 − e−x1+x3∂4,

∇̃∂2
∂2 = ∇̃∂4

∂4 = −ex1−x3∂1 + ∂2 − ex1−x3∂3 − ∂4,

∇̃∂2∂4 = ∇̃∂4∂2 = −ex1−x3∂1 − ∂2 − ex1−x3∂3 + ∂4.

Then we find

∇̃∗
∂1
∂1 = −e−x1+x3(2 + e−x1+x3)

1 + e−x1+x3
∂1 − (1 + e−x1+x3)∂3,

∇̃∗
∂1
∂2 = ∇̃∗

∂2
∂1 = ∇̃∗

∂1
∂4 = ∇̃∗

∂4
∂1 = (1 + e−x1+x3)(∂2 + ∂4),

∇̃∗
∂1
∂3 = ∇̃∗

∂3
∂1 = − e−2(x1−x3)

1 + e−x1+x3
∂1 − (1 + e−x1+x3)∂3,

∇̃∗
∂2
∂2 = ∇̃∗

∂4
∂4 =

1

1 + e−x1+x3
∂1 − ∂2 +

1 + e−x1+x3

e−2(x1−x3)
∂3 + ∂4,

∇̃∗
∂2
∂3 = ∇̃∗

∂3
∂2 = ∇̃∗

∂3
∂4 = ∇̃∗

∂4
∂3 = e−x1+x3(∂2 + ∂4),

∇̃∗
∂2
∂4 = ∇̃∗

∂4
∂2 = ex1−x3∂1 + ∂2 + ex1−x3∂3 − ∂4,

∇̃∗
∂3
∂3 = − e−2(x1−x3)

1 + e−x1+x3
∂1 + (1− e−x1+x3)∂3.

Therefore (R4, g̃, F, ∇̃) is a locally product-like statistical manifold and so is (R4, g̃, F ∗, ∇̃∗).

Next, let (M, g) be a submanifold of the statistical manifold M̃ . The Gauss and Weingarten formulas with
respect to affine connections ∇̃ and ∇̃∗ are denoted by

∇̃XY = ∇XY + σ(X,Y ),

∇̃XV = −AV X +DXV,

∇̃∗
XY = ∇∗

XY + σ∗(X,Y ),

∇̃∗
XV = −A∗

V X +D∗
XV

for any vector fields X,Y tangent to M and V normal to M , respectively, where ∇XY,AV X (resp.
∇∗

XY,A∗
V X) are tangential and σ(X,Y ), DXV (resp. σ∗(X,Y ), D∗

XV ) are normal components of ∇̃XY, ∇̃XV

(resp. ∇̃∗
XY, ∇̃∗

XV ). Because of ∇̃ (resp. ∇̃∗) is torsion-free, the affine connection ∇ (resp. ∇∗) is torsion-free and
the second fundamental form σ (resp. σ∗) is symmetric. Affine connections ∇ and ∇∗ are dual each other. The
triple (M, g,∇) (resp. (M, g,∇∗)) is a statistical submanifold of M̃ . Also, , D and D∗ are dual affine connections
each other. From (∇̃∗)∗ = ∇̃, we find (∇∗)∗ = ∇, (σ∗)∗ = σ, (A∗)∗ = A and (D∗)∗ = D. If σ = 0 (resp. σ∗ = 0),
then M is said to be totally geodesic with respect to ∇̃ (resp. ∇̃∗). H. Furuhata and I. Hasegawa [17] studied
statistical submanifolds.

Lemma 3.4. For any vector fields X,Y tangent to M and V normal to M , we get

g̃(σ(X,Y ), V ) = g(Y,A∗
V X),

g̃(σ∗(X,Y ), V ) = g(Y,AV X).

The second fundamental form σ (resp. σ∗) vanishes if and only if the shape operator A∗ (resp. A) so is.

Corollary 3.1. We find

g(A∗
V X,Y ) = g(X,A∗

V Y ),

g(AV X,Y ) = g(X,AV Y ).
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For any vector field X tangent to M , we put ([28])

FX = fX + hX, F ∗X = f∗X + h∗X, (3.3)

where fX (resp. f∗X) is the tangent part of FX (resp. F ∗X) and hX (resp. h∗X) the normal part of FX (resp.
F ∗X). For any vector field V normal to M , we set

FV = tV + sV, F ∗V = t∗V + s∗V, (3.4)

where tV (resp. t∗V ) is the tangent part of FV (resp. F ∗V ) and sV (resp. s∗V ) the normal part of FV (resp.
F ∗V ). From (F ∗)∗ = F , F 2 = I and (F ∗)2 = I , we get

(f∗)∗ = f, (h∗)∗ = h, (t∗)∗ = t, (s∗)∗ = s, (3.5)

f2X = X − thX, hfX + shX = 0, ftV + tsV = 0, s2V = V − htV (3.6)

and

(f∗)2X = X − t∗h∗X, h∗f∗X + s∗h∗X = 0, f∗t∗V + t∗s∗V = 0, (s∗)2V = V − h∗t∗V. (3.7)

Because of g̃(FE,G) = g̃(E,F ∗G) for any vector fields E and G on M̃ , we find

g(fX, Y ) = g(X, f∗Y ), g(fX, f∗Y ) = g(X,Y )− g̃(hX, h∗Y ),

g̃(hX, V ) = g(X, t∗V ), g̃(h∗X,V ) = g(X, tV ),

g̃(sU, V ) = g̃(U, s∗V ), g̃(sU, s∗V ) = g̃(U, V )− g(tU, t∗V ).

Thus f (resp. s) vanishes identically if and only if f∗ (resp. s∗) so is and h (resp. t) vanishes identically and only
if t∗ (resp. h∗) so is. Hence we have

Lemma 3.5. We find for each p ∈ M

(1) F (TpM) ⊂ TpM if and only if F ∗ (TpM)
⊥ ⊂ (TpM)

⊥,

(2) F (TpM) ⊂ (TpM)
⊥ if and only if F ∗ (TpM) ⊂ (TpM)

⊥,

(3) F (TpM)
⊥ ⊂ TpM if and only if F ∗ (TpM)

⊥ ⊂ TpM ,

(4) F (TpM)
⊥ ⊂ (TpM)

⊥ if and only if F ∗ (TpM) ⊂ TpM .

If F (TpM) ⊂ TpM (resp. F ∗ (TpM) ⊂ TpM ) for each p ∈ M , then M is said to be F -invariant (resp. F ∗-
invariant) in M̃ . Then h and t∗ (resp. h∗ and t) vanish identically. Because of f2 = I and g(fX, f∗Y ) = g(X,Y ),
the triple (M, g, f) is an almost product-like Riemannian manifold. Hence we have

Theorem 3.1. Let M be a submanifold of an almost product-like Riemannian manifold M̃ . If M is F -invariant or
F ∗-invariant, then the triple (M, g, f) is an almost product-like Riemannian manifold.

Proof. Let M be an F− invariant submanifold. From statement (1) of Lemma 3.5, we obtain h = 0 and t∗ = 0.
Using these facts in (3.3) and (3.6), we get FX = fX and F ∗X = f∗X . This implies that (M, g, f) is an almost
product-like Riemannian manifold.

Let M be an F ∗− invariant submanifold. From (4) of Lemma 3.5, we obtain h = 0 and t∗ = 0. Using these
facts in (3.3) and (3.6), we get FX = fX and F ∗X = f∗X . This implies that (M, g, f) is an almost product-like
Riemannian manifold.

Example 3.3. Let (R4, g̃, F ) be an almost product-like Riemannian manifold of Example 3.1. We define the
immersion f̃ : M → R4 by f̃(x1, x3) = (x1, x2, x3, x4). Then the induced metric g is given by

g =

(
1 + e−x1+x3 0

0 e−x1+x3

)
.
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We find

f =

 0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , h = O, t = O, s =

 0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


and

f∗ =


0 0 (1 + ex1−x3)

−1
0

0 0 0 0
1 + ex1−x3 0 0 0

0 0 0 0

 , h∗ = O, t∗ = O, s∗ =

 0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 .

Therefore the triple (M, g, f) is F -invariant and F ∗-invariant of R4.

Moreover, we get

g((∇Zf)X,Y ) = g(X, (∇∗
Zf

∗)Y ),

g̃((DXs)U, V ) = g̃(U, (D∗
Xs∗)V ).

Thus we have

Lemma 3.6. The structure f (resp. s) is parallel with respect to ∇ (resp. D) if and only if f∗ (resp. s∗) is parallel with
respect to ∇∗ (resp. D∗).

Lemma 3.7. In the locally product-like statistical manifold, we get

(∇Xf)Y −AhY X − t(σ(X,Y )) = 0,

(DXh)Y + σ(X, fY )− s(σ(X,Y )) = 0,

(∇Xt)V −AsV X + f(AV X) = 0,

(DXs)V + σ(X, tV ) + h(AV X) = 0,

where we put

(∇Xf)Y = ∇X(fY )− f(∇XY ), (DXh)Y = DX(hY )− h(∇XY ),

(∇Xt)V = ∇X(tV )− t(DXV ), (DXs)V = DX(sV )− s(DXV ).

Proof. We find(
∇̃XF

)
Y = (∇Xf)Y −AhY X − t (σ(X,Y )) +

(
DXh

)
Y + σ(X, fY )− s(σ(X,Y )),(

∇̃XF
)
V =

(
∇Xt

)
V −AsV X − f (AV X) + (DXs)V + σ(X, tV ) + h(AV X).

From ∇̃F = 0, we have the results.

Corollary 3.2. In the locally product-like statistical manifold, we get

(∇∗
Xf∗)Y −A∗

h∗Y X − t∗ (σ∗(X,Y )) = 0,(
D

∗
Xh∗

)
Y + σ∗(X, f∗Y )− s∗ (σ∗(X,Y )) = 0,(
∇∗

Xt∗
)
V −A∗

s∗V X + f∗(A∗
V X) = 0,

(D∗
Xs∗)V + σ∗(X, t∗V ) + h∗(A∗

V X) = 0,

where we put

(∇∗
Xf∗)Y = ∇∗

X(f∗Y )− f∗(∇∗
XY ),

(
D

∗
Xh∗

)
Y = D∗

X(h∗Y )− h∗(∇∗
XY ),(

∇∗
Xt∗

)
V = ∇∗

X(t∗V )− t∗(D∗
XV ), (D∗

Xs∗)V = D∗
X(s∗V )− s∗(D∗

XV ).
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Example 3.4. (R4, g̃, F, ∇̃) be a locally product-like statistical manifold of Example 3.2 and (M, g) be a statistical
submanifold of Example 3.3. If ∂1, ∂3 is tangent to M and ∂2, ∂4 is normal to M , then we find

∇∂i∂j = e−x1+x3(∂1 + ∂3), σ(∂i, ∂j) = 0, (i, j ∈ {1, 3}),
A∂2

∂1 = A∂4
∂3 = 0, D∂1

∂2 = D∂3
∂4 = −e−x1+x3∂2 − (1 + e−x1+x3)∂4,

A∂2
∂3 = A∂4

∂1 = 0, D∂1
∂4 = D∂3

∂2 = −(1 + e−x1+x3)∂2 − e−x1+x3∂4,

and

∇∗
∂1
∂1 = − e−x1+x3 (2+e−x1+x3 )

1+e−x1+x3
∂1 − (1 + e−x1+x3)∂3, σ

∗(∂1, ∂1) = 0,

∇∗
∂1
∂3 = ∇∗

∂3
∂1 = − e−2(x1−x3)

1+e−x1+x3
∂1 − (1 + e−x1+x3)∂3, σ

∗(∂1, ∂3) = 0,

∇∗
∂3
∂3 = − e−2(x1−x3)

1+e−x1+x3
∂1 + (1− e−x1+x3)∂3, σ∗(∂3, ∂3) = 0,

A∗
∂2
∂1 = A∗

∂4
∂1 = 0, D∗

∂1
∂2 = D∗

∂1
∂4 = (1 + e−x1+x3)(∂2 + ∂4),

A∗
∂2
∂3 = A∗

∂4
∂3 = 0, D∗

∂3
∂2 = D∗

∂3
∂4 = e−x1+x3(∂2 + ∂4).

Thus the triple (M, g,∇) (resp. (M, g,∇∗)) is totally geodesic relative to ∇̃ (resp. ∇̃∗). Also, the structure f (resp.
f∗) is parallel with respect to ∇ (resp. ∇∗). Therefore (M, g, f,∇) is a locally product-like statistical manifold
and so is (M, g, f∗,∇∗).

Example 3.5. Let (R4, g̃, F, ∇̃) be a locally product-like statistical manifold of Example 3.2. We define the
immersion f̃ : M → R4 by f̃(x1, x2, x3) = (x1, x2, x3, x4). Then the induced metric g is given by

g =

1 + e−x1+x3 0 0
0 ex1−x3 0
0 0 e−x1+x3

 .

If ∂1, ∂2, ∂3 is tangent to M and ∂4 is normal to M , then we find

∇∂i
∂j = e−x1+x3(∂1 + ∂3), σ(∂i, ∂j) = 0, i, j ∈ {1, 3} ,

∇∂1
∂2 = ∇∂2

∂1 = −e−x1+x3∂2, σ(∂1, ∂2) = −(1 + e−x1+x3)∂4,

∇∂2∂2 = −ex1−x3∂1 + ∂2 − ex1−x3∂3, σ(∂2, ∂2) = −∂4,

∇∂2
∂3 = ∇∂3

∂2 = −(1 + e−x1+x3)∂2, σ(∂2, ∂3) = −e−x1+x3∂4,

A∂4
∂1 = (1 + e−x1+x3)∂2, D∂1

∂4 = e−x1+x3∂4,

A∂4∂2 = ex1−x3∂1 + ∂2 + ex1−x3∂3, D∂2∂4 = ∂4,

A∂4
∂3 = e−x1+x3∂2, D∂3

∂4 = −(1 + e−x1+x3)∂4

and

∇∗
∂1
∂1 = −e−x1+x3(2 + e−x1+x3)

1 + e−x1+x3
∂1 − (1 + e−x1+x3)∂3, σ∗(∂1, ∂1) = 0,

∇∗
∂1
∂2 = ∇∗

∂2
∂1 = (1 + e−x1+x3)∂2, σ∗(∂1, ∂2) = (1 + e−x1+x3)∂4,

∇∗
∂1
∂3 = ∇∗

∂3
∂1 = − e−2(x1−x3)

1 + e−x1+x3
∂1 − (1 + e−x1+x3)∂3, σ

∗(∂1, ∂3) = 0,

∇∗
∂2
∂2 =

1

1 + e−x1+x3
∂1 − ∂2 +

1 + e−x1+x3

e−2(x1−x3)
∂3, σ∗(∂2, ∂2) = ∂4,

∇∗
∂2
∂3 = ∇∗

∂3
∂2 = e−x1+x3∂2, σ∗(∂2, ∂3) = e−x1+x3∂4,

∇∗
∂3
∂3 = − e−2(x1−x3)

1 + e−x1+x3
∂1 + (1− e−x1+x3)∂3, σ∗(∂3, ∂3) = 0,

A∗
∂4
∂1 = −(1 + e−x1+x3)∂2, D∗

∂1
∂4 = (1 + e−x1+x3)∂4,

A∗
∂4
∂2 = −ex1−x3∂1 − ∂2 − ex1−x3∂3, D∗

∂2
∂4 = −∂4,

A∗
∂4
∂3 = −e−x1+x3∂2, D∗

∂3
∂4 = e−x1+x3∂4.

Thus the triple (M, g,∇) is a statistical hypersurface of R4 and so is (M, g,∇∗).
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For any vector fields X,Y, Z tangent to M , we get

R̃(X,Y )Z = R(X,Y )Z −Aσ(Y,Z)X +Aσ(X,Z)Y + (DXσ)(Y, Z)− (DY σ)(X,Z),

R̃∗(X,Y )Z = R∗(X,Y )Z −A∗
σ∗(Y,Z)X +A∗

σ∗(X,Z)Y + (D∗
Xσ∗)(Y, Z)− (D∗

Y σ
∗)(X,Z),

where we put

(DXσ)(Y,Z) = DX{σ(Y,Z)} − σ(∇XY, Z)− σ(Y,∇XZ),

(D∗
Xσ∗)(Y,Z) = D∗

X{σ∗(Y,Z)} − σ∗(∇∗
XY, Z)− σ∗(Y,∇∗

XZ).

Hence we have the equation of Gauss relative to ∇̃ and the equation of Codazzi relative to ∇̃ [17].

Proposition 3.1. For any vector field W tangent to M , we get

g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W )− g̃(σ(Y,Z), σ∗(X,W )) + g̃(σ(X,Z), σ∗(Y,W )),

(R̃(X,Y )Z)⊥ = (DXσ)(Y,Z)− (DY σ)(X,Z).

Also, we have the equation of Gauss relative to ∇̃∗ and the equation of Codazzi relative to ∇̃∗.

Proposition 3.2. For any vector field W tangent to M , we get

g̃(R̃∗(X,Y )Z,W ) = g(R∗(X,Y )Z,W )− g̃(σ∗(Y,Z), σ(X,W )) + g̃(σ∗(X,Z), σ(Y,W )),

(R̃∗(X,Y )Z)⊥ = (D∗
Xσ∗)(Y,Z)− (D∗

Y σ
∗)(X,Z).

For any vector fields X,Y tangent to M and V normal to M , we obtain

R̃(X,Y )V = −(∇XA)V Y + (∇Y A)V X +R⊥(X,Y )V − σ(X,AV Y ) + σ(Y,AV X),

R̃∗(X,Y )V = −(∇∗
XA∗)V Y + (∇∗

Y A
∗)V X + (R∗)⊥(X,Y )V − σ∗(X,A∗

V Y ) + σ∗(Y,A∗
V X),

where we put

(∇XA)V Y = ∇X(AV Y )−ADXV Y −AV (∇XY ),

R⊥(X,Y )V = DX(DY V )−DY (DXV )−D[X,Y ]V,

(∇∗
XA∗)V Y = ∇∗

X(A∗
V Y )−A∗

D∗
XV Y −A∗

V (∇∗
XY ),

(R∗)⊥(X,Y )V = D∗
X(D∗

Y V )−D∗
Y (D

∗
XV )−D∗

[X,Y ]V.

Hence we have equation of Ricci relative to ∇̃.

Proposition 3.3. For any vector field U normal to M , we get

g̃(R̃(X,Y )V,U) = g̃(R⊥(X,Y )V,U) + g([A∗
U , AV ]X,Y ).

Also we have the equation Ricci relative to ∇̃∗.

Proposition 3.4. For any vector field U normal to M , we get

g̃(R̃∗(X,Y )V,U) = g̃((R∗)⊥(X,Y )V,U) + g([AU , A
∗
V ]X,Y ).

From R̃(X,Y )FZ = FR̃(X,Y )Z and R̃(X,Y )FV = FR̃(X,Y )V , we find

Proposition 3.5. Let (M, g) be the submanifold of the locally product-like statistical manifold M̃ . For any vector fields
X,Y, Z tangent to M and any vector field V normal to M , we have

R(X,Y )fZ −Aσ(Y,fZ)X +Aσ(X,fZ)Y − (∇XA)hZY + (∇Y A)hZX

= f(R(X,Y )Z)− f(Aσ(Y,Z)X) + f(Aσ(X,Z)Y ) + t {(DXσ)(Y, Z)− (DY σ)(X,Z)} ,
R⊥(X,Y )hZ − σ(X,AhZY ) + σ(Y,AhZX) + (DXσ)(Y, fZ)− (DY σ)(X, fZ)

= h(R(X,Y )Z)− h(Aσ(Y,Z)X) + h(Aσ(X,Z)Y ) + s{(DXσ)(Y,Z)− (DY σ)(X,Z)},
R(X,Y )tV −Aσ(Y,tV )X +Aσ(X,tV )Y − (∇XA)sV Y + (∇Y A)sV X

= −f((∇XA)V Y ) + f((∇Y A)V X) + t(R⊥(X,Y )V )− t(σ(X,AV Y )) + t(σ(Y,AV X)),

R⊥(X,Y )sV − σ(X,AsV Y ) + σ(Y,AsV X) + (DXσ)(Y, tV )− (DY σ)(X, tV )

= s(R⊥(X,Y )V )− s(σ(X,AV Y )) + s(σ(Y,AV X))− h((∇XA)V Y ) + h((∇Y A)V X).
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Corollary 3.3. Let (M, g) be the submanifold of the locally product-like statistical manifold M̃ . For any vector fields
X,Y, Z tangent to M and any vector field V normal to M , we have

R∗(X,Y )f∗Z −A∗
σ∗(Y,f∗Z)X +A∗

σ∗(X,f∗Z)Y − (∇∗
XA∗)h∗ZY + (∇∗

Y A
∗)h∗ZX

= f∗(R∗(X,Y )Z)− f∗(A∗
σ∗(Y,Z)X) + f∗(A∗

σ∗(X,Z)Y ) + t∗{(D∗
Xσ∗)(Y, Z)− (D∗

Y σ
∗)(X,Z)},

(R∗)⊥(X,Y )h∗Z − σ∗(X,A∗
h∗ZY ) + σ∗(Y,A∗

h∗ZX) + (D∗
Xσ∗)(Y, f∗Z)− (D∗

Y σ
∗)(X, f∗Z)

= h∗(R∗(X,Y )Z)− h∗(A∗
σ∗(Y,Z)X) + h∗(A∗

σ∗(X,Z)Y ) + s∗{(D∗
Xσ∗)(Y,Z)− (D∗

Y σ
∗)(X,Z)},

R∗(X,Y )t∗V −A∗
σ∗(Y,t∗V )X +A∗

σ∗(X,t∗V )Y − (∇∗
XA∗)s∗V Y + (∇∗

Y A
∗)s∗V X

= −f∗((∇∗
XA∗)V Y ) + f∗((∇∗

Y A
∗)V X) + t∗((R⊥)∗(X,Y )V )− t∗(σ∗(X,A∗

V Y )) + t∗(σ∗(Y,A∗
V X)),

(R∗)⊥(X,Y )s∗V − σ∗(X,A∗
s∗V Y ) + σ∗(Y,A∗

s∗V X) + (D∗
Xσ∗)(Y, t∗V )− (D∗

Y σ
∗)(X, t∗V )

= s∗((R∗)⊥(X,Y ), V )− s∗(σ∗(X,A∗
V Y )) + s∗(σ∗(Y,A∗

V X))− h∗((∇∗
XA∗)V Y ) + h∗((∇∗

Y A
∗)V X).

Next, in the almost product-like statistical manifold (M̃, g̃, ∇̃, F ), we put for any vector fields X,Y, Z on M̃

R̃(X,Y )Z = c̃[g̃(Y,Z)X − g̃(X,Z)Y + g̃(Y, FZ)FX − g̃(X,FZ)FY + {g̃(FX, Y )− g̃(X,FY )}FZ], (3.8)

where c̃ is a constant. Then the tensor R̃ is satisfied the Bianchi’s 1st and 2nd identities, and FR̃(X,Y ) =

R̃(X,Y )F . From (2.2), we have

g̃(R̃∗(X,Y )W,Z) = c̃ {g̃(Y,W )g̃(X,Z)− g̃(X,W )g̃(Y, Z) + g̃(Y, F ∗W )g̃(F ∗X,Z)− g̃(X,F ∗W )g̃(F ∗Y, Z)

+g̃(F ∗X,Y )g̃(F ∗W,Z)− g̃(X,F ∗Y )g̃(F ∗W,Z)} .

Thus, we obtain

R̃∗(X,Y )Z = c̃[g̃(Y,Z)X − g̃(X,Z)Y + g̃(Y, F ∗Z)F ∗X − g̃(X,F ∗Z)F ∗Y + {g̃(F ∗X,Y )− g̃(X,F ∗Y )}F ∗Z].
(3.9)

We discuss the statistical submanifold M of the almost product-like statistical manifold (M̃, g̃, ∇̃, F )
satisfying the condition (3.8). For any vector fields X,Y, Z tangent to M and V normal to M , we get

R(X,Y )Z = c̃[g(Y, Z)X − g(X,Z)Y + g(Y, fZ)fX − g(X, fZ)fY + { g(fX, Y )− g(X, fY )} fZ]

+Aσ(Y,Z)X −Aσ(X,Z)Y,

(DXσ)(Y, Z)− (DY σ)(X,Z) = c̃[g(Y, fZ)hX − g(X, fZ)hY + { g(fX, Y )− g(X, fY )}hZ],

(∇XA)V Y − (∇Y A)V X = c̃[−g(Y, tV )fX + g(X, tV )fY − { g(fX, Y )− g(X, fY )} tV ],

R⊥(X,Y )V σ(X,AV Y ) + σ(Y,AV X) = c̃[g(Y, tV )hX − g(X, tV )hY + { g(fX, Y )− g(X, fY )} sV ].

If the second fundamental form σ is parallel with respect to D, then we find from (3.8)

c̃[g(Y, fZ)hX − g(X, fZ)hY + { g(fX, Y )− g(X, fY )}hZ] = 0.

From this equation, we get c̃ = 0 or

h[g(Y, fZ)X − g(X, fZ)Y + { g(fX, Y )− g(X, fY )}Z] = 0,

We assume g(Y, fZ)X − g(X, fZ)Y + { g(fX, Y )− g(X, fY )}Z = 0, which implies that f = 0 if dimM > 2.

Theorem 3.2. Let (M, g) be the statistical submanifold of the locally product-like statistical manifold M̃ satisfying the
condition (3.8). If the second fundamental form σ is parallel with respect to D, then we get

(1) c̃ = 0, that is, M̃ is flat, or
(2) M is F -invariant of M̃ , or
(3) M is F -anti-invariant.

Corollary 3.4. Let (M, g) be the statistical submanifold of the locally product-like statistical manifold M̃ satisfying the
condition (3.8). If M is totally geodesic with respect to ∇̃, then we get
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(1) c̃ = 0, that is, M̃ is flat, or
(2) M is F -invariant of M̃ , or
(3) M is F -anti-invariant, which is of constant curvature c̃.

Corollary 3.5. Let (M, g) be the statistical submanifold of the locally product-like statistical manifold M̃ satisfying the
condition (3.8). If the second fundamental form σ∗ is parallel with respect to D∗, then we get

(1) c̃ = 0, that is, M̃ is flat, or
(2) M is F ∗-invariant of M̃ , or
(3) M is F ∗-anti-invariant.

Corollary 3.6. Let (M, g) be the statistical submanifold of the locally product-like statistical manifold M̃ satisfying the
condition (3.8). If M is totally geodesic with respect to ∇̃∗, then we get

(1) c̃ = 0, that is, M̃ is flat, or
(2) M is F ∗-invariant of M̃ , or
(3) M is F ∗-anti-invariant, which is of constant curvature c̃.

4. Hypersurfaces of almost product-like Riemannian manifolds

Let (M̃, g̃, F ) be an almost product-like Riemannian manifold and (M, g) be a hypersurface of M̃ . If N is the
unit normal vector field of M , then we put

FN = ξ + µ1N

and

F ∗N = ξ∗ + µ2N,

where ξ and ξ∗ are tangential parts of FN and F ∗N , respectively. Here, µ1 and µ2 are smooth functions on M̃ .
Considering (3.1) in the last two equations, we obtain µ1 = µ2. Thus, we can write

FN = ξ + µN (4.1)

and
F ∗N = ξ∗ + µN, (4.2)

where µ is a smooth function on M̃ . Using (4.1) and (4.2) in (3.2), we derive

1− µ2 = g(ξ, ξ∗). (4.3)

Based on (4.3), we obtain the following lemma:

Lemma 4.1. Let (M, g) be a hypersurface of M̃ . Then we have the following statements:

i) If µ = 1 then ξ and ξ∗ are orthogonal,
ii) If µ = 0 then g(ξ, ξ∗) = 1.

Definition 4.1. Let (M, g) be a hypersurface of M̃ . If FN and F ∗N lie on Γ(TM), then (M, g) is called a
tangential hypersurface.

Now, let (M, g) be a tangential hypersurface of M̃ . Then we find

FN = ξ and F ∗N = ξ∗. (4.4)

From Lemma 4.1, we note that ξ is not perpendicular to ξ∗ and (ξ∗)∗ = ξ. For any X ∈ Γ(TM), we write

FX = φX + η∗(X)N (4.5)

and
F ∗X = φ∗X + η(X)N, (4.6)

where φX , φ∗X ∈ Γ(TM), η and η∗ are 1− forms on M . Then we get

η∗(X) = g(X, ξ∗), η(X) = g(X, ξ) (4.7)

and (η∗)∗ = η. Moreover, it is easy to see from Lemma 4.1 that η(ξ∗) = 1 and η∗(ξ) = 1 hold.
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Lemma 4.2. For any tangential hypersurface, we have the following relations:

φ2X = X − η∗(X)ξ, (4.8)

η∗(φX) = 0, (4.9)

(φ∗)2X = X − η(X)ξ∗, (4.10)

η(φ∗X) = 0, (4.11)

φξ = 0 and φ∗ξ∗ = 0. (4.12)

Lemma 4.3. Let (M, g) be tangential hypersurface of M̃ . Then we have the following relations for any X,Y ∈ Γ(TM):

g(φX, Y ) = g(X,φ∗Y ),

g(φX,φ∗Y ) = g(X,Y )− η∗(X)η(Y ).

Moreover, (φ∗)∗ = φ holds.

Example 4.1. Let (R4, g̃, F ) be an almost product-like Riemannian manifold of Example 3.1 and f̃ be an
immersion of Example 3.5. If we set

N = e−
1
2 (x1−x3)∂4,

then N is an unit normal to R4 and ξ = e−
1
2 (x1−x3)∂2. We obtain

f =

 0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , h =

 0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 , t =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , s = O

and

f∗ =

 0 0 (1 + ex1−x3)−1 0
0 0 0 0

1 + ex1−x3 0 0 0
0 0 0 0

 , h∗ =

 0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 , t∗ =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , s∗ = O,

which implies from s = O that the pair (M, g) is a tangential hypersurface. Moreover, we find φ = f , η∗(∂1) = 0,
η∗(∂2) = e

1
2 (x1−x3) and η∗(∂3) = 0.

5. Tangential hypersurfaces of locally product-like statistical manifolds

Let (M, g) be a tangential hypersurface of an almost product-like statistical manifold M̃ . The Gauss and
Weingarten formulas with respect to ∇̃ and ∇̃∗ are given by

∇̃XY = ∇XY +
′
σ(X,Y )N,

∇̃XN = −ANX + κ(X)N,

∇̃∗
XY = ∇∗

XY +
′
σ∗(X,Y )N,

∇̃∗
XN = −A∗

NX + κ∗(X)N,

where κ and κ∗ are 1−forms. Then we find
′
σ(X,Y ) = g(A∗

NX,Y ),
′
σ∗(X,Y ) = g(ANX,Y ), κ(X) + κ∗(X) = 0.

Thus, we get

∇̃XY = ∇XY + g(A∗
NX,Y )N, (5.1)

∇̃XN = −ANX + κ(X)N, (5.2)

∇̃∗
XY = ∇∗

XY + g(ANX,Y )N, (5.3)

∇̃∗
XN = −A∗

NX − κ(X)N. (5.4)
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Proposition 5.1. Let (M, g) be a tangential hypersurface of a locally product-like statistical manifold M̃ . Then we have
the following relations:

∇Xξ = −φ(ANX) + κ(X)ξ, (5.5)

∇∗
Xξ∗ = −φ∗(A∗

NX)− κ(X)ξ∗, (5.6)

η (A∗
NX) + η∗ (ANX) = 0, ANξ∗ +A∗

Nξ = 0, (5.7)

κ(X) = η∗(∇Xξ) = −η(∇∗
Xξ∗). (5.8)

Proof. Using FN = ξ, F ∗N = ξ∗, (4.5) and (5.3), we can write

(∇̃XF )N = ∇Xξ + φ(ANX)− κ(X)ξ + {η(A∗
NX) + η∗(ANX)}N,

(∇̃∗
XF ∗)N = ∇∗

Xξ∗ + φ∗(A∗
NX)− κ(X)ξ∗ + {η(A∗

NX) + η∗(ANX)}N,

which implies from ∇̃F = ∇̃∗F ∗ = 0 that the proof is completed.

Proposition 5.2. Let (M, g) be a tangential hypersurface of a locally product-like statistical manifold M̃ . Then we have

(∇Xφ)Y = g(A∗
NX,Y )ξ + η∗(Y )ANX, (5.9)

(∇∗
Xφ∗)Y = g(ANX,Y )ξ∗ + η(Y )A∗

NX. (5.10)

Proof. Using (5.1) and (5.3), we get

(∇̃XF )Y = (∇Xφ)Y − g(A∗
NX,Y )ξ − η∗(Y )ANX,

(∇̃∗
XF ∗)Y = (∇∗

Xφ∗)Y − g(ANX,Y )ξ∗ − η(Y )A∗
NX,

which yields from ∇̃F = ∇̃∗F ∗ = 0 that (5.9) and (5.10) hold.

Example 5.1. Let (R4, g̃, F ) be a locally product-like statistical manifold of Example 3.2 and (M, g) be a
tangential hypersurface of Example 4.1. By straightforward calculate we find

∇∂1ξ = ∇∂3ξ = −1

2
(1 + 2e−x1+x3)ξ, ∇∂2ξ = −e

1
2 (x1−x3)(∂2 + ∂3) + ξ

and

(∇∂1
φ)∂1 = 0, (∇∂2

φ)∂1 = −2 cosh
1

2
(x1 − x3)ξ, (∇∂3

φ)∂1 = 0,

(∇∂1φ)∂2 = 0, (∇∂2φ)∂2 = ex1−x3(∂1 + ∂3), (∇∂3φ)∂2 = 0,

(∇∂1
φ)∂3 = 0, (∇∂2

φ)∂3 = −e−
1
2 (x1−x3)ξ, (∇∂3

φ)∂3 = 0.

Also, we get

AN∂1 = −A∗
N∂1 = (1 + e−x1+x3)ξ, κ(∂1) = −1

2
(1 + 2e−x1+x3),

AN∂2 = −A∗
N∂2 = e

1
2 (x1−x3)(∂1 + ∂3) + ξ, κ(∂2) = 1,

AN∂3 = −A∗
N∂3 = e−x1+x3ξ, κ(∂3) = −1

2
(1 + 2ex1−x3),

which yields that Proposition 5.1 and Proposition 5.2 hold.

From Proposition 3.5 and Proposition 5.1, we have

Proposition 5.3. Let (M, g) be a tangential hypersurface of a locally product-like statistical manifold M̃ . Then we obtain

R(X,Y )ξ = −φ
(
(∇XA)NY

)
+ φ

(
(∇Y A)NX

)
− η∗(ANY )ANX + η∗(ANX)ANY

− {g([AN , A∗
N ]X,Y )− (dκ)(X,Y )} ξ,

R∗(X,Y )ξ∗ = −φ∗
(
(∇∗

XA∗)NY
)
+ φ∗

(
(∇∗

Y A
∗)NX

)
− η(A∗

NY )A∗
NX + η(A∗

NX)A∗
NY

+ {g([AN , A∗
N ]X,Y )− (dκ)(X,Y )} ξ∗,
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where we put

(∇XA)NY = ∇X(ANY )−A∇̃XNY −AN (∇XY ),

(∇Xκ)(Y ) = X {κ(Y )} − κ(∇XY ).

Proposition 5.4. Let (M, g) be a tangential hypersurface of a locally product-like statistical manifold M̃ . Then we obtain

R̃(X,Y )Z = R(X,Y )Z − g(A∗
NY,Z)ANX + g(A∗

NX,Z)ANY + {g((∇∗
XA∗)NY,Z)− g((∇∗

Y A
∗)NX,Z)}N,

R̃(X,Y )N = −(∇XA)NY + (∇Y A)NX − {g([AN , A∗
N ]X,Y )− (dκ)(X,Y )}N,

R̃∗(X,Y )Z = R∗(X,Y )Z − g(ANY,Z)A∗
NX + g(ANX,Z)A∗

NY + {g((∇XA)NY,Z)− g((∇Y A)NX,Z)}N,

R̃∗(X,Y )N = −(∇∗
XA∗)NY + (∇∗

Y A
∗)NX + {g([AN , A∗

N ]X,Y )− (dκ)(X,Y )}N.

From R̃(X,Y )FZ = F (R̃(X,Y )Z) and R̃∗(X,Y )F ∗Z = F ∗(R̃∗(X,Y )Z), we get

Proposition 5.5. Let (M, g) be a tangential hypersurface of a locally product-like statistical manifold M̃ . Then we obtain

R(X,Y )φZ + g(A∗
NX,φZ)ANY − g(A∗

NY, φZ)ANX − η∗(Z)
{
(∇XA)NY − (∇Y A)NX

}
= φ(R(X,Y )Z)− g(A∗

NY,Z)φ(ANX) + g(A∗
NX,Z)φ(ANY ) + {g((∇∗

XA∗)NY,Z)− g((∇∗
Y A

∗)NX,Z)}ξ,

and

R∗(X,Y )φ∗Z + g(ANX,φ∗Z)A∗
NY − g(ANY, φ∗Z)A∗

NX − η(Z)
{
(∇∗

XA∗)NY − (∇∗
Y A

∗)NX
}

= φ∗(R∗(X,Y )Z) +
{
g((∇XA)NY,Z)− g((∇Y A)NX,Z)

}
ξ∗ − g(ANY,Z)φ∗(A∗

NX) + g(ANX,Z)φ∗(A∗
NY ).

From R̃(X,Y )FN = F (R̃(X,Y )N) and R̃∗(X,Y )F ∗N = F ∗(R̃∗(X,Y )N), we get

Proposition 5.6. Let (M, g) be a tangential hypersurface of a locally product-like statistical manifold M̃ . Then we obtain

η((∇∗
XA∗)NY )− η((∇∗

Y A
∗)NX) = −η∗((∇XA)NY ) + η∗((∇Y A)NX).

Next, we discuss the tangential hypersurface (M, g) of an almost product-like statistical manifold satisfying
(3.8). Then we find from Proposition 5.5

R(X,Y )φZ = c̃ [g(Y,Z)X − g(X,Z)Y + g(Y, φZ)φX − g(X,φZ)φY + {g(φX, Y )− g(X,φY )}φZ]

+ g(A∗
NY, Z)ANX − g(A∗

NX,Z)ANY, (5.11)

g((∇∗
XA∗)NY, Z)− g((∇∗

Y A
∗)NX,Z) = c̃[η∗(X)g(Y, φZ)− η∗(Y )g(X,φZ)

+ η∗(Z){g(φX, Y )− g(X,φY )}], (5.12)

(∇XA)NY − (∇Y A)NX = c̃ [η(X)φY − η(Y )φX + {g(X,φY )− g(φX, Y )}ξ] , (5.13)

g([AN , A∗
N ]X,Y )− (dκ)(X,Y ) = c̃{η(X)η∗(Y )− η(Y )η∗(X)}. (5.14)

If M is totally geodesic with respect to ∇̃, that is, ′σ = 0, then we get from (5.13)

c̃[η∗(X)g(Y, φZ)− η∗(Y )g(X,φZ) + η∗(Z){g(φX, Y )− g(X,φY )}] = 0,

which denotes that c̃ = 0 or

η∗(X)g(Y, φZ)− η∗(Y )g(X,φZ) + η∗(Z){g(φX, Y )− g(X,φY )} = 0. (5.15)

Therefore we get g(φX, Y ) = g(X,φY ), namely, φ∗ = φ. It is east to see from (5.15) that η∗(X)φZ = g(X,φZ)ξ∗

holds. Thus X = η∗(X)ξ = η(X)ξ∗ holds. Because of any vector field X tangent to M is parallel to ξ and ξ∗, we
can not select to the nth linearly independence vector fields, where n = dimM(> 2). Hence we have

Theorem 5.1. Let (M, g) be the tangential hypersurface of the locally product-like statistical manifold M̃ satisfying the
condition (3.8). If M is totally geodesic with respect to ∇̃, then M̃ is flat.
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6. Conclusions and future works

The theory of hypersurfaces of Riemannian manifolds admitting various differentiable structures includes
comprehensive geometric properties. For example, every hypersurface of an almost complex space form
possesses a contact structure (cf. [1, 9, 20]), every hypersurface of an almost contact space form possesses a
natural f -structure (cf.[6, 13]) and every hypersurface of almost product Riemannian manifolds admits a para
contact structure under some conditions (cf. [2, 10]). With the help of these features, each hypersurface of an
almost complex space form becomes a contact metric manifold, each hypersurface of an almost contact space
form becomes a metric f -manifold and some special hypersurfaces become a para contact manifold. Thus,
the basic relations and properties of contact metric manifolds, metric f -manifolds, and para contact metric
manifolds can be constructed by examining the basic properties of the geometry of these hypersurfaces. In this
study, as a result of examining tangential hypersurfaces of almost product-like Riemannian manifolds, para
contact-like structures have coincided.

Para contact manifolds firstly defined by K. Sato and K. K. Matsumoto in [22] as follows:

Let (M, g) be a m-dimensional Riemannian manifold, φ be a (1, 1) tensor field, ξ be a tangent vector field and
η be a 1-form on M . Then (M, g, φ, ξ, η) is called an almost para contact Riemannian manifold if the following
relations are satisfied for any X,Y ∈ Γ(TM):

φ2X = X − η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0

and

g(φX,φY ) = g(X,Y )− η(X)η(Y ).

Considering the definition of almost para contact manifolds, it is possible to give the following definitions:

Definition 6.1. A Riemannian manifold (M, g) is called an almost para contact-like manifold if there exists a
differentiable structure (φ,φ∗, ξ, ξ∗, η, η∗) consisting of tensor fields φ and φ∗ of type (1, 1), vector fields ξ and
ξ∗, 1-forms η and η∗ such that the following relations are satisfied

φ2 = I − η∗ ⊗ ξ, φξ = 0, η(ξ∗) = 1, η ◦ φ∗ = 0,

(φ∗)2 = I − η ⊗ ξ∗, φ∗ξ∗ = 0, η∗(ξ) = 1 η∗ ◦ φ = 0,

where I denotes the identity map.

Definition 6.2. An almost para contact-like manifold (M, g, φ, φ∗, ξ, ξ∗, η, η∗) is called a para contact-like metric
manifold if the following relation is satisfied for any X,Y ∈ Γ(TM):

g(φX,φ∗Y ) = g(X,Y )− η∗(X)η(Y ).

From Lemma 4.2, Lemma 4.3, Definition 6.1 and Definition 6.2, we get

Corollary 6.1. Every tangential hypersurface of an almost product-like manifold is a para contact-like metric manifold.

Considering Definition 6.1 and Definition 6.2, the problem of examining the geometric and physical
properties naturally arises in para contact-like manifolds and their submanifolds.

Funding
The first and third authors of this paper is supported by the Scientific and Technological Research Council of
Turkey (TÜBİTAK) with project number 122F326.

Availability of data and materials
Not applicable.

dergipark.org.tr/en/pub/iejg 448

https://dergipark.org.tr/en/pub/iejg


E. Erkan, K. Takano & M. Gülbahar

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

References

[1] Adachi, T., Kimura, M., Maeda, S.: Real hypersurfaces some of whose geodesics are plane curves in non flat complex space form. Tohoku Math. J.
57 (2), 223-230 (2005).

[2] Adati, T.: Submanifolds of an almost product Riemannian manifold. Kodai Math. J. 4 (2), 327-343 (1981).
[3] Akbari, H., Malek, F.: On the hypersurfaces of almost hermitian statistical manifolds. Bull. Iran. Math. Soc. 48, 2669–2684 (2022).
[4] Amari, S.: Differential-geometrical methods in statistics, Lecture Notes in Statistics. vol. 28. Springer-Verlag, New York (1985).
[5] Aytimur, H. B., Özgür, C.: Inequalities for submanifolds of Sasaki-like statistical manifolds. Turk. J. Math. 42 (6), 3149-3163 (2018).
[6] Blair, D. E., Ludden, G. D.: Hypersurfaces in almost contact manifolds. Tohoku Math. J. 21 (3), 354-362 (1969).
[7] Calin, O., Udriste, C.: Geometric modeling in probability and statistics. Springer, Berlin, Germany (2014).
[8] Chen, B.-Y.: Geometry of Submanifolds. Marcel Dekker, New York-Basel (1973).
[9] Chen, B.-Y., Maeda, S.: Hopf hypersurfaces with constant principal curvatures in complex projective or complex hyperbolic spaces. Tokyo J. Math.

24 (1), 133-152 (2001).
[10] Deshmukh, S., Sharfuddin, A., Husain, S.I.: Hypersurfaces of almost product manifolds. Tamkang J. Math. 10, 169-181 (1979).
[11] Efron, B.: Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Statist. 3, 1189–1242 (1975).
[12] Erken, I. K., Murathan, C., Yazla, A.: Almost cosympletic statistical manifolds. Quaest. Math. 43 (2), 265-282 (2020).
[13] Eum, S. S.: On complex hypersurface in normal almost contact spaces. Tensor N. S. 19, 45-50 (1968).
[14] Feng, W. U., Jiang, Y., Zhang, L.: Some results on statistical hypersurfaces of Sasakian statistical manifolds and holomorphic statistical manifolds.

Int. Electron. J. Geom. 14 (1), 46-58 (2021).
[15] Furuhata, H.: Hypersurfaces in statistical manifolds. Differ. Geom. Appl. 27 (3), 420-429 (2009).
[16] Furuhata, H.: Statistical hypersurfaces in the space of Hessian curvature zero. Differ. Geom. Appl. 29 Suppl.1, S86-S90 (2011).
[17] Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds, in: S. Dragomir, M.H. Shahid, F.R. Al-Solamy (Eds.),

Geometry of Cauchy-Riemann Submanifolds. Springer, Singapore, 179-215 (2016).
[18] Furuhata, H., Hu, N., Vrancken, L.: Statistical hypersurfaces in the space of Hessian curvature zero II. Pure and Applied Differential

Geometry-PADGE 2012 In Memory of Franki Dillen, Shaker Verlag GmbH, Germany, 136-142 (2013).
[19] Gucht, J.V.D., Davelaar, J., Hendriks, L., Porth, O., Olivares, H., Mizuno, Y., Fromm, C.M., Falcke, H.: Deep Horizon; a machine learning

network that recovers accreting black hole parameters. Astronomy-Astrophysics 636, A94 (2020).
[20] Kon, M.: A characterization of totally η-umbilical real hypersurfaces and ruled hypersurfaces of a complex space form. Czech. Math. J. 58 (4),

1279-1287 (2008).
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