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Introduction 
 

Besides the recent developments in the numerical 
methods, the finite element method (FEM) is one of the 
oldest but still popular numerical scheme for the solution 
of the engineering and mathematical boundary value 
problems even defined in complex geometries. 
Therefore, many researchers are paid attention to 
generate the different version of FEM with the 
combination of other modern numerical schemes. As 
results of these attentions, thousands of papers and 
hundreds of books are produced in the academic 
literature.  H-version, p-version, hp-adaptive version, 
scaled boundary finite element version, stabilized 
versions, discontinuous version, extended version and 
smoothed versions are the most known ones. In order to 
formulate the real life problems, 3D-FEM is well suited 
numerical scheme for the solutions of the problems that 
don’t have the analytical result. Therefore addition to 2-
D case, we will pay attention to 3-D FEM applications 
(see [1-16] and references therein). 

Noticed that, after 20𝑡𝑡ℎ century many authors 
performed both analytical and numerical studies about 
MagnetoHydroDynamic (MHD) due to the it’s 
applications in many different areas such as MHD ion 
propulsion, liquid-metal and cooling of nuclear reactors, 
power generation, etc. Derivation of the corresponding 
differential equations using the Navier-Stokes equations, 
Maxwell equations with the Lorentz force and the theory 
of the MHD can be found in [17-19]. 

It is known that the value of the Hartmann number 
that exist in the MHD flow equations is large for the case 
of strong magnetic applications in which case the 

corresponding equation becomes convection dominated. 
However, standard numerical methods have some 
numerical troubles in the sense of stability for these type 
of problems. The FEM has advantage that one can 
consider different stabilization techniques additional to 
the standard formulation. Streamline Upwind Petrov-
Galerkin (SUPG) method [20] is one of the mostly 
preferred stabilization technique in which stable 
solutions are obtained by adding mesh-dependent terms 
to the standard Galerkin FEM formulation.   Even there 
are many papers in different areas as applications of 
MHD and stabilized FEM, let’s refer only a few of them 
on recent years [21-34] and references therein.  

We first considered the solution of the 2-D version of 
the coupled MHD equation which is firstly introduced in 
[35] with magnetic induction of exterior region using the 
Boundary Element Method (BEM) in [36] and DRBEM 
[37]. Then FEM-BEM coupling approach with stabilization 
is applied to the extended version of the problem by 
considering an insulated solid inside the fluid case in [38]. 
As a further stage, we decided to consider the 3-D 
version of the same problem. Firstly, as a 3-D application 
of FEM-BEM coupling approach is applied by Han Aydın 
in [39]. After giving the details of the stabilization in 3-D 
FEM in [40], this study is prepared as the next step 
application of the most general case of the coupled MHD 
problem in 3-D domains. Another contribution of this 
study to the literature beside the 3-D stabilized FEM 
application is obtaining the accurate solutions of the 
huge sized sparse systems using open source libraries. 
Therefore, as our knowledge, this study will fill the gap 
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on literature in this research area and demonstrate FEM 
only solution of the MHD equations. 

   The rest of the paper is organized as follows: The 
following section describes the mathematical modeling 
and FEM formulation of the considered 3 different cases 
with the addition stabilized terms0.  In Numerical Results 
and Discussion we will display the figures of the obtained 
numerical solutions with required explanations. Finally, 
some concluding remarks are provided in the last 
section. 

 
Mathematical Modeling 

 
Mathematical modeling of the considered MHD flow 

problem can be derived using Navier-Stokes equations 
and Maxwell equations from electromagnetic theory 
using also the Ohm’s law. Before writing the 
corresponding coupled system of partial differential 
equations, let’s define some notations. The subscripts 
𝑠𝑠, 𝑓𝑓 [or 𝐹𝐹] and 𝑒𝑒 corresponds to solid, fluid and external 
medium, respectively. Then the solid domain is 𝛺𝛺𝑠𝑠 ∈ 𝐼𝐼𝑅𝑅3, 
the fluid domain is 𝛺𝛺𝑓𝑓 ∈ 𝐼𝐼𝑅𝑅3 and the domain of the 
external medium is 𝛺𝛺𝑒𝑒 ∈ 𝐼𝐼𝑅𝑅3. Similarly, the normal 
vectors are also defined as 𝑛𝑛𝑠𝑠,𝑛𝑛𝑓𝑓,𝑛𝑛𝑒𝑒. The parameters 
𝑅𝑅𝑒𝑒,𝑅𝑅ℎ,𝑅𝑅𝑚𝑚𝑠𝑠,𝑅𝑅𝑚𝑚𝑓𝑓 and 𝑅𝑅𝑚𝑚𝑒𝑒 are the Reynolds number, 
magnetic pressure, magnetic Reynolds number of the 
solid, magnetic Reynolds number of the fluid and 
magnetic Reynolds number of the external medium, 
respectively. 

We consider 3 different problem configurations in the 
context of this study as; 

 
(a)       

                                                                           
(b) 

 
(c) 

Figure 1. Problem configurations for different three cases   
 
Case 1: Fluid inside an external medium 
This is the first case of the considered MHD problem. 

We assume that the fluid is through the domain 𝛺𝛺𝑓𝑓due 
to the constant pressure gradiend and the fluid is 
viscous, incompressible and electrically conducting. Also 
there is an externally applied magnetic field with an 
intensity 𝐵𝐵0where it’s direction through 𝑥𝑥 axis with and 
angle 𝛽𝛽 and through 𝑧𝑧 axis with and angle 𝛼𝛼. The fluid 
domain is surrounded with an electrically conducting 
external domain 𝛺𝛺𝑒𝑒 Figure 1(a). Then the system of 
coupled partial differential equations are defined as [39]. 

 
 

𝛻𝛻2𝑉𝑉𝑓𝑓 + 𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ (𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝜕𝜕
+ 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽 𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝜕𝜕
+ 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝜕𝜕
) = −1

𝛻𝛻2𝐵𝐵𝑓𝑓 + 𝑅𝑅𝑚𝑚𝑓𝑓 ⋅ (𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝜕𝜕
+ 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽 𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝜕𝜕
+ 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝜕𝜕
) = 0 ⎭

⎪
⎬

⎪
⎫

 𝑠𝑠𝑛𝑛 𝛺𝛺𝑓𝑓   (1) 

 
 

𝛻𝛻2𝐵𝐵𝑒𝑒 = 0 𝑠𝑠𝑛𝑛 𝛺𝛺𝑒𝑒 (2) 

 
with the boundary conditions   
 

𝑉𝑉𝑓𝑓 = 0
𝐵𝐵𝑒𝑒 = 𝐵𝐵𝑓𝑓

1
𝑅𝑅𝑚𝑚𝑒𝑒

𝜕𝜕𝐵𝐵𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
=

1
𝑅𝑅𝑚𝑚𝑓𝑓

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑛𝑛𝑓𝑓⎭
⎬

⎫
 ∈ 𝜕𝜕𝛺𝛺𝑓𝑓 ∩  𝜕𝜕𝛺𝛺𝑒𝑒 = 𝛤𝛤𝑓𝑓𝑒𝑒 . (3) 

 
Noticed that even the external medium is unbounded, 
due to the FEM formulation, we need to define an 
artificial boundary on the outer side of the external 
domain 𝛺𝛺𝑒𝑒 as 𝛤𝛤𝑒𝑒for the domain discretization where 
either 𝐵𝐵𝑒𝑒 = 0 (known as the Drichlet type boundary 
condition) or 𝜕𝜕𝐵𝐵𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
= 0 (Neumann type boundary 

condition) are specified on that boundary. The Drichlet 

type boundary condition is compatible with the behavior 
of the real potential solution of eB such that it is 
assumed that 𝐵𝐵𝑒𝑒 → 0 as [𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2] → ∞which is 
called as Saint-Venant principle [36]. Similarly, the 
Neumann type boundary condition corresponds to the 
free exit behavior of the induced magnetic field. 
However, if this type of boundary condition is specified, 
induced magnetic field solutions can be obtained up to a 
constant. Therefore, in order to obtain a unique solution, 
the obtained induced magnetic values should be 
normalized by using the identity   
 

= 0
Ω

Ω∫∫∫ Bd  (4) 

   
where 𝐵𝐵 = 𝐵𝐵𝑠𝑠 ∪ 𝐵𝐵𝑓𝑓 ∪ 𝐵𝐵𝑒𝑒. 
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Case 2: Fluid around a solid 
As a second case, we assume that there is an 

electrically conducting solid inside the fluid having the 
domain sΩ  (Figure 1(b)). The rest of the fluid conditions 

are all same as in the previous case. Then, the system of 
equations and the boundary conditions are written as; 

𝛻𝛻2𝐵𝐵𝑠𝑠 = 0 𝑠𝑠𝑛𝑛 𝛺𝛺𝑠𝑠 (5) 

 

𝛻𝛻2𝑉𝑉𝑓𝑓 + 𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ (𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽
𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑥𝑥
+ 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑦𝑦
+ 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑧𝑧
) = −1

𝛻𝛻2𝐵𝐵𝑓𝑓 + 𝑅𝑅𝑚𝑚𝑓𝑓 ⋅ (𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽
𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑥𝑥
+ 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽

𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑦𝑦
+ 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼

𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑧𝑧
) = 0

⎭
⎪
⎬

⎪
⎫

 𝑠𝑠𝑛𝑛 𝛺𝛺𝑓𝑓 (6) 

 
with the coupled boundary conditions on the intersection of the fluid and solid domains as   
 

𝑉𝑉𝑓𝑓 = 0
𝐵𝐵𝑓𝑓 = 𝐵𝐵𝑠𝑠

1
𝑅𝑅𝑚𝑚𝑓𝑓

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑛𝑛𝑓𝑓
=

1
𝑅𝑅𝑚𝑚𝑠𝑠

𝜕𝜕𝐵𝐵𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠⎭
⎬

⎫
 ∈ 𝜕𝜕𝛺𝛺𝑓𝑓 ∩  𝜕𝜕𝛺𝛺𝑠𝑠 = 𝛤𝛤𝑠𝑠𝑓𝑓 (7) 

 
and additionally we assume that the exterior side of the fluid domain is insulated so 𝐵𝐵𝑓𝑓 = 0  on that boundary.  
 

Case 3: Fluid around a solid and inside an external medium 
Finally, in the third case which is the combination of the first two cases, we consider a fluid both inside an 

electrically conducting exterior medium and around a conducting medium Figure 1(c). Then the full system of 
equations are written as: 
 

𝛻𝛻2𝐵𝐵𝑠𝑠 = 0 𝑠𝑠𝑛𝑛 𝛺𝛺𝑠𝑠 (8) 

 

𝛻𝛻2𝑉𝑉𝑓𝑓 + 𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ (𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽
𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑥𝑥
+ 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑦𝑦
+ 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑧𝑧
) = −1

𝛻𝛻2𝐵𝐵𝑓𝑓 + 𝑅𝑅𝑚𝑚𝑓𝑓 ⋅ (𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽
𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑥𝑥
+ 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽

𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑦𝑦
+ 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼

𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑧𝑧
) = 0

⎭
⎪
⎬

⎪
⎫

 𝑠𝑠𝑛𝑛 𝛺𝛺𝑓𝑓 (9) 

 

𝛻𝛻2𝐵𝐵𝑒𝑒 = 0 𝑠𝑠𝑛𝑛 𝛺𝛺𝑒𝑒 (10) 
 

with the boundary conditions on the intersection of the fluid and solid domains as   
 

𝑉𝑉𝑓𝑓 = 0
𝐵𝐵𝑓𝑓 = 𝐵𝐵𝑠𝑠

1
𝑅𝑅𝑚𝑚𝑓𝑓

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑛𝑛𝑓𝑓
= 1

𝑅𝑅𝑚𝑚𝑠𝑠

𝜕𝜕𝐵𝐵𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠

�  ∈ 𝜕𝜕𝛺𝛺𝑓𝑓 ∩  𝜕𝜕𝛺𝛺𝑠𝑠 = 𝛤𝛤𝑠𝑠𝑓𝑓  and  

𝑉𝑉𝑓𝑓 = 0
𝐵𝐵𝑒𝑒 = 𝐵𝐵𝑓𝑓

1
𝑅𝑅𝑚𝑚𝑒𝑒

𝜕𝜕𝐵𝐵𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
= 1

𝑅𝑅𝑚𝑚𝑓𝑓

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑛𝑛𝑓𝑓

�  ∈ 𝜕𝜕𝛺𝛺𝑓𝑓 ∩  𝜕𝜕𝛺𝛺𝑒𝑒 = 𝛤𝛤𝑓𝑓𝑒𝑒 (11) 

 
and similar to the first case, on 𝛤𝛤𝑒𝑒 either 𝐵𝐵𝑒𝑒 = 0or 𝜕𝜕𝐵𝐵

𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
= 0. 

 
FEM Formulation 
As a first step we will reformulate the given equation in the fluid domain by change of a new variable 𝐵𝐵𝐹𝐹as 𝐵𝐵𝐹𝐹 =

𝑅𝑅𝑒𝑒⋅𝑅𝑅ℎ⋅𝐵𝐵𝑓𝑓

𝐻𝐻𝐻𝐻
 where 𝐻𝐻𝐻𝐻 = �𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ 𝑅𝑅𝑚𝑚𝑓𝑓 is the Hartmann number of the fluid. Then the equations are written in the new 

form as [39] 
 

𝛻𝛻2𝑉𝑉𝑓𝑓 + �𝑀𝑀𝜕𝜕
𝜕𝜕𝐵𝐵𝐹𝐹

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝐵𝐵𝐹𝐹

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝐵𝐵𝐹𝐹

𝜕𝜕𝑧𝑧
� = −1

𝛻𝛻2𝐵𝐵𝐹𝐹 + �𝑀𝑀𝜕𝜕
𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑉𝑉𝑓𝑓

𝜕𝜕𝑧𝑧
� = 0

⎭
⎪
⎬

⎪
⎫

 𝑠𝑠𝑛𝑛 𝛺𝛺𝑓𝑓 (12) 
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for 𝑀𝑀𝜕𝜕 = 𝐻𝐻𝐻𝐻 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 ,𝑀𝑀𝜕𝜕 = 𝐻𝐻𝐻𝐻 𝑠𝑠𝑠𝑠𝑛𝑛 𝛼𝛼 𝑠𝑠𝑠𝑠𝑛𝑛 𝛽𝛽 and 
𝑀𝑀𝜕𝜕 = 𝐻𝐻𝐻𝐻 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼. Then as a second step, we will decouple 
these coupled equations using the following 
transformation by defining the new variables 𝑈𝑈1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
and 𝑈𝑈2(𝑥𝑥,𝑦𝑦, 𝑧𝑧) as 
 
𝑈𝑈1 = 𝑉𝑉𝑓𝑓 + 𝐵𝐵𝐹𝐹 ,
𝑈𝑈2 = 𝑉𝑉𝑓𝑓 − 𝐵𝐵𝐹𝐹 ,

 (13) 

 
then equations become 
 

𝛻𝛻2𝐵𝐵𝑠𝑠 = 0 𝑠𝑠𝑛𝑛 𝛺𝛺𝑠𝑠 (14) 

 
𝛻𝛻2𝑈𝑈1 + 𝑀𝑀 ⋅ 𝛻𝛻𝑈𝑈1 = −1

𝛻𝛻2𝑈𝑈2 − 𝑀𝑀 ⋅ 𝛻𝛻𝑈𝑈2 = −1
� 𝑠𝑠𝑛𝑛 𝛺𝛺𝑓𝑓 (15) 

 

𝛻𝛻2𝐵𝐵𝑒𝑒 = 0 𝑠𝑠𝑛𝑛 𝛺𝛺𝑒𝑒 (16) 

 

where 𝑀𝑀 = (𝑀𝑀𝜕𝜕,𝑀𝑀𝜕𝜕,𝑀𝑀𝜕𝜕). 
Before obtaining the finite element formulation of 

the given equations, let’s define the required function 
spaces. 

• 𝐿𝐿2(𝛺𝛺) : the space of square integrable functions 
over the domain 𝛺𝛺,  

• 𝐻𝐻1(𝛺𝛺) : the Sobolev space of 𝐿𝐿2(𝛺𝛺) functions 
whose derivatives are square integrable functions in 𝛺𝛺,  

• 𝐻𝐻01(𝛺𝛺) : the Sobolev subspace of 𝐻𝐻1(𝛺𝛺) functions in 
𝛺𝛺 with zero value on the boundary 𝜕𝜕𝛺𝛺.  

 
In order to construct the FEM formulation, the 

problem domain should be partitioned to the elements 
(linear tetrahedron elements in our computations) in a 
standard way (e.g. no overlapping, no vertex on the edge 
or side of a neighboring elements, etc). Then, we can 
obtain the standard Galerkin FEM weak formulation to 
the these decoupled system of equations by employing 
the linear function space 𝐿𝐿 = (𝐻𝐻01(𝛺𝛺))2 as: Find 
{𝐵𝐵𝑠𝑠;𝑈𝑈1;𝑈𝑈2;𝐵𝐵𝑒𝑒} ∈ {𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿} such that   

 
 

𝐻𝐻(𝛻𝛻𝐵𝐵𝑠𝑠,𝛻𝛻𝑠𝑠) − ℓ(
𝜕𝜕𝐵𝐵𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠
, 𝑠𝑠) + 𝐻𝐻(𝛻𝛻𝑈𝑈1,𝛻𝛻𝑤𝑤1) − 𝑏𝑏(𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈1

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈1

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈1

𝜕𝜕𝑧𝑧
,𝑤𝑤1) − ℓ(

𝜕𝜕𝑈𝑈1

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤1)

+ 𝐻𝐻(𝛻𝛻𝑈𝑈2,𝛻𝛻𝑤𝑤2) + 𝑏𝑏(𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈2

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈2

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈2

𝜕𝜕𝑧𝑧
,𝑤𝑤2) − ℓ(

𝜕𝜕𝑈𝑈2

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤2) + 𝐻𝐻(𝛻𝛻𝐵𝐵𝑒𝑒 ,𝛻𝛻𝑒𝑒)

− ℓ(
𝜕𝜕𝐵𝐵𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
, 𝑒𝑒) = 𝑏𝑏(1,𝑤𝑤1) + 𝑏𝑏(1,𝑤𝑤2) 

(17) 

 
1 2{ ; ; ; } { }∀ ∈ × × ×s w w e L L L L  where ( , )a u v∇ ∇ , ( , )b u v  and ( , )u v  are the usual bi-linear and linear 

forms for the domain and boundary integrals such that 
 

𝐻𝐻(∇𝑢𝑢,∇𝑣𝑣) = �
Ω

�
∂𝑢𝑢
∂𝑥𝑥

∂𝑣𝑣
∂𝑥𝑥

+
∂𝑢𝑢
∂𝑦𝑦

∂𝑣𝑣
∂𝑦𝑦

+
∂𝑢𝑢
∂𝑧𝑧

∂𝑣𝑣
∂𝑧𝑧
� 𝑑𝑑Ω ,  𝑏𝑏(𝑢𝑢, 𝑣𝑣) = �

Ω
(𝑢𝑢𝑣𝑣)𝑑𝑑Ω 

and ℓ(𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛

, 𝑣𝑣) = ∬𝛤𝛤 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛
𝑣𝑣� 𝑑𝑑𝜕𝜕𝛺𝛺 

 
Then, the variational formulation is written by the choice of finite dimensional subspaces 𝐿𝐿ℎ ⊂ 𝐿𝐿,  defined by 

discretization of the domain to the linear tetrahedron elements as [7]: Find {𝐵𝐵ℎ𝑠𝑠;𝑈𝑈ℎ1;𝑈𝑈ℎ2;𝐵𝐵ℎ𝑒𝑒} ∈ {𝐿𝐿ℎ × 𝐿𝐿ℎ × 𝐿𝐿ℎ ×
𝐿𝐿ℎ} such that   

 

𝐻𝐻(𝛻𝛻𝐵𝐵ℎ𝑠𝑠,𝛻𝛻𝑠𝑠ℎ) − ℓ(
𝜕𝜕𝐵𝐵ℎ𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠
, 𝑠𝑠ℎ) + 𝐻𝐻(𝛻𝛻𝑈𝑈ℎ1,𝛻𝛻𝑤𝑤ℎ1) − 𝑏𝑏(𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑧𝑧
,𝑤𝑤ℎ1) − ℓ(

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤ℎ1)

+ 𝐻𝐻(𝛻𝛻𝑈𝑈ℎ2,𝛻𝛻𝑤𝑤ℎ2) + 𝑏𝑏(𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑧𝑧
,𝑤𝑤ℎ2) − ℓ(

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤ℎ2)

+ 𝐻𝐻(𝛻𝛻𝐵𝐵ℎ𝑒𝑒 ,𝛻𝛻𝑒𝑒ℎ) − ℓ(
𝜕𝜕𝐵𝐵ℎ𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
, 𝑒𝑒ℎ) = 𝑏𝑏(1,𝑤𝑤ℎ1) + 𝑏𝑏(1,𝑤𝑤ℎ2) 

(18) 
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𝐻𝐻(𝛻𝛻𝐵𝐵ℎ𝑠𝑠,𝛻𝛻𝑠𝑠ℎ) − ℓ(
𝜕𝜕𝐵𝐵ℎ𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠
, 𝑠𝑠ℎ) + 𝐻𝐻(𝛻𝛻𝑈𝑈ℎ1,𝛻𝛻𝑤𝑤ℎ1) − 𝑏𝑏(𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑧𝑧
,𝑤𝑤ℎ1) − ℓ(

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤ℎ1)

+ 𝜏𝜏𝐾𝐾 ⋅ 𝑏𝑏(−𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑥𝑥
−𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑦𝑦
−𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝑧𝑧
− 1,−𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ1

𝜕𝜕𝑥𝑥
− 𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ1

𝜕𝜕𝑦𝑦
−𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ1

𝜕𝜕𝑧𝑧
)

+ 𝐻𝐻(𝛻𝛻𝑈𝑈ℎ2,𝛻𝛻𝑤𝑤ℎ2) + 𝑏𝑏(𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑧𝑧
,𝑤𝑤ℎ2) − ℓ(

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤ℎ2) + 𝜏𝜏𝐾𝐾

⋅ 𝑏𝑏(𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝑧𝑧
− 1,𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ2

𝜕𝜕𝑥𝑥
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ2

𝜕𝜕𝑦𝑦
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ2

𝜕𝜕𝑧𝑧
) + 𝐻𝐻(𝛻𝛻𝐵𝐵ℎ𝑒𝑒 ,𝛻𝛻𝑒𝑒ℎ)

− ℓ(
𝜕𝜕𝐵𝐵ℎ𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
, 𝑒𝑒ℎ) = 𝑏𝑏(1,𝑤𝑤ℎ1) + 𝑏𝑏(1,𝑤𝑤ℎ2) 

(19) 

 
with the stabilization parameter  

2

 if 1
2

=

 if < 1
12

K
k

K

K
k

h Pe
Ha

h Pe

τ


≥







 (20) 

where ℎ𝐾𝐾 Kh  is the diameter of the element 𝐾𝐾which is 
calculated as the longest side of the corresponding 
tetrahedron element, 𝑃𝑃𝑒𝑒𝐾𝐾 = ℎ𝐾𝐾

𝐻𝐻𝐻𝐻
6

 is the Peclet number. 
Now, one can turn back to original unknowns with 

inverse transformations   
 

𝑉𝑉𝑓𝑓 =
𝑈𝑈1 + 𝑈𝑈2

2  and 𝐵𝐵𝐹𝐹 =
𝑈𝑈1 − 𝑈𝑈2

2  →  𝐵𝐵𝑓𝑓

=
𝐻𝐻𝐻𝐻

𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ𝐵𝐵
𝐹𝐹   

 

(21) 

 
and since the coefficients 

𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑒𝑒
≥ 1 and 

𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑠𝑠
≥ 1, use the 

relations in the coupled boundary conditions as 
 

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑛𝑛𝑓𝑓
=
𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑠𝑠

𝜕𝜕𝐵𝐵𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠
 and 

𝜕𝜕𝐵𝐵𝑓𝑓

𝜕𝜕𝑛𝑛𝑓𝑓
=
𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑒𝑒

𝜕𝜕𝐵𝐵𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
 (22) 

 
Then one gets the final variational form of the equations 
as   

 
 

 𝐻𝐻(𝛻𝛻𝐵𝐵ℎ𝑠𝑠,𝛻𝛻𝑠𝑠ℎ) − ℓ(𝜕𝜕𝐵𝐵ℎ
𝑠𝑠

𝜕𝜕𝑛𝑛𝑠𝑠
, 𝑠𝑠ℎ) + 𝐻𝐻(𝛻𝛻𝑈𝑈ℎ1,𝛻𝛻𝑤𝑤ℎ1) − 𝑏𝑏(𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝜕𝜕
,𝑤𝑤ℎ1) − ℓ(𝜕𝜕𝑈𝑈ℎ

1

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤ℎ1) + 𝜏𝜏𝐾𝐾 ⋅

𝑏𝑏(−𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝜕𝜕
− 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝜕𝜕
− 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ1

𝜕𝜕𝜕𝜕
− 1,−𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ1

𝜕𝜕𝜕𝜕
− 𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ1

𝜕𝜕𝜕𝜕
− 𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ1

𝜕𝜕𝜕𝜕
) + 𝐻𝐻(𝛻𝛻𝑈𝑈ℎ2,𝛻𝛻𝑤𝑤ℎ2) + 𝑏𝑏(𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝜕𝜕
+

𝑀𝑀𝜕𝜕
𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝜕𝜕
,𝑤𝑤ℎ2) − ℓ(𝜕𝜕𝑈𝑈ℎ

2

𝜕𝜕𝑛𝑛𝑓𝑓
,𝑤𝑤ℎ2) + 𝜏𝜏𝐾𝐾 ⋅ 𝑏𝑏(𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑈𝑈ℎ2

𝜕𝜕𝜕𝜕
− 1,𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ2

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝜕𝜕

𝜕𝜕𝑤𝑤ℎ2

𝜕𝜕𝜕𝜕
+

𝑀𝑀𝜕𝜕
𝜕𝜕𝑤𝑤ℎ2

𝜕𝜕𝜕𝜕
) + 𝐻𝐻(𝛻𝛻𝐵𝐵ℎ𝑒𝑒 ,𝛻𝛻𝑒𝑒ℎ) − ℓ(𝜕𝜕𝐵𝐵ℎ

𝑒𝑒

𝜕𝜕𝑛𝑛𝑒𝑒
, 𝑒𝑒ℎ) = 𝑏𝑏(1,𝑤𝑤ℎ1) + 𝑏𝑏(1,𝑤𝑤ℎ2) 

(23) 

 
We will obtain the system of linear equations in matrix-vector forms 

 

Case 1: �
𝐾𝐾 + 𝑆𝑆 −𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ 𝐶𝐶 0

−𝑅𝑅𝑚𝑚𝑓𝑓 ⋅ 𝐶𝐶 𝐾𝐾 + 𝑆𝑆 −
𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑒𝑒
⋅ 𝑄𝑄

0 0 𝐾𝐾
� �
𝑉𝑉𝑓𝑓
𝐵𝐵𝑓𝑓

𝐵𝐵𝑒𝑒
� = �

𝑅𝑅1
𝑅𝑅2
0
� (24) 

 

Case 2: �
𝐾𝐾 0 0
0 𝐾𝐾 + 𝑆𝑆 −𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ 𝐶𝐶

−
𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑠𝑠
⋅ 𝑄𝑄 −𝑅𝑅𝑚𝑚𝑓𝑓 ⋅ 𝐶𝐶 𝐾𝐾 + 𝑆𝑆

� �
𝐵𝐵𝑠𝑠

𝑉𝑉𝑓𝑓
𝐵𝐵𝑓𝑓
� = �

0
𝑅𝑅1
𝑅𝑅2
� (25) 

 

Case 3: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐾𝐾 0 0 0

0 𝐾𝐾 + 𝑆𝑆 −𝑅𝑅𝑒𝑒 ⋅ 𝑅𝑅ℎ ⋅ 𝐶𝐶 0

−
𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑠𝑠
⋅ 𝑄𝑄 −𝑅𝑅𝑚𝑚𝑓𝑓 ⋅ 𝐶𝐶 𝐾𝐾 + 𝑆𝑆 −

𝑅𝑅𝑚𝑚𝑓𝑓

𝑅𝑅𝑚𝑚𝑒𝑒
⋅ 𝑄𝑄

0 0 0 𝐾𝐾 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐵𝐵𝑠𝑠

𝑉𝑉𝑓𝑓

𝐵𝐵𝑓𝑓

𝐵𝐵𝑒𝑒⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧

0

𝑅𝑅1

𝑅𝑅2

0 ⎭
⎪⎪
⎬

⎪⎪
⎫

 (26) 

 
where , ,K C S  and Q  are the matrices and 1R  and 2R  are the vectors with the entries   

𝐾𝐾𝑖𝑖𝑖𝑖 = �
Ω

�
∂𝑁𝑁𝑖𝑖
∂𝑥𝑥

∂𝑁𝑁𝑖𝑖
∂𝑥𝑥

+
∂𝑁𝑁𝑖𝑖
∂𝑦𝑦

∂𝑁𝑁𝑖𝑖
∂𝑦𝑦

+
∂𝑁𝑁𝑖𝑖
∂𝑧𝑧

∂𝑁𝑁𝑖𝑖
∂𝑧𝑧

�𝑑𝑑Ω, 
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𝐶𝐶𝑖𝑖𝑖𝑖 = �
Ω

�𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑥𝑥

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑦𝑦

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑧𝑧

�𝑁𝑁𝑖𝑖𝑑𝑑Ω,   𝑄𝑄𝑖𝑖𝑖𝑖 = �
Γ

∂𝑁𝑁𝑖𝑖
∂𝑛𝑛

𝑁𝑁𝑖𝑖𝑑𝑑 ∂Ω, 

 

𝑆𝑆𝑖𝑖𝑖𝑖 = �
Ω

𝜏𝜏𝐾𝐾 �𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑥𝑥

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑦𝑦

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑧𝑧

� �𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑥𝑥

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑦𝑦

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝑧𝑧

�𝑑𝑑Ω, 

 
𝑅𝑅1𝑖𝑖 = ∭Ω 𝑁𝑁𝑖𝑖𝑑𝑑Ω ,     𝑅𝑅2𝑖𝑖 = ∭Ω 𝜏𝜏𝐾𝐾 �𝑀𝑀𝜕𝜕

∂𝑁𝑁𝑖𝑖
∂𝜕𝜕

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝜕𝜕

+ 𝑀𝑀𝜕𝜕
∂𝑁𝑁𝑖𝑖
∂𝜕𝜕
� 𝑑𝑑Ω. 

 
One can obtain the all unknown values from the solution of these system of linear equations. Noticed that, due 

to the structure of the FEM formulation, obtained linear system of equations are in sparse form. Therefore it is better 
to solve the system using an efficient sparse solver. 

 
Highlights of the Algorithm 
• Initialize the parameters and the problem domain. 
• Calculate the element matrices and vectors using the stabilized formulation (if the element is on 

the fluid domain) and apply the global matrix contribution. 
• Apply the boundary conditions 
• Solve the obtained system using Umfpack sparse solver. 

 
Numerical Results and Discussion 
 
In this section, we will demonstrate the proposed 

numerical scheme over some test problems in terms of 
the contour line figures as 2-D slices of the 3-D domain 
solutions. The problem domains are selected as 

2 2 2{( , , ) | 1}Ω = + + ≤s x y z x y z , 
2 2 2{( , , ) | 1}Ω = + + ≤f x y z x y z for Case1 and 

2 2 2{( , , ) |1 4}Ω = ≤ + + ≤f x y z x y z  for Cases 2 

and 3 and 2 2 2{( , , ) |1 4}Ω = ≤ + + ≤e x y z x y z  for 

Case 1 and 2 2 2{( , , ) | 4 9}Ω = ≤ + + ≤e x y z x y z  for 
Case 3. For the comparision, we have also tested the 
cubic domain for Case1 as 

{( , , ) | 1 , , 1}Ω = − ≤ ≤f x y z x y z and 

{( , , ) | 2 , , 2} \Ω = − ≤ ≤ Ωe fx y z x y z . Additionally, 

all we know that the resulting coefficient matrix in FEM 
formulation is in sparse form and its size is too large for 
the 3-D domain problems especially for the Case 3. On 
the numerical implementation side, user modified 

version of an open source sparse solver UMFPACK with 
long integer data types for the large sized systems is used 
with OpenMP support in GNU Fortran compiler in order 
to reduce the storage size and the computational time. 
Finally, the domain integrals over the tetrahedron 
elements and and the boundary integrals over the 
triangular elements are calculated numerilcally using 5 
points and 4 points numerical quadrature methods, 
respectively such that numerical values are equal to the 
analytical values of the integrals.  

 
Effect of the stabilization: 
Before giving the results for the considered cases, we 

want to display the effect of the stabilization. It is seen 
from Figure 2 that even over the rough mesh and high 
values of the problem parameters (
Re 10,  10,  100fRh Rm= = = ), there are some 

instabilities and oscillations on the solution contours 
obtained from standard Galerkin FEM formulation (left 
sub-figures (a) and (c)), the stabilized formulation 
eliminates these numerical difficulties (right sub-figures 
(b) and (d)) especially on the velocity solutions. 

 
 
 
 
 
 



Aydın, Erdoğan / Cumhuriyet Sci. J., 44(3) (2023) 547-560 

553 

             
(a)                                                                                                                      (b) 

             
(c)                                                                                                                        (d)    

Figure 2. Velocity (a-b) and induced magnetic field (c-d) contour lines for different 𝑥𝑥 − 𝑦𝑦 − 𝑧𝑧 slices for 𝑅𝑅𝑒𝑒 = 10,𝑅𝑅ℎ =
10,𝑅𝑅𝑚𝑚𝑓𝑓 = 100,𝑅𝑅𝑚𝑚𝑒𝑒 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 𝜋𝜋/2. 

 
Case 1: 
In this subsection, we displayed the effect of ratio of  

f

e

Rm
Rm

on the contour lines of the induced magnetic field 

solutions. It is seen from Figure 3 that even the 
continuity requirement is satified, there is a strong 

change on the intersection of the fluid and external 
domain boundary. Due to the Drichlet type boundary 
condition, contour lines close themselves on the exterior 
side of the external domain. Velocity contour lines are 
also compatible with the 2-D case of the considered 
MHD problem. 
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(b)                                                                                                                      (b) 

             
(d)                                                                                                                        (d)    

Figure 3. Velocity (a-b) and induced magnetic field (c-d) contour lines for different 𝑥𝑥 − 𝑦𝑦 − 𝑧𝑧 slices for 𝑅𝑅𝑒𝑒 = 10,𝑅𝑅ℎ =
1,𝑅𝑅𝑚𝑚𝑓𝑓 = 10,𝑅𝑅𝑚𝑚𝑒𝑒 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 𝜋𝜋/2. 

 
 
For the comparison, the same problem configuration 

is considered for the cubic domain in Figure 4 as defined 
above. Noticed that the behavior of the both spherical 
and cubic domains are similar to each other except the 

numerical difficulties at the corners on the induced 
magnetic field solution lying on the exterior region as 
predicted.  
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(c)                                                                                                                      (b) 

             
(e)                                                                                                                        (d)    

Figure 4. Velocity (a-b) and induced magnetic field (c-d) contour lines for different 𝑥𝑥 − 𝑦𝑦 − 𝑧𝑧 slices for 𝑅𝑅𝑒𝑒 = 10,𝑅𝑅ℎ =
1,𝑅𝑅𝑚𝑚𝑓𝑓 = 10,𝑅𝑅𝑚𝑚𝑒𝑒 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 𝜋𝜋/2. 

 
In Figure 5, we tested the effect of Neumann type 

boundary condition, effect of the high value of the 
Hartmann number and also the effect of direction of the 
applied external magnetic field ( = /2, = /4α π β π ).  It is 
seen that there is a boundary layer formation where it’s 

position is changing depending on the selected slice due 
to the value of β and the flow becomes stagnant. One 
can see that the contour lines of the induced magnetic 
field are perpendicular to the exterior boundary due to 
the effect of the Neumann type boundary condition. 
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(a)                                                                                                                      (b) 

             
(c)                                                                                                                        (d)    

Figure 5. Velocity (a-b) and induced magnetic field (c-d) contour lines for different 𝑥𝑥 − 𝑦𝑦 − 𝑧𝑧 slices for 𝑅𝑅𝑒𝑒 = 10,𝑅𝑅ℎ =
5,𝑅𝑅𝑚𝑚𝑓𝑓 = 50,𝑅𝑅𝑚𝑚𝑒𝑒 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 𝜋𝜋/4. 

 
Case 2: 
In order visualize the solid inside a fluid case, we 

selected the problem parameters as 𝑅𝑅𝑒𝑒 = 50,𝑅𝑅ℎ =
5,𝑅𝑅𝑚𝑚𝑓𝑓 = 10,𝑅𝑅𝑚𝑚𝑠𝑠 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 0. We want to 
display the effects of high values of problem parameters 

𝑅𝑅𝑒𝑒 and 𝑅𝑅ℎ 𝑅𝑅ℎ on the flow behavior. It is seen that 
contour lines of both velocity and induced magnetic field 
are parallel with direction of the externally applied 
magnetic field due to the high value of the Hartmann 
number (see Figure 6). 
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(a)                                                                                                                      (b) 

             
(c)                                                                                                                        (d)    

Figure 6. Velocity (a-b) and induced magnetic field (c-d) contour lines for different 𝑦𝑦 − 𝑧𝑧 slices for 𝑅𝑅𝑒𝑒 = 50,𝑅𝑅ℎ =
5,𝑅𝑅𝑚𝑚𝑓𝑓 = 10,𝑅𝑅𝑚𝑚𝑠𝑠 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 0. 

 
Case 3: 
Finally, let’s display the numerical solutions for the 

most general case. In Figure 7, we selected the problem 
parameters 𝑅𝑅𝑚𝑚𝑠𝑠 = 1,𝑅𝑅𝑚𝑚𝑓𝑓 = 1,𝑅𝑅𝑚𝑚𝑒𝑒 = 1 in order to 

display the smooth continuation of the contour lines of 
induced magnetic field solutions. It is also seen that the 
velocity takes it’s maximum value at the center of the 
fluid domain as expected. 
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(a)                                                                                                                      (b) 

             
(c)                                                                                                                        (d)    

Figure 7. Velocity (a-b) and induced magnetic field (c-d) contour lines for different 𝑦𝑦 − 𝑧𝑧 slices for 𝑅𝑅𝑒𝑒 = 1,𝑅𝑅ℎ =
1,𝑅𝑅𝑚𝑚𝑠𝑠 = 1,𝑅𝑅𝑚𝑚𝑓𝑓 = 1,𝑅𝑅𝑚𝑚𝑒𝑒 = 1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 𝜋𝜋/2. 

 
Additionally, in Figure 8, we have compared the induced magnetic field solutions for different problem 

parameters. One can see that contour lines are again parallel with the direction of  0B  and flow behavior is 
compatible with the literature results [36-39]. 
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(a)                                                                                                                      (b) 

Figure 8. Induced magnetic field contour lines for the 𝑦𝑦 slice for  𝑅𝑅𝑒𝑒 = 10,𝑅𝑅ℎ = 1,𝑅𝑅𝑚𝑚𝑠𝑠 = 10,𝑅𝑅𝑚𝑚𝑓𝑓 = 100,𝑅𝑅𝑚𝑚𝑒𝑒 =
1,𝛼𝛼 = 𝜋𝜋/2, 𝛽𝛽 = 𝜋𝜋/2 (a) and for 𝑅𝑅𝑒𝑒 = 5,𝑅𝑅ℎ = 5,𝑅𝑅𝑚𝑚𝑠𝑠 = 5,𝑅𝑅𝑚𝑚𝑓𝑓 = 50,𝑅𝑅𝑚𝑚𝑒𝑒 = 1,𝛼𝛼 = 𝜋𝜋/4, 𝛽𝛽 = 𝜋𝜋/4 (b). 
 

Conclusion 
 

The SUPG typed stabilized FEM formulation of the 3-
D MHD flow problem with three different problem 
configurations which have not been considered in the 
previous literature studies are provided in this study in a 
detail way. The proposed formulations are tested on 
some benchmark problems. Obtained solutions are 
displayed in terms of figures and one can see that the 
numerical solutions are stable and agree with the 2-D 
version of the similar problems.  
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