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Abstract. A new multidimensional Model II regression based on bisector
point of view (BRM-II) is introduced for multivariate problems that may con-

tain measurement error. The suggested method is constructed depending on

using the bisector of the minor angle between two hyperplanes identified by
linear regression. The performance of the proposed method are examined

by simulations up to ten variables for different sample sizes and distribution

types in terms of the Mean Square Error. Moreover, the BRM-II is applied
to two real problems with two and three variables, and compared with the

existing methods. The results indicate that the BRM-II is easy applicable

and offers relatively better accuracy. The relevant method can be easily coded
in any programming language provides convenience in its application. Thus,

the proposed method provide powerful tool for prediction of relevant real life

problems.

1. Introduction

Regression analysis is a statistical method used to determine the relationship
between two or more variables that have a cause and effect relation and to make
estimation or prediction about that subject by using this relationship [12]. The
regression method, which dates back to the 1800s, was first used in astronomical
events and social sciences. In classical regression, the regression model including
two variables is defined as

Ŷ = β0 + β1X + ei (1)
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while the model including more than two variables is given by

Ŷ = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βmXm + ei, (2)

where Ŷ represents dependent variable, ei are uncontrollable errors and βi are co-
efficients (i = 1, 2, . . . ,m). It is well-known that the regression analysis depends on
fundamental assumptions as follows: (i) the relationship between the variables is
linear, (ii) the variables have no measurement errors, (iii) the expected value of
error terms is zero, (iv) the error terms display the normal distribution, (v) there
is no relation between and the error terms, (vi) there is no autocorrelation between
error terms, (vii) the variance of error terms is constant for all values of the inde-
pendent variables [14]. In the analysis of classical regression, assumption (ii) is the
important one because of losing the validity of the model in case of not providing
this assumption. Besides, it is nonrealistic that the variables do not contain the
measurement error stemming from the measuring equipment, observer, incorrect
records, etc. in the real data sets. For this reason, the Model II regression methods
have been developed in cases where assumption (ii) may not be provided. Model
II regression methods are based on the idea of constituting a regression model that
regards the fact that all variables may contain errors. In the analysis of classical
regression, assumption (ii) is the important one because of losing the validity of
the model in case of not providing this assumption. Besides, it is nonrealistic that
the variables do not contain the measurement error stemming from the measuring
equipment, observer, incorrect records, etc. in the real data sets. Thus, the Model
II regression approach is derived, based on the idea of constructing a regression
model that regards the fact that all variables may contain errors. In Model I re-
gression, in order to determine the functional relationship between the variables
and to make prediction, linear regression is used while, in Model II, linear regres-
sions for each variable are constructed because assigning the variables as dependent
or independent could not be possible and corresponding regression equations are
evaluated depending on the nature of the problem.

The idea of Model II regression, which dates back to the early 1900s, has been
studied theoretically by Deming (1943) [5], York (1966) [29] and Passing and Bablok
(1983) [18]. Also, to estimate of the functional relationship, the line that bisects the
minor angle between the two model regressions is suggested by Sprent and Dolby
(1980) [23]. One of the important Model II regression called geometric mean Model
II has been used in the analysis of most field data by Laws and Archie (1981) [13]
while a linear regression method without particular assumptions, regarding the
distribution of the samples and the measurement errors, has been investigated by
Passing and Bablok (1983) [18]. In the next years, major axis and standardized
major axis, which are the most known Model II methods, have been discussed by
Warton et al. (2006) [27] to describe the key properties of line-fitting techniques
in order to estimate the relationship between two variables. While it is seen that
all of these mentioned studies focused on bivariate problems, a method for estimat-
ing multivariate functional relationships between sets of measured data in different
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fields is described for three or more variables in the studies of Stavn and Richter
(2008) [24] and Richter and Stavn (2014) [20]. Besides of these theoretical develop-
ments, there are many studies focused on the application of Model II methods in
the literature. A number of Model II methods have been examined in fishery studies
and reviewed in biomechanics by Ricker (1973) [21] and Rayner (1985) [19], respec-
tively. Isobe et al. (1990) [11] have discussed and applied five different methods to
bivariate data with measurement errors in astronomical problems. Some Model II
procedures have been reviewed comprehensively and compared the effectiveness of
the methods on clinical and biomedical chemistry by Ludbrook (2010, 2012) [15,16].
In several research areas such as natural sciences, biological researches, environmen-
tal sciences, fisheries, osteology and microbiology, etc., different types of Model II
methods have been used in the literature [1–4,6–10,17,25,28]. On the other hand,
when all model II regressions in the literature are examined, it is seen that all of
them are derived for two or three variable problems, except the study of Richter
and Stavn (2014) [20]. In their study, however, model II regression is defined only
theoretically for problems with more than three variables, but it has not been ap-
plied to any real data or simulation calculations. Therefore, the Model II regression
methods available in the literature are open to development when it is desired to
model a problem with four or more variables. Accordingly, the novelty of this study
is to develop a new Model II regression method for the problems with any number
of variables. This new method, called Bisector Regression Model II (BRM-II), is
constructed on the idea of computing the bisector of hyperplanes standing for the
multidimensional regression models. The BRM-II method has the flexibility to be
applied to many complex problems in the natural, medical, and social sciences since
real-life problems are represented by multivariate models.

In this paper, the organization is follows: in Section 2, a new multidimensional
BRM-II method is introduced in detail. Then, in order to demonstrate the validity
and efficiency of the method, the proposed method is applied for both simulations
which are up to ten variables for different sample sizes and distribution types and
real data sets with two and three variables in Section 3. Finally, the concluding
remarks are presented in the last section.

2. A New Multidimensional BRM-II Method

Let we have a data set with m variables such as Xi (i = 1, 2, . . . ,m) . For in-
stance, we decide X1 as a dependent variable and set a linear regression with other
(m− 1) variables

X1 = β0 + β1X2 + β2X3 + · · ·+ βm−1Xm.
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From this point of view each linear regression is obtained and expressed as a system
with the following form:

H1 : β0,1 + β1,1X1 + β2,1X2 + β3,1X3 + · · ·+ βm,1Xm = 0
H2 : β0,2 + β1,2X1 + β2,2X2 + β3,2X3 + · · ·+ βm,2Xm = 0
H3 : β0,3 + β1,3X1 + β2,3X2 + β3,3X3 + · · ·+ βm,3Xm = 0

...
Hm : β0,m + β1,mX1 + β2,mX2 + β3,mX3 + · · ·+ βm,mXm = 0


(3)

where Hi for i = 1, . . . ,m represent the hyperplanes geometrically, βi,j for i =
0, . . . ,m , j = 1, . . . ,m are unknown regression coefficients and βi,i = −1 for
i = 1, . . . ,m. A bisector-hyperplane (BH1) is found by considering the hyperplanes
H1 and H2 in system (3), and then a new bisector-hyperplane (BH2) is again found
by using BH1 and H3 and so on (see Figure 1). The geometric observations of the
bisector approach with two and three variables are given in Figure 2.

Figure 1. The schema of bisector hyperplanes

In order to carry out the bisector hyperplanes between each sequential hyper-
planes, finding the normal vectors of the hyperplanes is needed. The matrix of
normal vectors of the hyperplanes in the above system is defined by

A =


β1,1 β2,1 β3,1 · · · βm,1

β1,2 β2,2 β3,2 · · · βm,2

β1,3 β2,3 β3,3 · · · βm,3
...

...
...

. . .
...

β1,m β2,m β3,m · · · βm,m

 . (4)
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(a)

(b)

Figure 2. The geometric observation of the bisector approach
with (a) two variables (the red line: β0,1 + β1,1X1 + β2,1X2 = 0,
the blue line: β0,2 + β1,2X1 + β2,2X2 = 0 and the green line is
the bisector line) and (b) three variables (the blue plane: β0,1 +
β1,1X1 + β2,1X2 + β3,1X3 = 0, the green plane: β0,2 + β1,2X1 +
β2,2X2 + β3,2X3 = 0 and the yellow plane is the bisector plane)

Let us now obtain the first bisector hyperplane BH1 using with the hyperplanes
H1 and H2. It is well-known that the equation of a bisector hyperplane is computed
by

∣∣β0,1 + β1,1X1 + β2,1X2 + · · ·+ βm,1Xm

∣∣
∥ñ1∥

=

∣∣β0,2 + β1,2X1 + β2,2X2 + · · ·+ βm,2Xm

∣∣
∥ñ2∥

(5)
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where ∥ · ∥ is Euclidean norm of the corresponding vector and ñ1, ñ2 are the
normal vectors of H1 and H2 as follows

ñ1 =
[
β1,1 β2,1 β3,1 · · · βm,1

]
, (6)

ñ2 =
[
β1,2 β2,2 β3,2 · · · βm,2

]
. (7)

Therefore, the matrix form of the normal vector of BH1 is obtained

ñBH1 =
ñ1

∥ñ1∥
∓ ñ2

∥ñ2∥
. (8)

As can be seen from Eq. (8) there are two cases to determine the normal vector
of BH1 since there are two bisector hyperplane arising from two angles called the
minor and major ones between the H1 and H2. The bisector hyperplane stemming
from the minor angle is preferred as BH1 because of representing the data set
meaningfully. The formulae of BH1 is written as

BH1 : β̃0,1 + ñBH1X = 0 , (9)

whereX =
[
X1 X2 X3 · · · Xm

]T
, ñBH1 =

[
β̃1,1 β̃2,1 β̃3,1 · · · β̃m,1

]
and β̃0,1 =

β0,1

∥ñ1∥ ∓ β0,2

∥ñ2∥ . In a similar manner, the normal vectors of BH1 and H3

are taken as

ñBH1
=

[
β̃1,1 β̃2,1 β̃3,1 · · · β̃m,1

]
, (10)

ñ3 =
[
β1,3 β2,3 β3,3 · · · βm,3

]
. (11)

and the matrix form of the normal vector of BH2 is obtained

ñBH2 =
ñBH1

∥ñBH1
∥
∓ ñ3

∥ñ3∥
. (12)

Use the minor angle point of view,

BH2 : β̃0,2 + ñBH2
X = 0 , (13)

whereX =
[
X1 X2 X3 · · · Xm

]T
, ñBH2

=
[
β̃1,2 β̃2,2 β̃3,2 · · · β̃m,2

]
and β̃0,2 =

β̃0,1

∥ñBH1∥
∓ β0,3

∥ñ3∥ . The computation process is continued as the similar

way, and the last bisector hyperplaneBHm−1 is obtained as

BHm−1 : β̃0,m−1 + ñBHm−1X = 0 (14)

where X =
[
X1 X2 X3 · · · Xm

]T
,

ñBHm−1
=

[
β̃1,m−1 β̃2,m−1 · · · β̃m,m−1

]
and β̃0,m−1 =

β̃0,m−2

∥ñBHm−2∥
∓ β0,m

∥ñm∥ .

Thus, the process is completed, and the BHm−1 is called as the BRM-II model.
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3. Computational Experiments

To demonstrate the applicability and efficiency of the multidimensional BRM-
II, various simulations which are up to ten variables for different sample sizes and
distribution types are performed in terms of the MSE

MSE =

n∑
i=1

(yi − ŷi)

n− k
,

where yi are real observation values, ŷi are estimated values, n is the sample size
and k is the number of parameters. In addition to the simulations, the BRM-II is
applied to two real problems with two and three variables, and compared with the
existing methods in the literature.

3.1. Simulations. It is well-known that simulation is defined as imitating some-
thing in an artificial environment depending on time. In this study, the performance
measurement of the BRM-II method is calculated on the computer by designing the
simulation conditions. The corresponding simulations are organized by randomly
selecting different sample sizes n such as 20, 30, 50, 100 and 200 from the data sets
with a population size N=5000 with different distributions t∼4, t∼10 and t∼30.
The MSE values of the simulations were calculated for up to 10 variables in this
study (the number of variables can be increased further if desired). The simulations
are repeated 100000/n times, and the arithmetic means of the results obtained are
calculated after the processes are completed. The produced results are listed in
Table 1 in details. According to these results, when the BRM-II method is ana-

Table 1. The MSE values of the BRM-II simulations using total
population N=5000

Number
of
Variables
(nv)

Sample
Size
(n)

The degrees of
freedom of the
distribution
(df )

Number
of
Variables
(nv)

Sample
Size
(n)

The degrees of
freedom of the
distribution
(df )

t ∼ 4 t ∼ 10 t ∼ 30 t ∼ 4 t ∼ 10 t ∼ 30
3 20 6.96 5.22 4.82 5 20 8.20 5.98 5.30

30 6.65 5.01 4.54 30 7.15 5.32 4.85
50 6.15 4.66 4.37 50 6.68 4.96 4.66
100 6.08 4.60 4.18 100 6.28 4.70 4.27
200 6.00 4.55 4.15 200 5.94 4.66 4.25

4 20 7.02 5.36 5.11 10 20 12.60 9.00 8.64
30 6.98 5.04 4.78 30 9.54 6.60 6.38
50 6.36 4.89 4.45 50 7.51 5.56 5.23
100 6.13 4.66 4.32 100 6.58 5.08 4.59
200 6.11 4.62 4.22 200 6.32 4.66 4.36

lyzed with 3 variables, the MSE decreases in all sample sizes when the degrees of
freedom of the distribution are increased. For instance, the MSE equals to 6.68 if
nv, n and df are taken as 5, 50 and 4, respectively, while the MSE decrease to 4.96
and 4.66 if df is increased to 10 and 30 without changing the other parameters.
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Besides, the MSE decreases as n is increased by keeping df and nv unchanged. It
can be seen that the same behaviour is valid as nv is 4, 5 and 10. Note that the
MSE is expected to increase as nv increases by keeping df and n unchanged. The
relationship between the sample sizes and the degrees of freedom of distribution for
different number of variables are shown in Figure 3.

Figure 3. The relationship between the sample sizes and the de-
grees of freedom of distribution for different number of variables

Consequently, the performance of the BRM-II method draws attention in terms
of supporting the theoretical expectation regarding the decreasing behaviour of
MSE. Therefore, the proposed method is a powerful tool among the regression
approaches.

3.2. Application to the real data sets. In this part, there are two real modeling
processes with two and three variables including the oceanographic data sets are
considered to demonstrate the performance of the BRM-II methods.

3.2.1. Example with two variables. As the first real application of proposed method
with two variables is used the data that including weights of unspawned female
cabezon (a California marine fish, Scorpaenichthys marmoratus) and the number
of eggs subsequently produced for 11 fish are given as [22]:

Table 2. The biological oceanographic data set

Weight (to nearest 100g):X1 14 17 24 25 27 33 34 37 40 41 42
Eggs (in thousands): X2 61 37 65 69 54 93 87 89 100 90 97
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It is desired to constitute a functional relationship between weight before spawn-
ing and number of egg produced because of both variables are subject to error.

In order to construct the BRM-II method, as the first step, the simple linear
regression is applied for each variable with respect to the data in Table 2 as follows:

β0,1 + β1,1X1 + β2,1X2 = 0 , (15)

β0,2 + β1,2X1 + β2,2X2 = 0 , (16)

where X1 and X2 are dependent variables in Eqs. (15) and (16), respectively. The
coefficients are computed as reported in Table 3.

Table 3. The coefficients of simple linear regressions

βi,j i = 0 i = 1 i = 2

j = 1 -1.5032 -1 0.4163
j = 2 19.7668 1.8700 -1

Then, the bisector line of these system is obtained by using the Eqs. (5)-(9) in
proposed method mentioned above

−10.7093 − 1.8050 X1 + 0.8559X2 = 0. (17)

The regression lines are illustrated in Figure 4. Moreover, in order to demonstrate
the efficiency of the BRM-II, the results of MSE are compared with some previous
studies in the literature, and given in Table 4. It can be seen from the results that
the BRM-II method is outstanding in comparison with the study of Richter and
Stavn (2014) [20]. Moreover, the MSE of our method is even better than the MSE
result in their study by using the standardized data.

Figure 4. The data set and the regression lines in Example 1 (the
red line: Eq. (3.1), the blue line: Eq. (16), and the green (bisector
) line: Eq. (17))
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Table 4. The results of MSE for the different regression models

Regression Model MSE
BRM-II 109.01
[20] 122.62
[20] (with Standardized data) 109.47
[26] 109.54

Table 5. The oceanographic field data set

PIM:X1 POM: X2 b555:X3

11.36 2.36 8.41
6.98 1.49 5.85
6.89 1.15 6.91
14.60 3.00 11.31
12.52 1.59 10.03
5.40 2.53 3.40
6.45 2.21 5.43
1.57 0.18 1.09
2.15 0.45 1.84
22.31 3.28 17.94
4.67 2.05 4.85
5.01 0.52 1.20

PIM:X1 POM: X2 b555:X3

5.33 1.94 4.99
5.46 2.16 5.05
9.98 2.87 9.11
5.67 1.81 8.39
6.89 3.11 7.57
3.21 3.32 4.38
4.56 1.69 3.78
6.56 1.06 4.91
4.63 1.05 3.09
5.48 0.69 3.66
3.88 0.71 2.41
2.80 0.48 1.77

3.2.2. Example with three variables. The second application of proposed method
with three variables is discussed the data sets that including the concentration of
particulate inorganic matter [PIM (gm−3 )], the particulate organic matter [POM
(gm−3 )] and the total scattering coefficient at a wavelength of 555 nm [b555 (m−1

)] for 24 field stations at Mobile Bay, Alabama are given in Table 5 [20]:
In order to constitute a functional relationship among PIM, POM and b555, the

simple linear regressions for each variable are written with respect to the data in
Table 4 similar to the previous example as follows:

β0,1 + β1,1X1 + β2,1X2 + β3,1X3 = 0, (18)

β0,2 + β1,2X1 + β2,2X2 + β3,2X3 = 0, (19)

β0,3 + β1,3X1 + β2,3X2 + β3,3X3 = 0, (20)

where X1, X2 and X3 are dependent variables in Eqs. (18), (19) and (20), respec-
tively. The coefficients are given in the following Table 6. The bisector line of these
system is obtained

1.0225− 0.8603 X1 − 1.2936 X2 + 1.2434X3 = 0. (21)



A NEW MULTIDIMENSIONAL MODEL II REGRESSION 1197

The regression planes are illustrated in Figure 5, and the MSE result of the BRM-II
is compared with some previous studies in the literature (see Table 7).

Table 6. The coefficients of simple linear regression

βi,j i = 0 i = 1 i = 2 i = 3

j = 1 0.9066 -1 -0.6394 1.2322
j = 2 0.8042 -0.1404 -1 0.3310
j = 3 -0.4658 0.6897 0.8440 -1

Table 7. The results of MSE for the different regression models

Regression Model MSE
BRM-II 1.3336
[20] 2.2318
[20] (with standardized data) 1.3210

It can be said from the table that the BRM-II method is superior in comparison
with the study of Richter and Stavn (2014) [20]. Also, the MSE of our method is
competitive with the MSE of their study by using the standardized data.

4. Conclusion and Recommendation

In this study, a new multidimensional BRM-II method is introduced for mul-
tivariate problems that may contain measurement error. In order to demonstrate
the validity and efficiency, the proposed method is applied to simulations up to
ten variables for different sample sizes and distribution types in terms of the Mean
Square Error (MSE), and then implemented to two real problems with two and
three variables. By comparing with the methods in the literature, it is observed
that the BRM-II method is outstanding in comparison with the study of Richter
and Stavn (2014) for both original and standardized data. So it can be deduced
that the proposed method provides relatively higher accuracy. Besides, it is easy
applicable and versatile tool for prediction of relevant real life problems. For the
further studies, different forms of the BRM-II can be derived for more realistic
phenomena.
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(a)

(b)

(c)

(d)

Figure 5. The data set and the regression planes in Example 2 (a)
Eq. (18), Eq. (19) and the bisector-1; (b) Eq. (20), the bisector-1
and the bisector-2; (c) the final bisector plane: Eq. (21); (d) the
final bisector plane: Eq. (21) in (c) with different perspective.
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