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Abstract
Geometric approaches are important for the study of some real-life problems. In metric
fixed point theory, a recent problem called “fixed-figure problem” is the investigation of
the existence of self-mapping which remain invariant at each points of a certain geometric
figure (e.g. a circle, an ellipse and a Cassini curve) in the space. This problem is well
studied in the domain of the extension of this line of research in the context of fixed circle,
fixed disc, fixed ellipse, fixed Cassini curve and so on. In this paper, we introduce the
concept of a Suzuki type Zc-contraction. We deal with the fixed-figure problem by means
of the notions of a Zc-contraction and a Suzuki type Zc-contraction. We derive new fixed-
figure results for the fixed ellipse and fixed Cassini curve cases by means of these notions.
Also fixed disc and fixed circle results given for Suzuki type Zc-contraction. There are
couple of illustration related to the obtained theoretical results.
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1. Introduction
Topological and geometrical properties of the fixed point set have been widely studied

for number of manner in the non-linear analysis. In recent times geometrical aspects of
the fixed point set of an operator have been considered with different form of the fixed-
figure as, fixed circle, fixed disc, fixed ellipse. In [12,13,15], Özgür and Taş examined the
fixed circle and fixed disc problem in metric space. From that these topics are generated
much interest recently in fixed figure problem (see, for example, [5], [15] and the references
therein).
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Recently, the notions of a Zc-contraction and of a Suzuki type Z-contraction have been
defined by means of the set of simulation functions defined in [10] (see [12] and [11] for more
details). In present article, we consider the fixed-figure problem by means of the notions
of Zc-contraction and Suzuki type Zc-contraction. We derive new fixed-figure results for
the fixed ellipse and fixed Cassini curve cases. Let T : X → X be a map, where X is a
metric space with the metric d. The set of fixed points of T is denoted by Fix(T ) and can
be defined as follows:

Fix(T ) = {u ∈ X : Tu = u} .

A geometric figure (e.g. a circle, an Apollonius circle, an ellipse, a Cassini curve) contained
within Fix(T ) is known as a fixed figure of T . For example, if Tu = u for any u ∈
Er (u1, u2) = {u ∈ X : d(u, u1) + d(u, u2) = r} then the ellipse is a fixed ellipse of T . The
interested reader can refer to [15] and the references therein. For our purpose, we use
some properties of simulation functions defined in [10].

Now, onwards in this paper consider R+
0 = [0, ∞). The function ζ : R+

0 × R+
0 → R is

said to be a simulation function, if it possesses the stipulations given below :
(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(t, s) < s − t for all s, t > 0,
(ζ3) If {tn}, {sn} are sequences in (0, ∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then
lim sup

n→∞
ζ(tn, sn) < 0.

Collection of simulation functions is noted by Z [10]. In [11], the notion of a Suzuki type
Z-contraction was defined as follows:

Definition 1.1 ([11]). Let the self-mapping T on the set X, where X is a metric space
with the metric d and ζ ∈ Z. Then T is called a Suzuki type Z-contraction with respect
to ζ if the condition given below is satisfied for all u, v ∈ X with u 6= v :

1
2d (u, Tu) < d (u, v) ⇒ ζ (d (Tu, Tv) , d (u, v)) ≥ 0. (1.1)

From Definition 1.1, we have
1
2d (u, Tu) < d (u, v) ⇒ d (Tu, Tv) < d (u, v) ,

for all distinct u, v ∈ X for a Suzuki type Z-contraction T . Hence, every Suzuki type
Z-contraction mapping is a Suzuki type contraction (see [11] for more details). In [11],
Kumam et al. used the notion of a Suzuki type Z-contraction mapping to generalize the
Banach contraction. It was proved that the fixed point of a Suzuki type Z-contraction is
unique, provided it exists.

Present article is divided into following sections. In Section 2, we examine the geometric
properties of the fixed point set of a Zc-contraction mapping. In Section 3, we define the
notion of a Suzuki type Zc-contraction mapping and then discuss about the fixed figure
problem in particular fixed disc, fixed ellipse and fixed Cassini curve. In Section 4, as
an application, we propose a new type of activation function for complex valued neural
networks. We construct a one-parameter generalization of the well-known zReLU function.

Author noted the concept of a simulation function has many impressive applications
(see [9, 10] and the references therein). Also, the fixed ellipse and the fixed Cassini curve
cases have special interests for some possible applications. For example, the differential
geometry of a normal red blood cell was investigated using the Cassinian oval for modelling
its profile [1]. In [17], by using of a special activation function whose fixed point set is an
ellipse, an application to a complex-valued Hopfield neural network (CVHNN) was given.
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Fixed point results are also important for theoretical studies (see, for instance, [7], [19],
[22]).

2. Fixed-figure problem for Zc-contractions
In this section, we examine the fixed-figure problem for Zc-contractive mappings. First,

we recall the definition and basic properties of a Zc-contractive mapping. For more details,
one can see [12].

Definition 2.1 ([12]). Let ζ ∈ Z be any simulation function. T is said to be a Zc-
contraction with respect to ζ if there exists an u0 ∈ X such that the following condition
holds for all u ∈ X :

d(Tu, u) > 0 ⇒ ζ (d(Tu, u), d(Tu, u0)) ≥ 0. (2.1)

If T is a Zc-contraction with respect to ζ, then
d(Tu, u) < d(Tu, u0), (2.2)

for each u ∈ X with Tu 6= u0.
Throughout the paper, to establish a fixed figure result, we use the number ρ ∈ R+ ∪{0}

defined by
ρ = inf{d(u, Tu) | Tu 6= u, u ∈ X}. (2.3)

Let T be a Zc-contraction with respect to ζ with u0 ∈ X. From [12], we know that
the fixed point set Fix(T ) of a Zc-contraction contains the disc Du0,ρ if the condition
0 < d(Tu, u0) ≤ ρ holds for all u ∈ Du0,ρ − {u0}.

Theorem 2.2 ([12]). Let T be a Zc-contraction map with the simulation function ζ and
u0 ∈ X. If the condition

0 < d(Tu, u0) ≤ ρ (2.4)
holds for each u ∈ Du0,ρ − {u0} then Du0,ρ is a fixed disc of T , that is, Du0,ρ ⊂ Fix(T ).

The proof of the following corollary can be easily deduced similar to the proof of The-
orem 2.2.

Corollary 2.3. Let T be a Zc-contraction map with the simulation function ζ and u0 ∈ X.
If the condition

0 < d(Tu, u0) ≤ µ (0 < µ ≤ ρ)
holds for each u ∈ Du0,µ − {u0} then Du0,µ is a fixed disc of T , that is, Du0,µ ⊂ Fix(T ).

2.1. Zc-contractions and the fixed-ellipse problem
First, we consider the fixed-ellipse problem. Let us consider an ellipse Er (u1, u2) defined

by
Er (u1, u2) = {u ∈ X : d(u, u1) + d(u, u2) = r}

and the set
Er (u1, u2) = {u ∈ X : d(u, u1) + d(u, u2) ≤ r} .

The points u1 and u2 are called the foci of the ellipse Er (u1, u2). Now, we will see the
result for fixed ellipse in sense of a Zc-contraction.

Proposition 2.4. Let (X, d) be a metric space. Consider a set Er (u0, u1) with any
distinct u0, u1 ∈ X. If µ = d (u1, u0) ≤ r then we have

Er (u0, u1) ⊂ Du0,r and Er (u0, u1) ⊂ Du1,r.

That is, we have
Er (u0, u1) ⊂ Du0,r ∩ Du1,r.
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Proof. Let µ = d (u1, u0) ≤ r. For any point u ∈ Du1,r−µ, using the triangle inequality,
we obtain

d (u, u0) ≤ d (u, u1) + d (u1, u0) ≤ (r − µ) + µ = r.
This shows that u ∈ Du0,r, and so Du0,µ ∪ Du1,r−µ ⊂ Du0,r. For any u ∈ Er (u0, u1), if
u /∈ Du0,µ ∪ Du1,r−µ then we get

d (u, u0) + d (u, u1) > r,

which is a contradiction. Therefore, we find u ∈ Du0,µ ∪ Du1,r−µ and so u ∈ Du0,r.
Consequently, we deduce that

Er (u0, u1) ⊂ Du0,r.

On the other hand, since u1 ∈ Du0,r then we have also u0 ∈ Du1,r. Again similarly, we
obtain

Er (u0, u1) ⊂ Du1,r.

Combining these last inclusions, we get
Er (u0, u1) ⊂ Du0,r ∩ Du1,r.

�

Corollary 2.5. Let (X, d) be a metric space. Consider a set Er (u0, u1) with any distinct
u0, u1 ∈ X. If u1 ∈ Du0,γ (0 < γ ≤ r) then we have

Er (u0, u1) ⊂ Du0,γ ∪ Du1,r−γ ⊂ Du0,r.

Proof. Let u ∈ Du1,r−γ be any point. Since u1 ∈ Du0,γ (0 < γ ≤ r), using the triangle
inequality, we find

d (u, u0) ≤ d (u, u1) + d (u1, u0) ≤ (r − γ) + γ = r.
This shows that u ∈ Du0,r, and so Du0,γ ∪ Du1,r−γ ⊂ Du0,r. Then the rest of the proof
follows similarly. �

Let us consider the number ρ defined in (2.3).

Theorem 2.6. Let (X, d) be a metric space, T : X → X be a Zc-contraction with respect
to ζ with u0 ∈ X. For a point u1 ∈ X, if the condition

0 < d(Tu, u0) + d(Tu, u1) ≤ ρ (2.5)
holds for all u ∈ Eρ (u0, u1) − {u0}, then Fix(T ) contains the ellipse Eρ (u0, u1), that is,
Eρ (u0, u1) is a fixed ellipse of T . Furthermore, we have Eρ (u0, u1) ⊂ Fix(T ).

Proof. If u0 = u1, then the ellipse Eρ (u0, u1) becomes the circle Cu0, ρ
2

and the set
Eρ (u0, u1) becomes the disc Du0, ρ

2
. By the assumption (2.5), we have

0 < d(Tu, u0) ≤ ρ

2
for all u ∈ Du0, ρ

2
− {u0}. Then by Corollary 2.3, we have Du0, ρ

2
⊂ Fix(T ).

Let u0 6= u1 and u ∈ Eρ (u0, u1) be arbitrary but fixed. Assume that Tu 6= u. Using
the condition (ζ2) and (2.5) together with the definition of the number ρ, we obtain

ζ (d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u)
≤ d(Tu, u0) + d(Tu, u1) − d(Tu, u)
≤ ρ − d(Tu, u)
≤ ρ − ρ = 0

and so
ζ (d(Tu, u), d(Tu, u0)) < 0,
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which conflicts the hypothesis (2.1). Hence we have Tu = u. Since u ∈ Eρ (u0, u1) is an
arbitrary point then we deduce that Eρ (u0, u1) is a fixed ellipse of T . Similar arguments
are valid for all u ∈ Eρ (u0, u1) and we deduce that Eρ (u0, u1) ⊂ Fix(T ). �

The following corollary explains the relationship between Theorem 2.2 and Theorem
2.6.

Corollary 2.7. Under the hypothesis of Theorem 2.6, if u1 ∈ Du0,ρ then we have Eρ (u0, u1)
⊂ Du0,ρ ∩ Fix(T ) and Eρ (u0, u1) ⊂ Du1,ρ ∩ Fix(T ). That is, we have

Eρ (u0, u1) ⊂ Du0,ρ ∩ Du1,ρ ∩ Fix(T ).

Proof. Considering the hypothesis u1 ∈ Du0,ρ, the proof follows by Proposition 2.4 and
Corollary 2.3. �

Clearly, under the hypothesis of Theorem 2.6, we have
Eδ (u0, u1) ⊂ Fix(T )

for all ellipses Eδ (u0, u1), where 0 ≤ δ ≤ ρ. But, we can achieve this result with less
assumption.

Corollary 2.8. Let (X, d) be a metric space, T : X → X be a Zc-contraction with respect
to ζ with u0 ∈ X. For a point u1 ∈ X, if the condition

0 < d(Tu, u0) + d(Tu, u1) ≤ µ (0 < µ ≤ ρ)
holds for all u ∈ Eµ (u0, u1) − {u0}, then we have

Eµ (u0, u1) ⊂ Fix(T ).

Remark 2.9. 1) Now we consider the case ρ = 0. Then we get u0 = u1 and Eρ (u0, u1) =
Cu0,ρ = {u0}. Since T is a Zc-contraction map with u0 ∈ X, u0 ∈ Fix(T ).

2) We note that u0, u1 ∈ Eρ (u0, u1) if and only if d (u0, u1) ≤ ρ. Indeed, we have
u1 ∈ Eρ (u0, u1) ⇔ d (u1, u0) + d (u1, u1) ≤ ρ ⇔ d (u1, u0) ≤ ρ,

and
u0 ∈ Eρ (u0, u1) ⇔ d (u0, u0) + d (u0, u1) ≤ ρ ⇔ d (u0, u1) ≤ ρ.

3) If we replace the condition (2.1) by the one of the following conditions then, under
the hypothesis of Theorem 2.6, we have Eρ (u0, u1) ⊂ Fix(T ) :

d(Tu, u) ≤ λ [d(Tu, u0)] (2.6)
for each u ∈ X, where λ ∈ [0, 1).

d(Tu, u) ≤ d(Tu, u0) − ϕ (d(Tu, u0)) (2.7)
for each u ∈ X, where ϕ : R+

0 → R+
0 is lower semicontinuous function and ϕ−1 (0) = 0.

d(Tu, u) ≤ ϕ (d(Tu, u0)) (d(Tu, u0)) (2.8)
for each u ∈ X, where ϕ : R+

0 → [0, 1) is a mapping such that lim
t→r+

sup ϕ (t) < 1, for all
r > 0.

d(Tu, u) ≤ η [d(Tu, u0)] (2.9)
for each u ∈ X, where η ∈ R+

0 → R+
0 is an upper semicontinuous mapping such that

η (t) < t for all t > 0.
d(T u,u)∫

0

φ(t)dt ≤ d(Tu, u0) (2.10)

for each u ∈ X, where φ : R+
0 → R+

0 is a function such that
ε∫
0

φ(t)dt exists and
ε∫
0

φ(t)dt > ε,

for each ε > 0.
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The proof follows by using the simulation functions ζi : R+
0 ×R+

0 → R (1 ≤ i ≤ 5) defined
by

ζ1(t, s) = λs − t,

ζ2(t, s) = s − ϕ (s) − t,

ζ3(t, s) = sϕ (s) − t,

ζ4(t, s) = ηs − t

and

ζ5(t, s) = s −
t∫

0

φ(u)du

for each s, t ∈ [0, ∞), respectively, in [10].

Now, we give few examples in support of Theorem 2.6.

Example 2.10. Let X = C be endowed with the usual metric d defined by d(z, w) =
|z − w| for every complex numbers z, w. Consider the self-mapping T : X → X defined by

Tz =
{

z ; |z| ≤ 4
3
4z ; |z| > 4 , (2.11)

for all z = x + iy ∈ C. Then T is a Zc-contraction with z0 = 0 and the function
ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 2

3s − t. Indeed, we have d (z, Tz) = 1
4 |z| > 0 for all

z with |z| > 4 and

ζ (d(Tz, z), d(Tz, z0)) = ζ

(1
4 |z| ,

3
4 |z|

)
= 2

3
3
4 |z| − 1

4 |z|

= 1
4 |z| > 0.

We find

ρ = inf{d(z, Tz) | Tz 6= z, z ∈ C}

= inf
{1

4 |z| : |z| > 4
}

= 1.

The condition 0 < d(Tz, 0) ≤ 1 holds for all z ∈ D0,1 − {0}. Consequently, D0,1 =
{z ∈ C : |z| ≤ 1} is a fixed disc of T by Theorem 2.2.

Now, we consider the ellipse E1
(
0, 1

3 + 1
3 i

)
. Clearly, T possess the conditions of Theo-

rem 2.6 and we have E1
(
0, 1

3 + 1
3 i

)
⊂ Fix(T ) (see Figure 1 which is drawn using Mathe-

matica, Version 12.0, [21]).

The subsequent example shows that the converse statement of Theorem 2.6 does not
hold in general.

Example 2.11. Consider the metric space (C, d), where d is the usual metric, and the
self-mapping T : C → C defined by

Tz =

 z ;
∣∣∣z − 1

2z0
∣∣∣ ≤ µ

1
2z0 ;

∣∣∣z − 1
2z0

∣∣∣ > µ
, (2.12)

for all z ∈ C, where 0 < |z0| and µ ≥ |z0|. The self-mapping T is not a Zc-contraction
with respect to any ζ ∈ Z with 1

2z0 ∈ C. Indeed, by the condition (ζ2), for all z with
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Figure 1. D0,1, the fixed disc obtained by Theorem 2.2 for the self-mapping T
defined in (2.11), the fixed ellipse E1

(
0, 1

3 + 1
3 i

)
and the discs D0, 1

2
and D 1

3 + 1
3 i, 1

2
.

∣∣∣z − 1
2z0

∣∣∣ > µ we have

ζ (d(Tz, z), d(Tz, z0)) = ζ

(∣∣∣∣1
2z0 − z

∣∣∣∣ ,

∣∣∣∣1
2z0 − z0

∣∣∣∣)
= ζ

(∣∣∣∣z − 1
2z0

∣∣∣∣ ,
1
2 |z0|

)
<

1
2 |z0| −

∣∣∣∣z − 1
2z0

∣∣∣∣
< |z0| −

∣∣∣∣z − 1
2z0

∣∣∣∣ < 0.

However, T fixes the disc D 1
2 z0,µ and any ellipse contained in it.

Remark 2.12. Notice that the radius ρ of the fixed ellipse Eρ (u0, u1) is independent from
the foci u0 and u1 in Theorem 2.6. Under the hypothesis of Theorem 2.6, we note that
the number ρ defined in (2.3) can produce several fixed ellipses (may be infinitely many)
with various foci. For example, if we examine the self-mapping T as in (2.11), then the
ellipses E1

(
0, 1

2 i
)

and E1
(
0, 1

2 + 1
2 i

)
are also fixed ellipses of T .

2.2. Zc-contractions and the fixed-Cassini curve problem
In this subsection, we consider the fixed-Cassini curve problem. Let us consider a

Cassini curve Cr(u0, u1) defined by

Cr(u0, u1) = {u ∈ X : d (u, u0) d (u, u1) = r}

and the set
Cr(u0, u1) = {u ∈ X : d (u, u0) d (u, u1) ≤ r} .

Proposition 2.13. Let (X, d) be a metric space. Consider a set Cr (u0, u1) with u0, u1 ∈
X. Then we have

Cr (u0, u1) ⊂ Du0,
√

r ∪ Du1,
√

r. (2.13)
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Proof. Let u ∈ Cr (u0, u1) be any point. If u /∈ Du0,
√

r ∪ Du1,
√

r then we have

d (u, u0) d (u, u1) > r,

which is a contradiction. Therefore, we have u ∈ Du0,
√

r ∪ Du1,
√

r and hence, the inclusion
(2.13) holds. �

Now, by means of the number ρ defined in (2.3) we give a fixed Cassini curve result.
Observe that u0, u1 ∈ Cρ (u0, u1).

Theorem 2.14. Let (X, d) be a metric space, and T : X → X be a Zc-contraction with
respect to ζ with u0 ∈ X. Suppose ρ ≥ 1 and for any point u1 ∈ Du0,ρ−√

ρ, the condition

0 < d(Tu, u0)d(Tu, u1) ≤ ρ (2.14)

holds for each u ∈ Cρ (u0, u1)−{u0}. Then Fix(T ) contains the Cassini curve Cρ (u0, u1),
that is, Cρ (u0, u1) is a fixed Cassini curve of T . Furthermore, we have Cρ (u0, u1) ⊂
Fix(T ).

Proof. If u0 = u1, then the Cassini curve Cρ (u0, u1) becomes the circle Cu0,
√

ρ and the
set Cρ (u0, u1) becomes the disc Du0,

√
ρ. Then by the hypothesis (2.14), we have

0 < d(Tu, u0) ≤ √
ρ

for all u ∈ Du0,
√

ρ − {u0}. Clearly, √
ρ ≤ ρ since ρ ≥ 1. Then by Corollary 2.3 we have

Du0,
√

ρ ⊂ Fix(T ).
Now, assume that u0 6= u1. The hypothesis (2.14) means that Tu ∈ Cρ (u0, u1) for

all u ∈ Cρ (u0, u1) since u0 ∈ Fix(T ). By Proposition 2.13, we have two cases, that is,
Tu ∈ Du0,

√
ρ or Tu ∈ Du1,

√
ρ.

Case 1. Let Tu ∈ Du0,
√

ρ and u ∈ Cρ (u0, u1) be arbitrary but fixed. If Tu 6= u, then
using the condition (ζ2) together with the definition of the number ρ, we obtain

ζ (d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u)
≤ √

ρ − d(Tu, u)
≤ √

ρ − ρ

≤ 0,

and so
ζ (d(Tu, u), d(Tu, u0)) < 0,

which conflicts by the hypothesis (2.1) (since ρ ≥ 1 we have √
ρ − ρ ≤ 0).

Case 2. Let Tu /∈ Du0,
√

ρ and Tu ∈ Du1,
√

ρ. For any arbitrary but fixed point u ∈
Cρ (u0, u1), if Tu 6= u, then using the condition (ζ2) and triangle inequality together with
the definition of the number ρ, we obtain

ζ (d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u)
≤ d(Tu, u0) − ρ

≤ d(Tu, u1) + d(u1, u0) − ρ

≤ √
ρ + (ρ − √

ρ) − ρ = 0

and so
ζ (d(Tu, u), d(Tu, u0)) < 0,

which conflicts by the hypothesis (2.1).
Hence we have Tu = u in both cases. Since u ∈ Cρ (u0, u1) is an arbitrary point then

we conclude that Cρ (u0, u1) ⊂ Fix(T ). �
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Remark 2.15. Now we consider the case ρ = 0 separately. If ρ = 0, then we get u0 = u1
and Cρ (u0, u1) = Cu0,ρ = {u0}. Since T is a Zc-contraction with u0 ∈ X, we know that
u0 ∈ Fix(T ).

Out[ ]=

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x + ⅈ y ≤ 5
x + ⅈ yx + ⅈ y - 1+ 2 ⅈ ≤ 5

x + ⅈ y ≤ 5

x + ⅈ y - 1+ 2 ⅈ ≤ 5

Figure 2. D0,5, the fixed disc obtained by Theorem 2.2 for the self-mapping
T defined in (2.15), the fixed Cassini curve C5 (0, 1 − 2i) and the discs D0,

√
5,

D1−2i,
√

5.

Example 2.16. Let X = C be endowed with the usual metric d and consider the self-
mapping T : X → X defined by

Tz =
{

z ; |z| ≤ 5
2z ; |z| > 5 , (2.15)

for all z = x + iy ∈ C. Then T is a Zc-contraction with z0 = 0 and the function
ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 3

4s − t. Indeed, we have d (z, Tz) = |z| > 0 for all z
with |z| > 5 and

ζ (d(Tz, z), d(Tz, z0)) = ζ (|z| , 2 |z|) = 3
4 .2 |z| − |z|

= 1
2 |z| > 0.

We find

ρ = inf{d(z, Tz) | Tz 6= z, z ∈ C}
= inf {|z| : |z| > 5} = 5.

The condition 0 < d(Tz, 0) ≤ 5 holds for all z ∈ D0,5 − {0}. Consequently, the disc
D0,5 = {z ∈ C : |z| ≤ 5} is a fixed disc of T by Theorem 2.2.

Now, we consider the Cassini curve C5 (0, 1 − 2i). It is clear that T satisfies the condi-
tions of Theorem 2.14 and we have C5 (0, 1 − 2i) ⊂ Fix(T ) (see Figure 2).
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3. Suzuki type Zc-contractions and the fixed-figure problem
In this section, we introduce a Suzuki type Zc-contractive mapping.

Definition 3.1. Let (X, d) be a metric space, T : X → X be a self-mapping and ζ ∈ Z be
any simulation function. Then, T is said to be a Suzuki type Zc-contraction with respect
to the simulation function ζ if there exists an u0 ∈ X such that the following condition
holds for each u ∈ X with u 6= u0 :

1
2d (u, u0) < d(u, Tu) ⇒ ζ (d(Tu, u), d(Tu, u0)) ≥ 0. (3.1)

If T is a Suzuki type Zc-contraction with respect to the simulation function ζ, then
1
2d (u, u0) < d(u, Tu) ⇒ d(Tu, u) < d(Tu, u0), (3.2)

for each u ∈ X with u 6= u0. Indeed, if Tu = u then the inequality (3.2) is obvious. If
Tu 6= u then d(Tu, u) > 0 and by the definition of a Suzuki type Zc-contraction map and
the condition (ζ2), we get

0 ≤ ζ (d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u),

and so Equation (3.2) is satisfied.

Remark 3.2. It is clear that every Zc-contraction map is also a Suzuki type Zc-contraction
map. But, a Suzuki type Zc-contraction map may not be a Zc-contraction map (see
Example 3.6). Hence, Theorem 3.3 is a generalization of Theorem 2.2.

Theorem 3.3. If T is a Suzuki type Zc-contraction with respect to the simulation function
ζ with u0 ∈ X and the condition 0 < d(Tu, u0) ≤ ρ holds for every u ∈ Du0,ρ − {u0} then
T fixes the disc Du0,ρ.

Proof. If ρ = 0, then Du0,ρ = {u0}. If possible assume that Tu0 6= u0 then d(Tu0, u0) > 0
and as 1

2d(u0, u0) < d(Tu0, u0) then by Definition 3.1 and the condition (ζ2) of simulation
function

0 ≤ ζ (d(Tu0, u0), d(Tu0, u0)) < d(Tu0, u0) − d(Tu0, u0) = 0,

which contradicts our assumption. Hence it should be Tu0 = u0.
Let ρ 6= 0 and u ∈ Du0,ρ be such that Tu 6= u. By (2.3) we have 0 < ρ ≤ d(Tu, u) and

so
1
2d(u, u0) ≤ ρ

2 ≤ d(Tu, u)
2 < d(Tu, u).

Now, by (3.1) and the condition (ζ2) we find

0 ≤ ζ(d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u)
≤ ρ − d(Tu, u)
≤ ρ − ρ = 0.

This is a contradiction. So we get Tu = u, for all u ∈ Du0,ρ. Hence, the Suzuki type
Zc-contraction map T fixes the disc Du0,ρ. �

Corollary 3.4. Let T be a Suzuki type Zc-contraction map. If T satisfies the condition
0 < d(Tu, u0) ≤ r for each u ∈ Cu0,r for r ≤ ρ, then T fixes the circle Cu0,r.

Example 3.5. Let X = R and d be the usual metric on the set X. Define the self-mapping
T : X → X as

Tu =
{

u ; u ∈ [−2, 2]
2u ; u ∈ (−∞, −2) ∪ (2, ∞) ,
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for every u ∈ R, then the self-mapping T is a Suzuki type Zc-contraction with u0 = 0 and
the simulation function ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 2

3s − t.
Indeed, for any u with Tu 6= u and implies 1

2d(u, u0) = |u|
2 < d(u, Tu) = |u|, we obtain

ζ (d(Tu, u), d(Tu, u0)) = ζ (|u| , 2 |u|) = 2
3 .2 |u| − |u|

= 1
3 |u| > 0.

Using (2.3) we get

ρ = inf{d(u, Tu) | Tu 6= u, u ∈ X}
= inf{|u| | |u| > 2} = 2.

By Theorem 3.3, T fixes the disc D0,2. It is clear that T is also a Zc-contraction map with
the same simulation function and u0 = 0.

Now, consider the map Tµ : X → X as defined below

Tµu =
{

u ; u0 − µ ≤ u ≤ u0 + µ
3u0 ; otherwise ,

for every u ∈ R with u0 > 0 and µ > 4u0. By the condition (ζ2) we can say that Tµ is
not a Suzuki type Zc-contraction with u0 ∈ X and for any ζ ∈ Z. Because for Tµu 6= u,
1
2d(u, u0) < d(u, Tµu) and by the condition (ζ2)

ζ(d(Tµu, u), d(Tµu, u0)) = ζ(d(3u0, u), d(3u0, u0))
= ζ(|3u0 − u| , |2u0|)
< 2u0 − |3u0 − u| < 0.

Hence, Tµ is not a Suzuki type Zc-contraction map, still it fixes the disc Du0,ρ. Which
concluding that the converse of Theorem 3.3 may not be true.

Example 3.6. Let X = R and d be the usual metric on X. Define the self-mapping T
on X as

Tu =


u ; u ≤ 1

u + 1 ; 1 < u < 2
u
2 ; u ≥ 2

,

for each u ∈ R. Then T is a Suzuki type Zc-contraction with ρ = 1, u0 = 0 and the
simulation function ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 4

5s − t. It is obvious that
d(Tu, 0) = d(u, 0) ≤ 1, for all u ∈ D0,1. Now, for u ∈ R with Tu 6= u, implies 1

2d(u, 0) =
1
2 |u| < d(Tu, u) = |u + 1 − u| = 1, we have

ζ(d(Tu, u), d(Tu, u0)) = ζ(1, |u + 1|)

= 4
5 |u + 1| − 1 > 0.

Hence by Theorem 3.3, T fixes the disc D0,1.
On the other hand, for any u ∈ [2, ∞) we have Tu 6= u. But (2.1) is not satisfied for

any simulation function ζ. Indeed, by the condition (ζ2) we have

ζ(d(Tu, u), d(Tu, u0)) = ζ

( |u|
2 ,

∣∣∣∣u

2 − 0
∣∣∣∣)

<
|u|
2 − |u|

2 = 0,

and this implies that (2.1) is not satisfied for all u ∈ [2, ∞). Hence T is not a Zc-contraction
map.
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Out[ ]=

Figure 3. The set E3((0, 0, 0), ( 1
2 , 1

2 , 1
2 )) contained in Fix(T ) for the self-mapping

T defined in (3.3).

Theorem 3.7. Let (X, d) be a metric space, T : X → X be a Suzuki type Zc-contraction
with respect to ζ with u0 ∈ X. For a point u1 ∈ Du0, ρ

2
, if the condition

0 < d(Tu, u0) + d(Tu, u1) ≤ ρ

holds for all u ∈ Eρ(u0, u1) − {u0}, then Fix(T ) contains the ellipse Eρ(u0, u1) and the
set Eρ(u0, u1).

Proof. If u0 = u1, then ellipse Eρ(u0, u1) becomes the circle Cu0, ρ
2

and the set Eρ(u0, u1)
becomes the disc Du0, ρ

2
. By hypothesis we have 0 < d(Tu, u0) ≤ ρ

2 , for all u ∈ Du0, ρ
2
−{u0}.

Then by Corollary 3.4, we have Du0, ρ
2

⊂ Fix(T ).
Now, let u0 6= u1 and u ∈ Eρ(u0, u1) be any but fixed. Assume that Tu 6= u. As
u ∈ Eρ(u0, u1) i.e. d(u, u0) + d(u, u1) ≤ ρ implies d(u, u0) ≤ ρ ⇒ 1

2d(u, u0) < d(u, Tu) (by
(2.3)). Now using the inequality 0 < ρ ≤ d(u, Tu) and condition (ζ2) we find

0 ≤ ζ(d(Tu, u), (Tu, u0)) < d(Tu, u0) − d(Tu, u)
≤ d(Tu, u0) + d(Tu, u1) − d(Tu, u)
≤ ρ − ρ = 0,

which contradicts our assumption. So Tu = u, for all u ∈ Eρ(u0, u1).
By similar arguments, we have also Eρ(u0, u1) ⊂ Fix(T ). �

Example 3.8. Let X = R3 and d be the metric defined by

d(u, v) = |u1 − v1| + |u2 − v2| + |u3 − v3| ,

for all u, v ∈ R3 where u = (u1, u2, u3), v = (v1, v2, v3). Consider the self-mapping T on
the set X defined by

Tu =
{

u ; if |u1| + |u2| + |u3| ≤ 5
8u
5 ; otherwise (3.3)
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for all u = (u1, u2, u3) ∈ R3. Then T is a Suzuki type Zc-contraction with u0 = 0 = (0, 0, 0)
and with the function ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 3

4s − t. We have

d(u, Tu) =
∣∣∣∣u1 − 8u1

5

∣∣∣∣ +
∣∣∣∣u2 − 8u2

5

∣∣∣∣ +
∣∣∣∣u3 − 8u3

5

∣∣∣∣
=

∣∣∣∣3u1
5

∣∣∣∣ +
∣∣∣∣3u2

5

∣∣∣∣ +
∣∣∣∣3u3

5

∣∣∣∣ = 3
5d(u, 0) > 0

and

ζ(d(Tu, u), d(Tu, u0)) = ζ

(3
5d(u, 0), 8

5d(u, 0)
)

= 3
5d(u, 0) > 0 ,

for all u with |u1| + |u2| + |u3| > 5. We find

ρ = inf{d(u, Tu) | Tu 6= u, u ∈ R3}

= inf
{3

5d(u, 0) | d(u, 0) > 5
}

= 3.

Now, consider the ellipse E3(0, (1
2 , 1

2 , 1
2)), clearly T satisfies the condition of Theorem 3.7.

Hence, we have E3(0, (1
2 , 1

2 , 1
2)) ⊂ Fix(T ) (see Figure 3).

Example 3.9. Let X = C and d be the usual metric. Consider the self-mapping T : X →
X defined by

Tz =
{

z ; |z| < 3
15z
8 ; otherwise ,

for all z ∈ C. Then T is a Suzuki type Zc-contraction with z0 = 0 and with the simulation
function ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 4

5s − t. For each z with |z| ≥ 3, we have

d(z, Tz) =
∣∣∣∣z − 15z

8

∣∣∣∣ = 7
8 |z| > 0

and

ζ(d(Tz, z), d(Tz, z0)) = ζ

(7
8 |z| ,

15
8 |z|

)
= 5

8 |z| > 0 .

Then, we find

ρ = inf{d(z, Tz) | Tz 6= z, z ∈ C}

= inf
{7

8 |z| | |z| ≥ 3
}

= 21
8 .

Now, consider the ellipse E 21
8

(0, 1
8 + i1

8), clearly T satisfies the condition of Theorem 3.7.
We have E 21

8
(0, 1

8 + i1
8)) ⊂ Fix(T ).

Theorem 3.10. Let X be a metric space with the metric d and T be a self-mapping on
the set X. Suppose that T is a Suzuki type Zc-contraction with the simulation function ζ
and u0 ∈ X. Suppose ρ ≥ 1 and for any point u1 ∈ Du0,ρ−√

ρ, if the condition

0 < d(Tu, u0)d(Tu, u1) ≤ ρ (3.4)

holds for each u ∈ Cρ (u0, u1) − {u0}, then Fix(T ) contains the Cassini curve Cρ (u0, u1),
that is, Cρ (u0, u1) is a fixed Cassini curve of T . Furthermore, we have Cρ (u0, u1) ⊂
Fix(T ).
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Proof. If u0 = u1, then the Cassini curve Cρ(u0, u1) becomes the circle Cu0,
√

ρ and the
set Cρ(u0, u1) becomes the disc Du0,

√
ρ. By the hypothesis we have 0 < d(Tu, u0) ≤ √

ρ

for all u ∈ Du0,
√

ρ − {u0}. Since ρ ≥ 1, √
ρ ≤ ρ and then by Corollary 3.4 we have

Du0,
√

ρ ⊂ Fix(T ).
Let u0 6= u1 and u ∈ Cρ(u0, u1) be an arbitrary but fixed point. Suppose that Tu 6= u. The
hypothesis (3.4) means that Tu ∈ Cρ (u0, u1) for all u ∈ Cρ (u0, u1) since u0 ∈ Fix(T ).
By Corollary 2.13, we have two cases, that is, Tu ∈ Du0,

√
ρ or Tu ∈ Du1,

√
ρ.

Case 1. Let Tu ∈ Du0,
√

ρ. Since ρ ≥ 1, √
ρ − ρ ≤ 0 and then we have

ζ (d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u)
≤ √

ρ − d(Tu, u)
≤ √

ρ − ρ

≤ 0
and so

ζ (d(Tu, u), d(Tu, u0)) < 0,
which conflicts the hypothesis (3.1).

Case 2. Let Tu /∈ Du0,
√

ρ and Tu ∈ Du1,
√

ρ. Then we have
ζ (d(Tu, u), d(Tu, u0)) < d(Tu, u0) − d(Tu, u)

≤ (d(Tu, u1) + d(u1, u0)) − d(Tu, u)
≤ [√ρ + (ρ − √

ρ)] − d(Tu, u)
≤ ρ − d(Tu, u)
≤ ρ − ρ = 0

and so
ζ (d(Tu, u), d(Tu, u0)) < 0,

which conflicts the hypothesis (3.1).
Hence, we have Tu = u. Since u ∈ Cρ (u0, u1) is an arbitrary point, then we deduce

that Cρ (u0, u1) ⊂ Fix(T ). �

Example 3.11. Let X = C and d be the usual metric. Consider the self-mapping T :
X → X defined by

Tz =
{

z ; |z| < 7
13
8 z ; otherwise ,

for all z ∈ C. Then T is a Suzuki type Zc-contraction with z0 = 0 and with the function
ζ : R+

0 × R+
0 → R defined as ζ(t, s) = 1

2s − t. We have

d(z, Tz) =
∣∣∣∣z − 13

8 z

∣∣∣∣ = 5
8 |z| > 0

and

ζ(d(Tz, z), d(Tz, z0)) = ζ

(5
8 |z| ,

13
8 |z|

)
= 3

16 |z| > 0 ,

for all |z| ≥ 7. We find
ρ = inf{d(z, Tz) : Tz 6= z, z ∈ C}

= inf
{5

8 |z| : |z| ≥ 7
}

= 35
8 .

Now, consider the Cassini curve C 35
8

(0, 2), clearly T satisfies the hypothesis of Theorem
3.10. Hence, C 35

8
(0, 2) is a fixed Cassini curve of T . We have C 35

8
(0, 2) ⊂ Fix(T ).
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4. Activation functions having fixed discs
It is well-known that theoretical fixed point results (e.g., Banach fixed point theo-

rem, Brouwer’s fixed point theorem, Kakutani’s fixed point theorem) are widely used in
the study of various types of neural networks (see, for instance, [2, 3] and the references
therein). On the other hand, as stated in [12], most common functions used as activation
function in neural networks are those mappings having fixed-discs. One of them is the
rectified linear unit (or ReLU) activation function defined as

ReLU(x) =
{

x ; x ≥ 0
0 ; otherwise ,

for a real number x ∈ R. In [6], complex ReLU function zReLU was defined by

zReLU(z) =
{

z ; z ∈ A

0 ; otherwise ,

where A ⊆ C is connected, and the case A =
{
z ∈ C : arg(z) ∈

[
0, π

2
]}

is considered.
Since activation functions are the primary neural networks decision-making units, the

selection of the activation function is essential in the design of a neural network. There are
a wide range of activation functions. Here, we propose a new type of activation function
for complex valued neural networks. We construct a one-parameter generalization of the
zReLU function. To do this, first we define the set Aµ as

Aµ =
{

z ∈ C : arg(z) ∈
[
0,

π

2

]}
∪

{
z ∈ C : |z| ≤ µ and arg(z) ∈

(
π

2 , 2π

)}
,

where µ > 1. Define the function fµ by

fµ(z) =
{

z ; z ∈ Aµ

µz ; otherwise , (1 < µ ≤ 2)

and consider the simulation function ζ : R+
0 × R+

0 → R defined as

ζ(t, s) = λs − t, λ ∈
[
1 − 1

µ
, 1

)
. (4.1)

Then it easy to check that fµ is a Zc-contraction (and hence, is a Suzuki type Zc-
contraction) with the simulation function ζ defined in (4.1) and u0 = 0.

The real version of fµ is the following

fµ(x) =
{

x ; x ≥ −µ
µx ; otherwise , (1 < µ ≤ 2).

Besides the theoretical fixed figure results obtained in the previous sections, the fixed disc
D0,ρ and the fixed figures contained in it, can have some applications in neural network
studies. Such geometric approaches are important for the study of some real-life prob-
lems. For example, in [20], a wind prediction system for the wind power generation using
ensemble of multiple complex extreme learning machines (C-ELM) was presented via the
theory of conformal mapping on the complex plane. Orthogonal families of ellipses and
hyperbolas were used to make a better decision making.

5. Concluding remarks
In this manuscript, we have considered the geometric aspects of the fixed point set of

a self-mapping with various forms such a fixed disc, fixed ellipse and fixed Cassini curve
problems. The general form of these problems is known as the “fixed figure problem”.
For such kind geometric problems, we have dealt with the Zc-contraction and Suzuki type
Zc-contraction self maps and using these notions, we have derived the fixed ellipse, fixed
Cassini curve and fixed disc results. As future work, using similar approaches, various fixed
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figures results such as fixed Apollonius circle and fixed hyperbola can be investigated. One
can also derive it for multivalued contraction mapping.

Properties of simulation functions have been appeared in the literature in many aspects.
For instance, one of the newest generalization of the Banach contraction through the
notions of the generalized F -contraction, simulation function, and admissible function
was introduced in [4]. The existence and uniqueness of fixed points for a self-mapping
on complete metric spaces were investigated by the new constructed contraction. Here,
we have proved some existence theorems for some special fixed figures via the help of the
number ρ defined in (2.3). Hence, it is natural to investigate some uniqueness theorems
for fixed figures.

On the other hand, recently, the notion of a ϕ-fixed point is introduced as the generaliza-
tion of a fixed point of a self-mapping in [8]. A ϕ-fixed point is a fixed point of a mapping
T such that it is also a zero of a given function ϕ (see [8] for more details). Then, ϕ-fixed
point results for self-mappings defined in metric or generalized metric spaces have been
intensively studied using different approaches (for example, see [18], [16] and the reference
therein). In [16], an open problem concerning to the geometric properties of non-unique
ϕ-fixed points have been considered. The proposed open problem is the investigation of
the existence and uniqueness of ϕ-fixed circles (resp. ϕ-fixed discs) for various classes of
self-mappings (see [14] and [16]). Then, a natural generalization of this open problem is
the investigation of the existence and uniqueness of ϕ-fixed figures (e.g. ϕ-fixed circle,
ϕ-fixed disc, ϕ-fixed ellipse, ϕ-fixed Cassini curve) for various classes of self-mappings. By
means of the notions of Zc-contraction and Suzuki type Zc-contraction, it is possible to
provide a solution to this problem. Applications of these kind theoretical results can also
be investigated to various real-life problems.
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