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a sphere while also rotating at constant angular speed cω 
around the polar axis, where c > 2. This means that a point P 
that is located in the sphere with radius r = 1 and with center 
0 in a coordinate system XYZ moves with a constant angu-
lar velocity ω across the great circle which passes through 
points P and (0,0,1). Additionally, at the same time point 
P also moves parallel to plane XY with a constant angular 
velocity cω. 

A body performs a circular motion around an axis called the 
rotation axis. Point P makes two circular motions simulta-

1. Introduction 

It is known that a spherical spiral is a locus of a point P 
moving at constant angular speed ω along the meridian of 
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Öz

Bu makale, Güneş’in, günlük ve yıllık görünürdeki hareketlerinin birleşimi ile, kürenin sınırlı bir kesitinde bir spiral çizdiğini 
göstermektedir. Eğriyi oluşturan dönme operatörü bir kuaterniyon tarafından üretilmiştir. Kuaterniyon bileşenlerinin, Güneş’in günlük 
hareketine ne şekilde karşılık geldikleri gösterilmiştir. Bunun için öncelikle kuterniyonlar yardımıyla küresel spiralin formülü elde 
edilmiştir. Küresel spiralin, bir kürenin meridyeni boyunca sabit ω açısal hızıyla hareket ederken aynı zamanda, c > 2 olmak üzere, 
kutup ekseni etrafında cω açısal hızıyla dönen bir P noktasının yeri olduğunu göz önünde bulundurarak, her dönme hareketi için bir 
kuaterniyon tanımlanmıştır. Bu kuaterniyonların yönleri birbirleriyle 90o açı oluşturur. Bu açı 23o 27’ olsaydı, oluşacak eğri Güneş’in 
görünürdeki hareketiyle çakışırdı. Bu kuaterniyonların çarpımı, bu eğriyi oluşturan, dönme operatorünü üreten kuaterniyonu verir. 
Zaman birimine dönüştürülen kuaterniyonun dönüş açısı, Güneş’in bir noktadan diğerine hareket etmesi için gereken süreyi verir. 
Küçük açılar için dönme ekseni, ekvator düzleminin ekseni ile aynıdır. Bu çalışmanın önemi iki yonlüdür; Astronomi bilimine, Güneş’in 
görünürdeki hareketinin yorumlanmasında yeni bir bakış açısı kazandırıyor olması, ve aynı zamanda kuaterniyonların kullanımının, 
bilimin diğer alanlarına getirdiği kolaylığa önemli bir örnek sunmasıdır. 
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Abstract

This paper shows that the apparent motion of the Sun traces a spherical spiral in a limited section of the sphere. The rotation operator 
that produces the curve is in turn produced by a quaternion. The way the components of the quaternion correspond to the daily apparent 
motion of the Sun is shown. To achieve this, first, the spherical spiral formula is obtained using quaternions. It is known that the 
spherical spiral is a locus of a point P moving at constant angular speed ω along the meridian of a sphere while also rotating at constant 
angular speed cω around the polar axis where c > 2. Therefore, two rotations occur at the same time, and for each rotation, a quaternion 
can be defined. The directions of these quaternions form a 90o angle with each other. In this paper, it is shown that if this angle was 
23o 27' then the curve that would form would coincide with the apparent motion of the Sun. The product of these quaternions gives 
the quaternion which produces the rotation operator that forms this curve. Afterward, it is shown that the quaternion rotation angle 
converted in time units displays the time the Sun needs to move from one point to another. On the other hand, the rotational axis for 
small angles is the same as the axis of the equatorial plane. The importance of this work is twofold: it gives the science of astronomy a 
new perspective regarding the interpretation of the apparent motion of the Sun, and at the same time it is an important example of a 
work that shows the convenience that the use of quaternions brings to other fields of science. 
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neously that each have a rotational axis. As a result, a spheri-
cal spiral is drawn. The first rotational motion of point P has 
as a rotational axis, axis Y. The second rotational motion of 
this point has as a rotational axis, axis Z. Between these two 
axes a 90o angle is found. 

At this point three questions come to mind: If the angle 
between these two rotational axes is different from 90o will 
the curve that forms still be considered a spherical spiral? Is 
there an equivalent motion in nature? If there is, how can it 
be interpreted? 

The purpose of this paper is to answer the above-mentioned 
questions. To achieve this, the author has benefited from 
references (Altman 1986; Delphenich 2012; Hacısalihoğlu 
1983; Kuipers 1975; Kuipers 1998; Griffin 2017; Dong et 
al. 2020) to present and understand the rotation operators 
that are produced by quaternions and which will be used 
to express the rotation motions of point P. The author has 
benefited from references (Karaali 1985; Kızılırmak 1977; 
Kummer 1996; Lowenstein 2012; Motz and Duveen 1966; 
Woolard and Clemence1966), to present the problem and 
the apparent motion of the Sun. The information needed 
for the understanding of spherical spirals is found in refer-
ence (Fisher and Ziebur 1965). A previous paper has been 
published on the method of defining the apparent motion 
of the Sun with the help of quaternions. This paper, which is 
found in reference (Güçler et al. 2022) is used as an example 
of a motion in nature of the type that was mentioned above. 
Afterward, the required interpretation has been done. 

The main idea that gave rise to this paper was first presented 
at the 19th International Geometry Symposium by the au-
thors of this paper (Güçler and Ekmekci 2022).

2. Preliminaries
In this paper, rotational operators produced by quaternions 
have been used to calculate the rotation sequences and ex-
press the rotation motions. For this reason, basic knowledge 
has been provided below about quaternions and the rotation 
operators produced by them.

A quaternion is a hyper-complex number of rank 4. The 
most important rule of this invention of Hamilton is:

i2= j2= k2= ijk = -1  (1)

i, j, and k are the components of the vector part of the qua-
ternion and they will be used to represent the standard or-
thogonal base of R3. 

The quaternion can be thought of as a quadruple of real 
numbers. This makes it an element of R4. Accordingly, qua-
ternion m can be expressed as below where m0, m1, m2 and  
m3 are each a real number.

m = m0 + α = m0 + im1+jm2+ km3, α = im1+jm2+ km3          (2)

where m0 is the scalar part and α is the vector part.

Multiplication of quaternions is done according to the fol-
lowing rule.

i2= j2= k2= ijk = -1 ve ij = k = - ji,jk = i = -kj ,ki = j = -ij        (3)

For m = m0+ αm= m0+ im1+jm2+ km3 and n = n0+ αn= n0+ 
in1+jn2+ kn3 

m × n = (m0+ im1+jm2+ km3) × (n0+ in1+jn2+ kn3)                                                                                    
 (4)

m × n = m0 n0- <αm,αn>  + m0 αn+ n0 αm+ αm /αn             (5)                     

" ,G H  represents the scalar product of vectors, and /  rep-
resents the cross product of vectors.

The complex conjugant of m = m0+ im1+ jm2+ km3 is m*= m0- 
im1- jm2- km3   

Definition: The quaternion whose scalar part is zero is 
called a pure quaternion.

The unit quaternion m = m0+ α satisfies the following equal-
ity m 10

2 2a+ = .  

The quaternion that will be used as a rotation operator is:

m = m0+ α = cos φ + u sin φ and m*= m0- α = cos φ - u sin φ   
                          (6)

where u= α/|α|= α/sin φ 

Theorem 1: For any q = q0+q= cos φ + u sin φ unit quater-
nion (where q0 is the scalar part and q is the vector part of 
the quaternion) and for any vector v !R3 the action of the 
operator 

Lq (v)  = q × v × q*

on v may be interpreted geometrically as a rotation of the 
vector v through an angle 2ϕ about q as the axis of the rota-
tion. According to Kuipers (1998).

Theorem 2: Suppose that q and p are unit quaternions that 
define the quaternion rotation operators:

Lq(u)  = q × u × q* and Lp(v) = p × v × p*

Then the quaternion product p × q defines a quaternion 
operator Lpq which represents a sequence of operators, Lq 
followed by Lp. The axis and the angles of rotation are those 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=John H. Lowenstein&eventCode=SE-AU
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represented by the quaternion product, r = p × q. According 
to Kuipers (1998).

Information must be provided on the apparent motion of 
the Sun as well. For this reason, the apparent yearly and 
daily motion of the Sun have been introduced below. 

As it is known, the Earth rotates every day in a positive 
direction around its axis and parallel to the equatorial plane. 
This motion is reflected to an observer on Earth, as the ap-
parent motion of the Sun, occurring in the negative direc-
tion.

It is also known that the Earth rotates every year around 
the Sun in the positive direction, in an ecliptic orbit found 
in the ecliptic plane. However, this motion appears to an 
observer on Earth, as if it was the Sun moving around the 
Earth during the year in a positive direction (Figure 1). The 
ecliptic plane intersects with the celestial equatorial plane 
and creates a  angle. According to Karaali (1985).

Definition 2.1: The coordinate system defined by taking the 
celestial equator as the fixed plane, taking O& as the fixed 
line, and taking the center of the celestial sphere as the fixed 
point, is called the Celestial Equatorial Coordinate System.

3. The Interpretation of the Apparent Motion of the 
Sun Through the Spherical Spiral
As stated before, a spherical spiral is a locus of a point P 
moving at constant angular speed P along the meridian of 
a sphere while also rotating at constant angular speed cω 
around the polar axis, where . Because there exists a direct 
proportion between the velocities and the angles, point P 
will accordingly trace angles θ and cθ. Hereafter, it will be 

accepted that the motion will occur in a sphere with a radius 
r = 1. 

Now let us determine the quaternions that will generate 
rotational operators that will perform each rotational mo-
tion. Since the first rotation takes place in the XZ plane in 
the positive direction with an angle θ, the direction of the 
quaternion used in the rotation operator is the same as the 
direction of the rotation axis, meaning u1 = j. In this case, 
the quaternion generating the first operator, according to 
Theorem 1 is: 

K1= cos θ/2 + j sin θ/2  (7)

Since the second rotation takes place in the XY plane in the 
positive direction with an angle of cθ, the direction of the 
quaternion used in the rotation operator is the same as the 
direction of the rotation axis, meaning u2 = k. In this case, 
the quaternion generating the second operator, according to 
Theorem 1 is: 

K2= cos (cθ)/2 + k sin (cθ)/2      (8)

The result of transferring vector v to the quaternion space is: 

v = (1 ,0,0) → w = 0 + 1i+ 0j+ 0k = i    (9)

The vector that is obtained is a pure quaternion. According 
to Theorem 2:

For LK1(w)  = K1 × w × K2*, LK2 (m) = K2 × m × K2*, m = K1 
× w × K2*:
L (w)  = (K2 × K1)  w (K2× K1)* (10)

If K2 × K1 = K and for w = i, L(w) = K × i × K* is shown. In 
this case:

Figure 1. The elliptical orbit made by the actual motion of the Earth (A) the elliptical circle made by the annual motion of the Sun (B).

A B

https://mathcurve.com/surfaces/sphere/sphere.shtml
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that will realize the motion in the negative direction around 
axis Z. The starting point of the motion is P = (1,0,0) which 
coincides with the Aries constellation. The vector OP that 
is found in the direction of the Earth-Aries constellation is 
v = (1,0,0). First, let this vector be transferred to the quater-
nion space so:

v = (1,0,0) vector → ω = 0 + i+ 0j + 0k = i    (16)

corresponds to a pure quaternion. The first rotation motion 
will be realized around axis u = - j sinε + k cosε with θ angle. 
The second rotation motion will be realized around axis k 
with a (cθ) angle in a negative direction. In this case, the Q1 
and Q2

* quaternions that will operate as rotation operators, 
for a = sin ε and b = cos ε, are:

Q1= cos θ/2 – j asin θ/2 + k bsin θ/2 and Q2
*= cos(cθ)/2 - k 

sin(cθ)/2                                          (17)

According to Theorem 2 and if Q2
* × Q1= Q and w = i then

K = (cos (cθ)/2 + k sin (cθ)/2) × (cos θ/2 + j sin θ/2 )   (11)

K = cos (cθ)/2 cos θ/2 – i sin (cθ)/2 sin θ/2 + j cos (cθ)/2 sin 
θ/2 + k sin (cθ)/2 cos θ/2                       (12)

Accordingly, when the rotation operator produced by the K 
quaternion is applied to w= (i,0,0), the pure quaternion W = 
(W1, W2, W3) is obtained as shown below.

W = K × w  × K*  (13)

When calculations are made,

W1= (cos θ cos (cθ)) i ,W2= (sin (cθ) cos θ) j ,W3 = (-sin θ) k 
 (14)

is found. As a result of transferring pure quaternion W to 
the vector space, V = (V1,V2,V3) is obtained.

For c > 2, 0 ≤ θ ≤ 2π where c is constant

( )
( )

cos cos
cos sin
sin

V X c
V c

V
Y

Z

1

2

3

i i

i i

i

= =
= =
= = -

*   (15)

is found. This is the parametric equation of the spherical 
spiral with the radius r = 1 (Figure 2).

It has been possible to express the spherical sphere equa-
tion with the help of the rotation operators. These operators 
are produced by the quaternions, the directions of which are 
found in the axes Y and Z.

But what if the angle between these two rotational axes is 
different from 90o? Can the curve that is formed still be 
considered a spherical spiral? Is there an equivalent motion 
in nature? If so, how can it be interpreted? To answer these 
questions, let us examine the apparent daily and yearly mo-
tion of the Sun (Figure 3). As seen in Figure 3, the angle 
between the two rotation axes is different from 90o.

In this paper, it is assumed the apparent motion of the Sun 
occurs in ideal conditions. So, it will be accepted that the 
apparent motion of the Sun occurs in a circular orbit with a 
constant angular velocity in the ecliptic plane. 

Now let plane E represent the elliptic plane while plane XY 
represents the plane of the celestial equator, and angle ε = 
23o27ʹ represents the angle  which is the angle that is formed 
from the intersection of the celestial equatorial plane and 
the ecliptic plane (Figure 3). In this case, point  represents 
(0,0,0)the Earth. In addition, the positive direction of axis X 
will represent the Aries constellation. 

Let Q1 be the quaternion that will realize the motion in the 
positive direction around axis N. Let Q1

* be the quaternion 

Figure 2. Spherical Spiral, c = 20
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able to visually show the shape of the curve, c = 12 is chosen 
instead of c = 365.25 and this way the graphic shown in Fig-
ure 4 is obtained. According to Güçler et al. (2022).

If in equation (23) ε = - 900 and it is accepted that the second 
rotation occurs in the positive direction, then the parametric 
equation of the spherical spiral is procured. This means that 
the answer to the question “Can the curve that is formed 
still be considered a spherical spiral?” that was posited above 
is an affirmative “ Yes, it can still be considered a spherical 
spiral.” However, the question arises, “Are there other exam-
ples that can be provided to clarify this subject?”. The answer 
to this question is also an affirmative “Yes, there are”.

Another example of this motion is the apparent motion 
of the Sun as seen by an observer found on another planet 
in the solar system, for example, on planet Venus (Güçler 
2023) or Mercury (Güçler 2023). Because the speed with 
which these planets move around themselves is much slower 
than the speed with which Earth rotates around itself, the 
advantages which the use of the method brings are more 
clearly apparent. 

As it is shown in Figure 4, the curve that is obtained is a 
spherical spiral confined to a particular region. So what does 
the quaternion used to obtain this curve tell us? To answer 
this, we will examine the quaternion Q. For Q = (q0,q1,) 
q2,q3):  

L(w1) = Q × i × Q*  (18)

So the calculations are as such:

Q = Q2
* × Q1= (cos(cθ)/2 - k sin(cθ)/2) × (cos θ/2 – j asin θ/2 

+ k bsin θ/2)                                                                    (19)

Q=(cos(cθ)/2 cos θ/2 + b sin(cθ)/2 sin θ/2) - i a sin(cθ)/2 sin 
θ/2 – j a cos(cθ)/2 sin θ/2                           (20)

Accordingly, when the rotation operator produced by the Q 
quaternion is applied to w = (i,0,0),, the pure quaternion W 
= (W1,W2,W2) is obtained as shown below.

W = Q × i × Q*  (21)

When the calculations are made

W1 = (cos(cθ)cos θ+bsin(cθ) sinθ)i, W2 = (bcos(cθ)sin θ-sin(cθ)
cosθ)j, W3=(asinθ)k                                                (22)

is found. As a result of transferring pure quaternion W to 
the vector space, V = (V1,V2,V3) is obtained.

For 0 ≤ θ ≤ 2π,c = 365.25 (365.25 the number of days in a 
year), a = sin 230 27' and b = cos 230 27'  

( ) ( )
( ) ( )

cos cos sin sin
cos sinsin cos

sin

V X c b c
V X c cb

V Z a

1

2

3

i i i i

i i i i

i

= = +
= = -

= =
*   (23)

If the graphic of the equation (23) we obtained above was 
drawn, this curve would cover the entirety of the sphere 
found between the planes z = - sin 23027' and z = sin 23027' 
because the constant c is c = 365.25. For this reason, to be 

Figure 3. The system in which the apparent motion of the Sun 
occurs.

Figure 4. The curve of the apparent motion of the Sun for c = 12.
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parallel to XY plane. In this case, this object traces a spiral 
confined in a section such as 2rsinϑ, where ϑ is the small 
angle between the plane determined by the great circle and 
XY plane. This section lies between two parallel planes that 
cut through the sphere. Each plane is located at a distance 
equal to the rsinϑ of the XY plane.

Second conclusion: The apparent motion of the Sun can 
be shown as an example of the graph described in the first 
result. In addition, the quaternion used in obtaining this 
curve provides important data for interpreting the apparent 
motion of the Sun.
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By showing "Q "= cos ψ/2 + αq sin ψ/2 , αq = (q1,q2,q3), we have,

cos ψ/2 = cos(cθ)/2 cos θ/2 + b sin(cθ)/2 sin θ/2  (25)

From this equation, ψ angle of rotation can be found.

The Sun completes its motion in the ecliptic orbit in ap-
proximately 365.25 days. Therefore, in one day Δθ ≈ 10, 
where Δθ is the difference between angle θ2 taken by the sun 
in x+1 days, and angle θ1 taken by the Sun in x days. Due 
to this, if we analyse the apparent daily motion of the Sun, 
the angular distance between the two points that the Sun 
appears in, in the celestial sphere will be Δθ < 10. This means 
that Δθ/2 <(1/2)0. If we calculate the value of sin Δθ/2 for 
such a small angle the result can be accepted as equal to zero 
and the value of cos Δθ/2 can be accepted as equal to one. 
In this case:

cos ψ/2 = cos(cΔθ/2) cos Δθ/2 + b sin(cΔθ/2) sin 
Δθ/2=cos(cΔθ/2)                         (26)

cos ψ/2 = cos 365,25 (Δθ/2) → ψ = 365,25 Δθ (27)

Additionally: 
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The direction αq=(q1,q2,q3) of quaternion Q found as a result 
of the calculation above, is the same as the direction of Q2

* 
= cos (cθ)/2 - k sin (cθ)/2. So αq is the same as the axis of 
the apparent daily motion of the Sun. This motion occurs 
in parallel to the equatorial plane. This is an expected result 
because when astronomers study the apparent daily motion 
of the Sun, they accept that this motion takes place parallel 
to the equatorial plane.

When the angle of rotation ψ = 365.25 Δθ is converted 
from degrees to units of time, the time taken for the Sun to 
travel from one point to the other is obtained. 

4. Conclusion
First conclusion: Let an object move with the velocity ω of 
the sphere with a radius r along any great circle of the sphere 
and let this object move with the velocity cω, where c > 2, 
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