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ABSTRACT

For any semi-Riemannian manifold (M, g) we define some generalized curvature tensor E as a
linear combination of Kulkarni-Nomizu products formed by the metric tensor, the Ricci tensor and
its square of given manifold. That tensor is closely related to quasi-Einstein spaces, Roter spaces
and some Roter type spaces.
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1. Introduction

Let (M, g) be a semi-Riemannian manifold. We denote by g, R, S, κ and C, the metric tensor, the Riemann-
Christoffel curvature tensor, the Ricci tensor, the scalar curvature and the Weyl conformal curvature tensor of
(M, g), respectively. Further, let A ∧B be the Kulkarni-Nomizu product of symmetric (0, 2)-tensors A and B.
Now we can define the (0, 2)-tensors S2 and S3, the (0, 4)-tensors R · S, C · S and Q(A,B), and the (0, 6)-tensors
R ·R, R · C, C ·R, C · C and Q(A, T ), where T is a generalized curvature tensor. For precise definitions of the
symbols used, we refer to Section 2 of this paper, as well as to [34, Section 1], [37, Section 1], [38, Chapter 6] and
[45, Sections 1 and 2].

A semi-Riemannian manifold (M, g), dimM = n ≥ 2, is said to be an Einstein manifold [2], or an Einstein
space, if at every point of M its Ricci tensor S is proportional to g, i.e.,

S =
κ

n
g (1.1)

on M , assuming that the scalar curvature κ is constant when n = 2. According to [2, p. 432] this condition is
called the Einstein metric condition.

Let (M, g) be a semi-Riemannian manifold of dimension dimM = n ≥ 3. We set

E = g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g. (1.2)

It is easy to check that the tensorE is a generalized curvature tensor. Further, we define the subsets UR and US of
M by UR = {x ∈M |R− κ

(n−1)n G ̸= 0 at x} and US = {x ∈M |S − κ
n g ̸= 0 at x}, respectively, whereG = 1

2 g ∧ g.
If n ≥ 4 then we define the set UC ⊂M as the set of all points of (M, g) at which C ̸= 0. We note that if n ≥ 4
then US ∪ UC = UR (see, e.g., [24]).

An extension of the class of Einstein manifolds form quasi-Einstein, 2-quasi-Einstein and partially Einstein
manifolds. A semi-Riemannian manifold (M, g), dimM = n ≥ 3, is said to be a quasi-Einstein manifold, or a
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quasi-Einstein space, if

rank (S − α g) = 1 (1.3)

on US ⊂M , where α is some function on US . It is known that every non-Einstein warped product manifold
M ×F Ñ with a 1-dimensional (M, g) base manifold and a 2-dimensional manifold (Ñ , g̃) or an (n− 1)-
dimensional Einstein manifold (Ñ , g̃), dimM = n ≥ 4, and a warping function F , is a quasi-Einstein manifold
(see, e.g., [7, 34]). A Riemannian manifold (M, g), dimM = n ≥ 3, whose Ricci tensor has an eigenvalue
of multiplicity n− 1 is a non-Einstein quasi-Einstein manifold (cf. [23, Introduction]). We mention that
quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations and the
investigation on quasi-umbilical hypersurfaces of conformally flat spaces (see, e.g., [27, 34] and references
therein). Quasi-Einstein hypersurfaces in semi-Riemannian spaces of constant curvature were studied among
others in [29, 40, 43, 61] (see also [27] and references therein). Quasi-Einstein manifolds satisfying some
pseudosymmetry type curvature conditions were investigated recently in [1, 7, 24, 31, 42]. Quasi-Einstein
hypersurfaces in conformally flat semi-Riemannian manifolds were studied in [55, 78]. In those papers
quasi-Einstein hypersurfaces were called pseudo-Einstein hypersurfaces (see also [66, 71]). Similarly, in
[50, 86, 87] quasi-Einstein semi-Riemannian manifolds (hypersurfaces) were called pseudo-Einstein manifolds
(hypersurfaces).

Let (M, g), dimM = n ≥ 3, be a semi-Riemannian manifold. We note that (1.3) holds at a point x ∈ US ⊂M if
and only if (S − α g) ∧ (S − α g) = 0 at x, i.e.,

1

2
S ∧ S − α g ∧ S +

α2

2
g ∧ g = 0 (1.4)

at x (cf. [61, Proposition 2.1]). From (1.4), by a suitable contraction, we get immediately

S2 = (κ− (n− 2)α)S + α((n− 1)α− κ) g. (1.5)

Using (1.1) we can easily check that the following equation is satisfied on any Einstein manifold (M, g)

g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g = 0, (1.6)

i.e., E = 0 on M , where the tensor E is defined by (1.2). Moreover, as it was stated in [28, Lemma 2.1], (1.6)
is satisfied on every quasi-Einstein manifold (M, g), n ≥ 3. The converse statement also is true. Precisely, from
Proposition 2.1 it follows that if (M, g), n ≥ 4, is a semi-Riemannian manifold satisfying (1.6) on US ⊂M then a
condition of the form (1.3) holds on US , where α is some function on this set. In Section 2 we also present another
result related to the tensor E (see Proposition 2.2). Namely, we prove that if a generalized curvature tensor T
is a linear combination of the tensors R, S ∧ S, g ∧ S, g ∧ S2, and g ∧ g then the Weyl tensor of T is a linear
combination of the tensors C and E. The tensor E is determined by some Kulkarni-Nomizu products formed
by g, S and S2, i.e., E is defined by (1.2). In the same way, we can define the (0, 4)-tensor E(A) corresponding
to a symmetric (0, 2)-tensor A

E(A) = g ∧A2 +
n− 2

2
A ∧A− trg(A) g ∧A+

(trg(A))
2 − trg(A

2)

2(n− 1)
g ∧ g. (1.7)

The semi-Riemannian manifold (M, g), dimM = n ≥ 3, will be called a partially Einstein manifold, or a
partially Einstein space (cf. [5, Foreword], [82, p. 20]), if at every point x ∈ US ⊂M its Ricci operator S satisfies
S2 = λS + µIdx, or equivalently,

S2 = λS + µ g, (1.8)

where λ, µ ∈ R and Idx is the identity transformation of TxM . Evidently, (1.5) is a special case of (1.8). Thus
every quasi-Einstein manifold is a partially Einstein manifold. The converse statement is not true. Contracting
(1.8) we get trg(S2) = λκ+ nµ. This together with (1.8) yields (cf. [25, Section 5])

S2 − trg(S
2)

n
g = λ

(
S − κ

n
g
)
.

In particular, a Riemannian manifold (M, g), dimM = n ≥ 3, is a partially Einstein space if at every point
x ∈ US ⊂M its Ricci operator S has exactly two distinct eigenvalues κ1 and κ2 with multiplicities p and n− p,
respectively, where 1 ≤ p ≤ n− 1. Evidently, if p = 1, or p = n− 1, then (M, g) is a quasi-Einstein manifold.
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In Section 3 we present definitions of some classes of semi-Riemannian manifolds determined by curvature
conditions of pseudosymmetry type. Investigations of semi-Riemannian manifolds satisfying some particular
curvature conditions of pseudosymmetry type lead to Roter spaces (see Propositon 4.1). Roter spaces form
an important subclass of the class of non-conformally flat and non-quasi-Einstein partially Einstein manifolds
of dimension ≥ 4. Namely, a non-quasi-Einstein and non-conformally flat semi-Riemannian manifold (M, g),
dimM = n ≥ 4, satisfying on US ∩ UC ⊂M the following equation

R =
ϕ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g, (1.9)

where ϕ, µ and η are some functions on this set, is called a Roter type manifold, or a Roter manifold, or a Roter
space (see, e.g., [6, Section 15.5], [22, 34, 35, 38]). Equation (1.9) is called a Roter equation (see, e.g., [28, Section
1]). In Section 4 we present results on such manifolds. For instance, every Roter space (M, g), dimM = n ≥ 4,
satisfies among others the following pseudosymmetry type curvature condition on US ∩ UC ⊂M (see Theorem
4.1)

C ·R−R · C = Q(S,C)− κ

n− 1
Q(g, C). (1.10)

Let (M, g), dimM = n ≥ 4, be a non-partially-Einstein and non-conformally flat semi-Riemannian manifold.
If its Riemann-Christoffel curvature R is at every point of US ∩ UC ⊂M a linear combination of the Kulkarni-
Nomizu products formed by the tensors S0 = g and S1 = S, . . . , Sp−1, Sp, where p is some natural number ≥ 2,
then (M, g) is called a generalized Roter type manifold, or a generalized Roter manifold, or a generalized Roter
type space, or a generalized Roter space. For instance, when p = 2, we have

R =
ϕ2
2
S2 ∧ S2 + ϕ1 S ∧ S2 +

ϕ

2
S ∧ S + µ1 g ∧ S2 + µ g ∧ S +

η

2
g ∧ g, (1.11)

where ϕ, ϕ1, ϕ2, µ1, µ and η are functions on US ∩ UC . Because (M, g) is a non-partially Einstein manifold, at
least one of the functions µ1, ϕ1 and ϕ2 is a non-zero function. Equation (1.11) is called a Roter type equation
(see, e.g., [28, Section 1]). We refer to [28, 33, 34, 35, 42, 73, 74, 75, 76, 77] for results on manifolds (hypersurfaces)
satisfying (1.11).

As it was stated in [28, Lemma 2.2] (see Proposition 4.2), if (M, g), dimM = n ≥ 4, is a Roter space satisfying
(1.9) on US ∩ UC ⊂M then on this set

C =
ϕ

n− 2

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g

)
. (1.12)

In Section 5 we recall results on some warped product manifolds with 2-dimensional base manifold obtained
in [28].

In Section 6 we state that on every essentially conformally symmetric manifold the following equation is
satisfied

F C =
n− 2

2(n− 2)
S ∧ S =

1

n− 2

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g

)
. (1.13)

In Section 7 we recall some known results on hypersurfaces M , dimM ≥ 4, isometrically immersed in a
conformally flat spaces. In particular, we mention that at every point of M its Weyl conformal curvature tensor
C and the (0, 4)-tensor E(H), formed for the second fundamental tensor H of M , are linearly dependent (see
(7.3)).

In the last section we investigate non-Einstein and non-conformally flat hypersurfaces M , dimM ≥ 4,
isometrically immersed in semi-Riemannian spaces of constant curvature satisfying some curvature conditions
of pseudosymmetry type. Under some additional assumptions imposed on the second fundamental tensor H
of M we obtain equations involved with the tensor E.

2. Preliminaries.

Throughout this paper, all manifolds are assumed to be connected paracompact manifolds of class C∞.
Let (M, g), dimM = n ≥ 3, be a semi-Riemannian manifold, and let ∇ be its Levi-Civita connection and Ξ(M)
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the Lie algebra of vector fields on M . We define on M the endomorphisms X ∧A Y and R(X,Y ) of Ξ(M) by
(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y and

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

respectively, where X,Y, Z ∈ Ξ(M) and A is a symmetric (0, 2)-tensor on M . The Ricci tensor S, the Ricci
operator S and the scalar curvature κ of (M, g) are defined by

S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = trS,

respectively. The endomorphism C(X,Y ) is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
(X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y )Z.

Now the (0, 4)-tensor G, the Riemann-Christoffel curvature tensor R and the Weyl conformal curvature tensor
C of (M, g) are defined by G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4) and

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

respectively, where X1, X2, . . . ∈ Ξ(M). For a symmetric (0, 2)-tensor A we denote by A the endomorphism
related to A by g(AX,Y ) = A(X,Y ). The (0, 2)-tensors Ap, p = 2, 3, . . ., are defined by Ap(X,Y ) = Ap−1(AX,Y ),
assuming that A1 = A. In this way, for A = S and A = S we get the tensors Sp, p = 2, 3, . . ., assuming that
S1 = S.

Let B be a tensor field sending any X,Y ∈ Ξ(M) to a skew-symmetric endomorphism B(X,Y ), and let B be
the (0, 4)-tensor associated with B by

B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4). (2.1)

The tensor B is said to be a generalized curvature tensor if the following two conditions are fulfilled:
B(X1, X2, X3, X4) = B(X3, X4, X1, X2) and

B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0.

For B as above, let B be again defined by (2.1). We extend the endomorphism B(X,Y ) to a derivation B(X,Y )·
of the algebra of tensor fields on M , assuming that it commutes with contractions and B(X,Y ) · f = 0 for any
smooth function f on M . Now for a (0, k)-tensor field T , k ≥ 1, we can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk, X, Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).

If A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A, T ) by

Q(A, T )(X1, . . . , Xk, X, Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In this manner we obtain the (0, 6)-tensors B ·B and Q(A,B).
Substituting in the above formulas B = R or B = C, T = R or T = C or T = S, A = g or A = S we get the

tensors R ·R, R · C, C ·R, C · C, R · S, Q(g,R), Q(S,R), Q(g, C), Q(S,C), and Q(g, S), Q(g, S2), Q(S, S2).
For a symmetric (0, 2)-tensor A and a (0, k)-tensor T , k ≥ 2, we define their Kulkarni-Nomizu tensor A ∧ T

by (see, e.g., [24, Section 2])

(A ∧ T )(X1, X2, X3, X4;Y3, . . . , Yk)

= A(X1, X4)T (X2, X3, Y3, . . . , Yk) +A(X2, X3)T (X1, X4, Y3, . . . , Yk)

−A(X1, X3)T (X2, X4, Y3, . . . , Yk)−A(X2, X4)T (X1, X3, Y3, . . . , Yk).

It is obvious that the following tensors are generalized curvature tensors: R, C and A ∧B, where A and B = T
are symmetric (0, 2)-tensors. We have

C = R− 1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G, (2.2)

G =
1

2
g ∧ g, (2.3)
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and (see, e.g., [24, Lemma 2.2(i)])

(a) Q(A,A ∧B) = −1

2
Q(B,A ∧A),

(b) A ∧Q(A,B) = −1

2
Q(B,A ∧A). (2.4)

By an application of (2.4)(a) we obtain on M the identities

Q(g, g ∧ S) = −Q(S,G), Q(S, g ∧ S) = −1

2
Q(g, S ∧ S). (2.5)

Further, by making use of (2.2), (2.3) and (2.5), we get immediately

Q(g, C) = Q(g,R)− 1

n− 2
Q(g, g ∧ S) + κ

(n− 2)(n− 1)
Q(g,G)

= Q(g,R)− 1

n− 2
Q(g, g ∧ S) = Q(g,R) +

1

n− 2
Q(S,

1

2
g ∧ g), (2.6)

Q(S,C) = Q(S,R)− 1

n− 2
Q(S, g ∧ S) + κ

(n− 2)(n− 1)
Q(S,G)

= Q(S,R) +
1

2(n− 2)
Q(g, S ∧ S)− κ

(n− 2)(n− 1)
Q(g, g ∧ S). (2.7)

From (2.4) (a) it follows immmediately that Q(g, g ∧ g) = 0. Thus we have

Q(g,E) = Q(g, g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S), (2.8)

where the tensor E is defined by (1.2).
Let A1, A2 and B be symmetric (0, 2)-tensors. We have (see, e.g., [7, Lemma 2.1(i)] and references therein)

A1 ∧Q(A2, B) +A2 ∧Q(A1, B) +Q(B,A1 ∧A2) = 0. (2.9)

From (2.9) we get easily (see also [24, Lemma 2.2(iii)] and references therein)

Q(B,A1 ∧A2) +Q(A1, A2 ∧B) +Q(A2, B ∧A1) = 0.

LetA be a symmetric (0, 2)-tensor and T a (0, k)-tensor, k = 2, 3, . . .. The tensorQ(A, T ) is called the Tachibana
tensor of A and T , or the Tachibana tensor for short (see, e.g., [36]). Using the tensors g, R and S we can define
the following (0, 6)-Tachibana tensors: Q(S,R), Q(g,R), Q(g, g ∧ S) and Q(S, g ∧ S). We can check, by making
use of (2.4)(a) and (2.5), that other (0, 6)-Tachibana tensors constructed from g, R and S may be expressed by
the four Tachibana tensors mentioned above or vanish identically on M .

Let T be a generalized curvature tensor on a semi-Riemannian manifold (M, g), dimM = n ≥ 4. We denote by
Ric(T ), κ(T ) and Weyl(T ) the Ricci tensor, the scalar curvature and the Weyl tensor of the tensor T , respectively.
We refer to [24, Section 2], [25, Section 3] or [31, Section 3] for definitions of the considered tensors. In particular,
we have

Weyl(T ) = T − 1

n− 2
g ∧ Ric(T ) +

κ(T )

2(n− 2)(n− 1)
g ∧ g. (2.10)

Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M, g), dimM = n ≥ 3. Let E(A) be the
tensor defined by (1.7). It is easy to check that Ric(E(A)) is a zero tensor. Therefore, we also have κ(E(A)) = 0.
Any generalized curvature tensor T defined on a 3-dimensional semi-Riemannian manifold (M, g) is expressed
by T = g ∧ Ric(T )− (κ(T )/4)g ∧ g [56, p. 48] (see also [21, Lemma 2 (ii)]). Thus we see that the tensor T = E(A)
on any 3-dimensional semi-Riemannian manifold (M, g) is a zero tensor. In particular, on any 3-dimensional
semi-Riemannian manifold (M, g) we have E = 0.

Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M, g), dimM = n ≥ 3. We denote by UA

the set of points of M at which A ̸= trg(A)
n g.
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Proposition 2.1. Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M, g), dimM = n ≥ 4.
(i) (cf. [28, Lemma 2.1]) If the following condition is satisfied on UA ⊂M

rank(A− α g) = 1 (2.11)

then

g ∧A2 +
n− 2

2
A ∧A− trg(A) g ∧A+

(trg(A))
2 − trg(A

2)

2(n− 1)
g ∧ g = 0 (2.12)

and

A2 − trg(A
2)

n
= (trg(A)− (n− 2)α)

(
A− trg(A)

n
g

)
(2.13)

on UA, where α is some function on UA.
(ii) If (2.12) is satisfied on UA ⊂M then

A2 − trg(A
2)

n
g = ρ

(
A− trg(A)

n
g

)
(2.14)

and (
A− trg(A)− ρ

n− 2
g

)
∧
(
A− trg(A)− ρ

n− 2
g

)
= 0 (2.15)

on UA, where ρ is some function on UA.

Proof. (i) (cf. the proof of [28, Lemma 2.1]) Equation (2.11) yields [61, Proposition 2.2]

1

2
A ∧A = α g ∧A− α2

2
g ∧ g. (2.16)

This by suitable contractions yields

A2 − trg(A)A = −(n− 2)αA− αtrg(A) g + (n− 1)α2 g, (2.17)
trg(A

2)− (trg(A))
2 = −2(n− 1)αtrg(A) + n(n− 1)α2. (2.18)

Now using (2.16), (2.17) and (2.18) we can easily check that (2.12) and (2.13) hold on UA.
(ii) (cf. the proof of [20, Lemma 3.4]) In the local coordinates (2.12) reads

ghkA
2
ij + gijA

2
hk − ghjA

2
ik − gikA

2
hj + (n− 2) (AhkAij −AhjAik)

−trg(A) (ghkAij + gijAhk − ghjAik − gikAhj)

+
(trg(A))

2 − trg(A
2)

n− 1
(ghkgij − ghjgik) = 0. (2.19)

Contracting (2.19) with Aij = Arsg
rigsj and Ak

l = Arlg
rk we find

A3 =
3trg(A)

n
A2 +

(
(n2 − 3n+ 3)trg(A

2)

(n− 1)n
− (trg(A))

2

n− 1

)
A

+

(
(trg(A))

3

(n− 1)n
− trg(A) trg(A

2)

n− 1
+

trg(A
3)

n

)
g, (2.20)

AhlA
2
ij −AilA

2
hj + gijA

3
hl − ghjA

3
il + (n− 2) (AijA

2
hl −AhjA

2
il)

−trg(A) (AhlAij −AilAhj + gijA
2
hl − ghjA

2
il)

+
(trg(A))

2 − trg(A
2)

n− 1
(gijAhl − ghjAil) = 0, (2.21)

respectively. From (2.21), by symmetrization in l, j, we obtain

Q(g,A3) + (n− 3)Q(A,A2)− trg(A)Q(g,A2) +
(trg(A))

2 − trg(A
2)

n− 1
Q(g,A) = 0. (2.22)
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Applying (2.20) into (2.22) we get

(n− 3)

(
Q(A,A2)− trg(A)

n
Q(g,A2) +

trg(A
2)

n
Q(g,A)

)
= 0,

which yields

Q

(
A− trg(A)

n
g,A2 − trg(A

2)

n
g

)
= 0.

From this, in view of [48, Lemma 2.4 (ii)], it follows that (2.14) holds on UA. Now (2.12) and (2.14), by an
application of [58, Lemma 3.1], lead to (2.15), completing the proof of (ii).

Proposition 2.2. Let T be a generalized curvature tensor on a semi-Riemannian manifold (M, g), dimM = n ≥ 4. If
the following condition is satisfied at a point x ∈M

T = α1R+
α2

2
S ∧ S + α3 g ∧ S + α4 g ∧ S2 +

α5

2
g ∧ g (2.23)

then

Weyl(T ) = α1 C +
α2

n− 2
E (2.24)

at this point, where the tensor E is defined by (1.2) and α1, . . . , α5 ∈ R.

Proof. From (2.23), by a suitable contraction, we get immediately

Ric(T ) = (α1 + α2κ+ (n− 2)α3)S + ((n− 2)α4 − α2)S
2 + α6 g, (2.25)

where α6 is some real number. Now using (1.2), (2.2), (2.3), (2.10), (2.23) and (2.25) we get

Weyl(T ) = T − 1

n− 2
g ∧ Ric(T ) +

κ(T )

2(n− 2)(n− 1)
g ∧ g

= α1R+
α2

2
S ∧ S + α3 g ∧ S + α4 g ∧ S2 +

α7

2
g ∧ g

− 1

n− 2
(α1 + α2κ+ (n− 2)α3) g ∧ S − 1

n− 2
((n− 2)α4 − α2) g ∧ S2

= α1R+
α2

2
S ∧ S − α1 + α2κ

n− 2
g ∧ S +

α2

n− 2
g ∧ S2 +

α7

2
g ∧ g

= α1 (R− 1

n− 2
g ∧ S) + α2

n− 2
(g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S) + α7

2
g ∧ g

= α1 C +
α2

n− 2
E +

α8

2
g ∧ g,

i.e.,

Weyl(T ) = α1 C +
α2

n− 2
E +

α8

2
g ∧ g, (2.26)

where α7 and α8 are some real numbers. From (2.26), by suitable contraction, we get immediately α8 = 0, and
in a consequence (2.24), completing the proof.

3. Pseudosymmetry type curvature conditions

It is well-known that if a semi-Riemannian manifold (M, g), dimM = n ≥ 3, is locally symmetric then
∇R = 0 on M (see, e.g., [70, Chapter 1.5]). This implies the following integrability condition R(X,Y ) ·R = 0
in short R ·R = 0. Semi-Riemannian manifold satisfying the last condition is called semisymmetric (see, e.g.,
[3, Chapter 8.5.3], [4, Chapter 20.7], [70, Chapter 1.6], [80, 84]). Semisymmetric manifolds form a subclass of
the class of pseudosymmetric manifolds. A semi-Riemannian manifold (M, g), dimM = n ≥ 3, is said to be
pseudosymmetric if the tensors R ·R and Q(g,R) are linearly dependent at every point of M (see, e.g., [3,
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Chapter 8.5.3], [4, Chapter 20.7], [6, Section 15.1], [38, Chapter 6], [70, Chapter 12.4], [24, 27, 38, 49, 63, 64, 75,
81, 83, 84, 85] and references therein). This is equivalent to

R ·R = LRQ(g,R) (3.1)

on UR ⊂M , where LR is some function on UR. Every semisymmetric manifold is pseudosymmetric. The
converse statement is not true (see, e.g., [49]). We note that (3.1) implies

R · S = LRQ(g, S) (3.2)

and

R · C = LRQ(g, C). (3.3)

Conditions (3.1), (3.2) and (3.3) are equivalent on the set US ∩ UC of any warped product manifold M ×F Ñ ,
with dimM = dim Ñ = 2 (see, e.g., [34] and references therein).

A semi-Riemannian manifold (M, g), dimM = n ≥ 3, is called Ricci-pseudosymmetric if the tensorsR · S and
Q(g, S) are linearly dependent at every point of M (see, e.g., [3, Chapter 8.5.3], [6, Section 15.1], [27]). This is
equivalent on US to

R · S = LS Q(g, S), (3.4)

where LS is some function on US . Every warped product manifold M ×F Ñ with a 1-dimensional manifold
(M, g) and an (n− 1)-dimensional Einstein semi-Riemannian manifold (Ñ , g̃), n ≥ 3, and a warping function
F , is a Ricci-pseudosymmetric manifold, see, e.g., [7, Section 1] and [34, Example 4.1].

A semi-Riemannian manifold (M, g), dimM = n ≥ 4, is said to be Weyl-pseudosymmetric if the tensors R · C
and Q(g, C) are linearly dependent at every point of M [24, 27]. This is equivalent on UC to

R · C = L1Q(g, C), (3.5)

where L1 is some function on UC . We can easily check that on every Einstein manifold (M, g), dimM ≥ 4, (3.5)
turns into

R ·R = L1Q(g,R).

For a presentation of results on the problem of the equivalence of pseudosymmetry, Ricci-pseudosymmetry
and Weyl-pseudosymmetry we refer to [27, Section 4].

A semi-Riemannian manifold (M, g), dimM = n ≥ 4, is said to be a manifold with pseudosymmetric Weyl
tensor (to have a pseudosymmetric conformal Weyl tensor) if the tensors C · C and Q(g, C) are linearly
dependent at every point of M (see, e.g., [6, Section 15.1], [24, 27, 34]). This is equivalent on UC to

C · C = LC Q(g, C), (3.6)

where LC is some function on UC . Every warped product manifold M ×F Ñ , with dimM = dim Ñ = 2,
satisfies (3.6) (see, e.g., [24, 27, 34] and references therein). Thus in particular, the Schwarzschild spacetime,
the Kottler spacetime and the Reissner-Nordström spacetime satisfy (3.6). Semi-Riemannian manifolds with
pseudosymmetric Weyl tensor were studied among others in [24, 42, 50].

Warped product manifolds M ×F Ñ , of dimension ≥ 4, satisfying on UC ⊂M ×F Ñ , the condition

R ·R−Q(S,R) = LQ(g, C), (3.7)

where L is some function on UC , were studied among others in [10]. In that paper necessary and sufficient
conditions for M ×F Ñ to be a manifold satisfying (3.7) are given. Moreover, in that paper it was proved that
any 4-dimensional warped product manifold M ×F Ñ , with a 1-dimensional base (M, g), satisfies (3.7) [10,
Theorem 4.1].

We refer to [7, 21, 24, 27, 31, 34, 38, 42, 75] for details on semi-Riemannian manifolds satisfying (3.1) and (3.4)-
(3.7), as well other conditions of this kind, named pseudosymmetry type curvature conditions. We also refer to
[42, Section 3] for a recent survey on manifolds satisfying such curvature conditions. It seems that the condition
(3.1) is the most important condition of that family of curvature conditions (see, e.g., [34]). The Schwarzschild
spacetime, the Kottler spacetime, the Reissner-Nordström spacetime, as well as the Friedmann-Lemaître-
Robertson-Walker spacetimes are the “oldest” examples of pseudosymmetric warped product manifolds (see,
e.g., [34, 38, 49, 75]). We finish this section with the following remarks.
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Remark 3.1. (i) In view of [20, Lemma 3.2 (ii)], we can state that the following identity is satisfied on every
semi-Riemannian manifold (M, g), dimM = n ≥ 3, with vanishing Weyl conformal curvature tensor C

R ·R−Q(S,R) =
1

(n− 2)2
Q(g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S). (3.8)

From (3.8), by (2.8), we get

R ·R−Q(S,R) =
1

(n− 2)2
Q(g,E),

where the tensor E is defined by (1.2). In particular, if n = 3 then E = 0 on M .
(ii) As it was stated in [20, Theorem 3.1] on every 3-dimensional semi-Riemannian manifold (M, g) the identity
R ·R = Q(S,R) is satisfied.
(iii) From (i) it follows that on every semi-Riemannian conformally flat manifold (M, g), dimM = n ≥ 4, the
conditions: R ·R = Q(S,R) and (1.6) are equivalent.

Remark 3.2. Let (M, g), dimM = n ≥ 4, be a semi-Riemannian manifold.
(i) [34, Theorem 3.4 (i)] The following identity is satisfied on UC ⊂M

C ·R+R · C = R ·R+ C · C − 1

(n− 2)2
Q(g, g ∧ S2 − κ

n− 1
g ∧ S). (3.9)

(ii) If (3.7) holds on UC ⊂M then (3.9) turns into

C ·R+R · C = C · C +Q(S,R) + LQ(g, C)− 1

(n− 2)2
Q(g, g ∧ S2 +

n− 2

2
S ∧ S − κ

n− 1
g ∧ S). (3.10)

Moreover, from (3.10), by an application of (2.7) and (2.8), we get on UC ⊂M

C ·R+R · C = C · C +Q(S,C) + LQ(g, C)− 1

(n− 2)2
Q(g,E), (3.11)

where the tensor E is defined by (1.2).
(iii) (cf. [34, Theorem 3.4 (iii)]) If (3.6) and (3.7) hold on UC ⊂M then (3.11) turns into

C ·R+R · C = Q(S,C) + (LC + L)Q(g, C)− 1

(n− 2)2
Q(g,E).

4. Roter spaces

Some results of [24, 39, 54] (cf. [34, Section 1]) we can present in the following proposition.

Proposition 4.1. Let (M, g), dimM = n ≥ 4, be a non-conformally flat and non-Einstein semi-Riemannian manifold.
(i) [54, Theorem 3.1, Teorem 3.2 (ii)] If (3.1) and (3.6) hold on US ∩ UC ⊂M then at every point x ∈ US ∩ UC (1.3) or
(1.9) is satisfied.
(ii) [39, Theorem 3.1, Teorem 3.2 (ii)] If (3.1) and (3.7) hold on US ∩ UC ⊂M then at every point x ∈ US ∩ UC (1.3) or
(1.9) is satisfied.
(iii) (cf. [24, Proposition 3.2, Theorem 3.3, Theorem 4.4]) If (3.6), (3.7) and R · S = Q(g,D), for some symmetric (0, 2)-
tensor D, hold on US ∩ UC ⊂M then at every point x ∈ US ∩ UC (1.3) or (1.9) is satisfied.

We recall that a non-quasi-Einstein and non-conformally flat semi-Riemannian manifold (M, g), dimM =
n ≥ 4, satisfying (1.9) on US ∩ UC ⊂M is called a Roter type manifold, or a Roter manifold, or a Roter space
(see, e.g., [6, Section 15.5], [22, 34, 35, 38]).

Roter spaces and in particular Roter hypersurfaces in semi-Riemannian spaces of constant curvature were
studied in: [8, 22, 24, 31, 40, 44, 46, 47, 60, 67, 68]. In particular, (3.1) and (3.4)-(3.7) are satisfied on such
manifolds. More precisely, we have
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Theorem 4.1. (see, e.g., [27, 34], [45, eq. (28)]) If (M, g), dimM = n ≥ 4, is a semi-Riemannian Roter space satisfying
(1.9) on US ∩ UC ⊂M then on this set we have: (1.10) and

S2 = α1 S + α2 g, α1 = κ+
(n− 2)µ− 1

ϕ
, α2 =

µκ+ (n− 1)η

ϕ
,

R · C = LRQ(g, C), LR =
1

ϕ

(
(n− 2)(µ2 − ϕη)− µ

)
,

R ·R = LRQ(g,R),

R · S = LRQ(g, S),

R ·R = Q(S,R) + LQ(g, C), L = LR +
µ

ϕ
=

n− 2

ϕ
(µ2 − ϕη),

C · C = LC Q(g, C), LC = LR +
1

n− 2
(

κ

n− 1
− α1),

C ·R = LC Q(g,R),

C · S = LC Q(g, S),

C ·R+R · C = Q(S,C) +

(
L+ LC − 1

(n− 2)ϕ

)
Q(g, C),

R · C − C ·R =

(
1

ϕ
(µ− 1

n− 2
) +

κ

n− 1

)
Q(g,R) +

(
µ

ϕ
(µ− 1

n− 2
)− η

)
Q(S,G),

R · C − C ·R = Q

(( µκ

n− 1
+ η

)
g +

(
1

n− 2
− µ− ϕκ

n− 1

)
S, g ∧ S

)
.

Remark 4.1. (i) In the standard Schwarzschild coordinates (t; r; θ;ϕ), and the physical units (c = G = 1), the
Reissner-Nordström-de Sitter (Λ > 0), and Reissner-Nordström-anti-de Sitter (Λ < 0) spacetimes are given by
the line element (see, e.g., [79])

ds2 = −h(r) dt2 + h(r)−1 dr2 + r2 (dθ2 + sin2 θ dϕ2), (4.1)

h(r) = 1− 2M

r
+
Q2

r2
− Λ

3
r3,

where M , Q and Λ are non-zero constants.
(ii) [26, Section 6] (see also [8, Remark 2 (ii)], [41, Remark 2.1 (ii)]) The metric (4.1) satisfies (1.9) with

ϕ =
3

2
(Q2 −Mr)r42Q−4, µ =

1

2
(Q4 + 3Q2Λr4 − 3ΛMr5)Q−4,

η =
1

12
(3Q6 + 4Q4Λr4 − 3Q4Mr + 9Q2Λ2r8 − 9Λ2Mr9)r−4Q−4.

If we set Λ = 0 in (4.1) then we obtain the line element of the Reissner-Nordström spacetime, see, e.g., [62,
Section 9.2] and references therein. It seems that the Reissner-Nordström spacetime is the oldest example of
the Roter warped product space.
(iii) In [41] a particular class of Roter warped product spaces was determined such that every manifold of
that class admits a non-trivial geodesic mapping onto some Roter warped product space. Moreover, both
geodesically related manifolds are pseudosymmetric of constant type.
(iv) An algebraic classification of the Roter type 4-dimensional spacetimes is given in [8].
(v) Some comments on pseudosymmetric manifolds (also called Deszcz symmetric spaces), as well as Roter
spaces, are given in [9, Section 1] (see also [8, Remark 2 (iii)], [41, Remark 2.1 (iii)]): "From a geometric point
of view, the Deszcz symmetric spaces may well be considered to be the simplest Riemannian manifolds next
to the real space forms." and "From an algebraic point of view, Roter spaces may well be considered to be the
simplest Riemannian manifolds next to the real space forms." For further comments we refer to [84].

We finish this section with the following results.

Proposition 4.2. [28, Lemma 2.2] If (M, g), dimM = n ≥ 4, is a Roter space satisfying (1.9) on US ∩ UC ⊂M then
(1.12) holds on this set, i.e., (n− 2)C = ϕE, where the tensor E is defined by (1.2).
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Propositions 2.1, 4.1 and 4.2 lead to the following

Proposition 4.3. Let (M, g), dimM = n ≥ 4, be a non-conformally flat and non-Einstein semi-Riemannian manifold.
If (3.1) and (3.6), or (3.1) and (3.7), or (3.6), (3.7) and R · S = Q(g,D), for some symmetric (0, 2)-tensor D, hold on
US ∩ UC ⊂M then E = λC on US ∩ UC , where the tensor E is defined by (1.2) and λ is some function on this set.

5. Warped product manifolds with 2-dimensional base manifold

Proposition 2.1 (i) and Proposition 4.2 imply

Proposition 5.1. [28, Proposition 2.3] If (M, g), dimM = n ≥ 4, is a semi-Riemannian manifold satisfying (1.3) or
(1.9) at every point of US ∩ UC ⊂M then the following equation is satisfied on this set

τ C = g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g, (5.1)

where τ is some function on US ∩ UC .

Proposition 5.1, [34, Theorem 7.1 (ii)] and [44, Theorem 4.1] imply

Theorem 5.1. [28, Theorem 2.4] Let M ×F Ñ be the warped product manifold with a 2-dimensional semi-Riemannian
manifold (M, g), an (n− 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, a warping function F , and let (Ñ , g̃)
be a space of constant curvature when n ≥ 5. Then (5.1) holds on US ∩ UC ⊂M ×F Ñ .

Example 5.1. [28, Example 2.1] (i) Let Sk(r) be a k-dimensional standard sphere of radius r in Ek+1, k ≥ 1. It
is well-known that the Cartesian product S1(r1)× Sn−1(r2) of spheres S1(r1) and Sn−1(r2), n ≥ 4, and more
generally, the warped product manifold S1(r1)×F Sn−1(r2) of spheres S1(r1) and Sn−1(r2), n ≥ 4, with a
warping function F , is a conformally flat manifold.
(ii) As it was stated in [60, Example 3.2], the Cartesian product Sp(r1)× Sn−p(r2) of spheres Sp(r1) and Sk(r2)
such that 2 ≤ p ≤ n− 2 and (n− p− 1)r21 ̸= (p− 1)r22 is a non-conformally flat and non-Einstein manifold
satisfying the Roter equation (1.9) on US ∩ UC = Sp(r1)× Sn−p(r2).
(iii) [44, Example 4.1] The warped product manifold Sp(r1)×F Sn−p(r2), 2 ≤ p ≤ n− 2, with some special
warping function F , satisfies on US ∩ UC ⊂ Sp(r1)× Sn−p(r2) the Roter equation (1.9). Thus some warped
product manifolds S2(r1)×F Sn−2(r2) are Roter spaces.
(iv) Properties of pseudosymmetry type of warped products with 2-dimensional base manifold, a warping
function F , and an (n− 2)-dimensional fibre, n ≥ 4, assumed to be of constant curvature when n ≥ 5, were
determined in [34, Sections 6 and 7]. Evidently, warped product manifolds S2(r1)×F Sn−2(r2), n ≥ 4, are such
manifolds. Let g, R, S, κ and C denote the metric tensor, the Riemann-Christoffel curvature tensor, the Ricci
tensor, the scalar curvature and the Weyl conformal curvature tensor of S2(r1)×F Sn−2(r2), respectively. From
[34, Theorem 7.1] it follows that on set V of all points of US ∩ UC ⊂ S2(r1)×F Sn−2(r2) at which the tensor S2 is
not a linear combination of the tensors S and g, the Weyl tensor C is expressed by

C = λ

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

κ2 − trg(S
2)

2(n− 1)
g ∧ g

)
, (5.2)

where λ is some function on V . This, by (2.2), turns into

R = λ g ∧ S2 +
n− 2

2
λS ∧ S +

(
1

n− 2
− κλ

)
g ∧ S +

1

2(n− 1)

(
(κ2 − trg(S

2))λ− κ

n− 2

)
g ∧ g.

Thus (1.11) is satisfied on V . Moreover, (1.9) holds at all points of (US ∩ UC) \ V , at which (1.3) is not satisfied.
From Proposition 4.2 it follows that (5.2) holds at all points of US ∩ UC ⊂ S2(r1)×F Sn−2(r2), n ≥ 4, at which
(1.3) is not satisfied. Finally, in view of Theorem 5.1, we can state that (5.1) holds on US ∩ UC .

6. Essentially conformally symmetric manifolds

Let (M, g), dimM = n ≥ 4, be a semi-Riemannian manifold with parallel Weyl conformal curvature tensor,
i.e. ∇C = 0 on M . It is obvious that the last condition implies R · C = 0. Moreover, let the manifold (M, g) be
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neither conformally flat nor locally symmetric. Such manifolds are called essentially conformally symmetric
manifolds, e.c.s. manifolds/metrics, or ECS manifolds/metrics, in short (see, e.g., [11, 12, 14, 18, 19, 65]). E.c.s.
manifolds are semisymmetric manifolds (R ·R = 0, [11, Theorem 9]) satisfying κ = 0 and Q(S,C) = 0 ([11,
Theorems 7 and 8]). In addition,

F C =
1

2
S ∧ S (6.1)

holds on M , where F is some function on M , called the fundamental function [12]. At every point of M we also
have rankS ≤ 2 [12, Theorem 5]. We mention that the local structure of e.c.s. manifolds is already determined.
We refer to [13, 16] for the final results related to this subject. We also mention that certain e.c.s. metrics are
realized on compact manifolds [15, 17, 18, 19].

Equation (6.1), by suitable contraction, leads immediately to S2 = κS, which by κ = 0, reduces to S2 = 0.
Evidently, trg(S2) = 0. Now using (6.1) we get (1.13). Thus we have

Theorem 6.1. Condition (5.1), with τ = (n− 2)F , is satisfied on every essentially conformally symmetric manifold
(M, g).

7. Hypersurfaces in semi-Riemannian conformally flat spaces

Let M , dimM = n ≥ 4, be a hypersurface isometrically immersed in a semi-Riemannian conformally flat
manifoldN , dimN = n+ 1. Let gad,Had,Gabcd = gadgbc − gacgbd andCabcd be the local components of the metric
tensor g, the second fundamental tensor H , the (0, 4)-tensor G and the Weyl conformal curvature tensor C of
M , respectively. As it was stated in [48, eq. (20)] (see also [52, eq. (11)]) we have

Cabcd = ε (HadHbc −HacHbd)−
ε tr(H)

n− 2
(gadHbc + gbcHbd − gacHbd − gbdHac)

+
ε

n− 2
(gadH

2
bc + gbcH

2
bd − gacH

2
bd − gbdH

2
ac) + µGabcd, (7.1)

where ε = ±1, tr(H) = gadHad, H2
ad = gbcHabHcd and µ is some function on M . From (7.1), by contraction we

get easily

µ =
ε

(n− 2)(n− 1)
((tr(H))2 − tr(H2)), (7.2)

where tr(H2) = gadH2
ad. Now (7.1) and (7.2) yield

C =
ε

n− 2

(
g ∧H2 +

n− 2

2
H ∧H − tr(H) g ∧H +

(tr(H))2 − tr(H2)

2(n− 1)
g ∧ g

)
. (7.3)

If H = tr(H)
n g at a point x ∈M , i.e., M is umbilical at x, then from (7.3) it follows immediately that the tensor

C vanishes at x. If at a non-umbilical point x ∈M , we have rank(H − αg) = 1, for some α ∈ R, i.e., M is quasi-
umbilical at x, then in view of Proposition 2.1 (i), the tensor C vanishes at x. Conversely, if at a non-umbilical
point x ∈M the tensor C vanishes then in view of Proposition 2.1 (ii) we have rank(H − αg) = 1, for some
α ∈ R. Thus we can present [48, Theorem 4.1] in the folowing form.

Theorem 7.1. Let M , dimM = n ≥ 4, be a hypersurface isometrically immersed in a semi-Riemannian conformally flat
manifold N , dimN = n+ 1. At every non-umbilical point x ∈M the tensor C vanishes at x if and only if at x we have
rank(H − αg) = 1, for some α ∈ R.

Remark 7.1. Let M , dimM = n ≥ 4, be a hypersurface isometrically immersed in a semi-Riemannian
conformally flat manifold N , dimN = n+ 1.
(i) We assume that at all points of UC ⊂M the tensor H2 is a linear combination of H and g, i.e.,

H2 = α1H + α2 g (7.4)

on UC , where α1 and α2 are some functions on this set. Now (7.3) turns into

C =
ε

2
H ∧H +

ε(α1 − tr(H))

n− 2
g ∧H +

ε

n− 2

(
α2 +

(tr(H))2 − tr(H2)

2(n− 1)

)
g ∧ g

=
α

2
H ∧H + β g ∧H +

γ

2
g ∧ g, (7.5)

dergipark.org.tr/en/pub/iejg 390

https://dergipark.org.tr/en/pub/iejg
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where

α = ε, β =
ε(α1 − tr(H))

n− 2
, γ =

ε

n− 2

(
2α2 +

(tr(H))2 − tr(H2)

n− 1

)
. (7.6)

From (7.5) and (7.6), in view of [68, Theorem 3.1 (i)], we get

C · C = (n− 2)

(
β2

α
− γ

)
Q(g, C) = (n− 2)(εβ2 − γ)Q(g, C)

on UC , with α, β and γ defined by (7.6). Thus M is a hypersurface with pseudosymmetric Weyl tensor. We also
note that from (7.4) we get immediately α2 = 1

n (tr(H
2)− α1tr(H)) and

H2 − tr(H2)

n
g = α1

(
H − tr(H)

n
g

)
.

(ii) The above presented result, i.e., if (7.4) is satisfied at every point of UC ⊂M then (3.6) holds on this set,
was already obtained in [53, Proposition 3.1]. We mention that Proposition 3.1 of [53] was proved without
application of [68, Theorem 3.1 (i)].
(iii) We assume that the tensor H satisfies on UC ⊂M

H3 = tr(H)H2 + ψH, (7.7)

where ψ is some function on this set and the (0, 2)-tensor H3 is defined by H3
ad = gbcH2

abHcd. Then

C · C =

(
ε

(n− 2)(n− 1)
((tr(H))2 − tr(H2)) +

εψ

n− 2

)
Q(g, C)− n− 3

n− 2
Q

(
H2,

1

2
H ∧H

)
(7.8)

on UC [51, eq. (10)], see also [53, the proof of Lemma 4.1]. We refer to [51, 53] for further results on hypersurfaces
M in conformally flat manifold N satisfying (7.7).
(iv) Recently curvature properties of pseudosymmetry type of hypersurfaces isometrically immersed in a semi-
Riemannian conformally flat manifold were investigated in [57] and [69].

8. Hypersurfaces in semi-Riemannian space forms

Let now Nn+1
s (c), n ≥ 4, be a semi-Riemannian space of constant curvature with signature (s, n+ 1− s),

where c = κ̃
n(n+1) and κ̃ is its scalar curvature. LetM , dimM = n ≥ 4, be a connected hypersurface isometrically

immersed in Nn+1
s (c). We denote by g, R, S, κ and C, the metric tensor, the Riemann-Christoffel curvature

tensor, the Ricci tensor, the scalar curvature and the Weyl conformal curvature tensor of the hypersurface M ,
respectively. The Gauss equation of M in Nn+1

s (c) reads (see, e.g., [32, 35, 36, 37, 74])

R− κ̃

2n(n+ 1)
g ∧ g =

ε

2
H ∧H, ε = ±1. (8.1)

From (8.1), by suitable contractions, we obtain

S − (n− 1)κ̃

n(n+ 1)
g = ε (tr(H)H −H2), (8.2)

κ

n− 1
− κ̃

n+ 1
=

ε

n− 1
((tr(H))2 − tr(H2)). (8.3)

Now using (8.1), (8.2) and (8.3) we get immediately

Q

(
H2,

1

2
H ∧H

)
= −Q

(
tr(H)H −H2,

1

2
H ∧H

)
= −Q

(
ε(tr(H)H −H2),

ε

2
H ∧H

)
= −Q

(
S − (n− 1)κ̃

n(n+ 1)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
. (8.4)
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We also recall that the curvatere condition of pseudosymmetry type (3.7) is satisfied onM . Precisely, we have
on M [48, Proposition 3.1] (see also [37, eqs. (3.3) and (3.4)])

R ·R−Q(S,R) = − (n− 2)κ̃

n(n+ 1)
Q(g, C). (8.5)

Now (3.11), by (8.5), turns into ([37, Propopsition 4.7, eq. (4.36)])

C ·R+R · C = C · C +Q(S,C)− (n− 2)κ̃

n(n+ 1)
Q(g, C)− 1

(n− 2)2
Q(g,E).

Let UH ⊂M be the set of all points at which the tensor H2 is not a linear combination of the metric tensor g
and the second fundamental tensor H of M . We have UH ⊂ US ∩ UC ⊂M (see, e.g., [30, 36, 37, 59, 72]).

We assume that the following conditions are satisfied on UH ⊂M

H3 = tr(H)H2 + ψH + ρ g (8.6)

and

C · C = Q(g, T ), (8.7)

where T is a generalized curvature tensor and ψ and ρ some functions on UH . Now, in view of [37, Theorem
4.5], we obtain

T =

(
κ+ 2εψ

n− 1
− κ̃

n+ 1

)
C +

λ1
2
g ∧ g − n− 3

(n− 2)2(n− 1)

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
(8.8)

on UH , where λ1 is some function on this set. Using (1.2), (8.7) and (8.8) we get immediately

T =

(
κ+ 2εψ

n− 1
− κ̃

n+ 1

)
C − n− 3

(n− 2)2(n− 1)
E +

λ

2
g ∧ g

and

C · C =

(
κ+ 2εψ

n− 1
− κ̃

n+ 1

)
Q(g, C)− n− 3

(n− 2)2(n− 1)
Q(g,E) (8.9)

on UH , where λ is some function on this set. In addition, if we assume that (3.6) holds on UH then from (7.8) it
follows that (

κ+ 2εψ

n− 1
− κ̃

n+ 1
− LC

)
C =

n− 3

(n− 2)2(n− 1)
E +

λ2
2
g ∧ g (8.10)

on UH , where λ2 is some function on this set. We note that (8.10), by a suitable contraction, yields λ2 = 0, and
in a consequence we obtain (

κ+ 2εψ

n− 1
− κ̃

n+ 1
− LC

)
C =

n− 3

(n− 2)2(n− 1)
E. (8.11)

From the above presented considerations it follows immediately the following result.

Theorem 8.1. Let M be a non-Einstein and non-conformally flat hypersurface in Nn+1
s (c), n ≥ 4. If (3.6) and (8.6) are

satisfied on UH ⊂M then (8.11) holds on UH .

According to [30, Corollary 4.1], if on the subset UH of a hypersurface M in Nn+1
s (c), n ≥ 4, one of the

tensors R · C, C ·R or R · C −R · C is a linear combination of R ·R and of a finite sum of tensors of the form
Q(A, T ), where A is a symmetric (0, 2)-tensor and T a generalized curvature tensor, then (8.6) holds on UH .
In particular if one of the following conditions is satisfied on UH ⊂M : R · C = Q(g, T1), C ·R = Q(g, T2) or
R · C − C ·R = Q(g, T3), where T1, T2 and T3 are generalized curvature tensors, then (8.6) holds on UH . Now
from Theorems 5.2, 5.3 and 5.4 of [36], in view of Proposition 2.2, it follows that

Weyl(T1) =

(
κ+ εψ

n− 1
− (n− 1)κ̃

n(n+ 1)

)
C − 1

(n− 2)(n− 1)
E, (8.12)

Weyl(T2) =

(
κ+ 2εψ

n− 1
− κ̃

n+ 1

)
C − n− 3

(n− 2)2(n− 1)
E, (8.13)

Weyl(T3) =

(
κ̃

n(n+ 1)
− εψ

n− 1

)
C − 1

(n− 2)2(n− 1)
E. (8.14)

Thus we have
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Theorem 8.2. Let M be a non-Einstein and non-conformally flat hypersurface in Nn+1
s (c), n ≥ 4, satisfying (8.6) on

UH ⊂M , and let T1, T2 and T3 be generalized curvature tensors defined on UH . If one of the following conditions:R · C =
Q(g, T1), respectively, C ·R = Q(g, T2) and R · C − C ·R = Q(g, T3), is satisfied on UH then (8.12), respectively (8.13)
and (8.14), holds on UH .

Finally, we assume that the tensor H satisfies (7.7) on UH ⊂M . Now (7.8), by making use of (8.3) and (8.4),
turns into

n− 2

n− 3
C · C = ρQ(g, C) +Q

(
S − (n− 1)κ̃

n(n+ 1)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
, (8.15)

where

ρ =
1

n− 3

(
κ

n− 1
− κ̃

n+ 1
+ εψ

)
. (8.16)

From (8.15), by an application of (2.6), we obtain

n− 2

n− 3
C · C = ρQ(g,R) +

ρ

2(n− 2)
Q(S, g ∧ g) +Q

(
S − (n− 1)κ̃

n(n+ 1)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
=

ρ

2(n− 2)
Q(S, g ∧ g) + ρQ

(
g,R− κ̃

2n(n+ 1)
g ∧ g

)
+Q

(
S − (n− 1)κ̃

n(n+ 1)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
= Q

(
S,

ρ

2(n− 2)
g ∧ g

)
+Q

(
S −

(
(n− 1)κ̃

n(n+ 1)
− ρ

)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
= Q

(
S −

(
(n− 1)κ̃

n(n+ 1)
− ρ

)
g,

ρ

2(n− 2)
g ∧ g

)
+Q

(
S −

(
(n− 1)κ̃

n(n+ 1)
− ρ

)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
= Q

(
S −

(
(n− 1)κ̃

n(n+ 1)
− ρ

)
g,R−

(
κ̃

n(n+ 1)
− ρ

n− 2

)
1

2
g ∧ g

)
.

Thus we see that if the tensor H satisfies (7.7) on UH ⊂M then

C · C =
n− 3

n− 2
Q

(
S −

(
(n− 1)κ̃

n(n+ 1)
− ρ

)
g,R−

(
κ̃

n(n+ 1)
− ρ

n− 2

)
1

2
g ∧ g

)
(8.17)

on UH , where the function ρ is defined by (8.16).
In addition, we assume that (3.6) holds on UH ⊂M . Now (8.15) turns into

τ Q(g, C)−Q

(
S − (n− 1)κ̃

n(n+ 1)
g,R− κ̃

2n(n+ 1)
g ∧ g

)
= 0, (8.18)

where

τ = ρ− n− 2

n− 3
LC . (8.19)

From the presented above calculations it follows that (8.18) yields

Q

(
S −

(
(n− 1)κ̃

n(n+ 1)
− τ

)
g,R−

(
κ̃

n(n+ 1)
− τ

n− 2

)
1

2
g ∧ g

)
= 0. (8.20)

If

rank

(
S −

(
(n− 1)κ̃

n(n+ 1)
− τ

)
g

)
= 1
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at a point x ∈ UH then in view of Proposition 2.1 E = 0 at x, where the tensor E is defined by (1.2). If

rank

(
S −

(
(n− 1)κ̃

n(n+ 1)
− τ

)
g

)
> 1

at a point x ∈ UH then by an application of [24, Proposition 2.4] (or, [31, Proposition 2.1]) it follows that the
following equation is satisfied at x

R−
(

κ̃

n(n+ 1)
− τ

n− 2

)
1

2
g ∧ g = ϕ

(
S −

(
(n− 1)κ̃

n(n+ 1)
− τ

)
g

)
∧
(
S −

(
(n− 1)κ̃

n(n+ 1)
− τ

)
g

)
, ϕ ∈ R.

This by Proposition 4.2 implies (n− 2)C = ϕE. Thus we have

Theorem 8.3. Let M be a non-Einstein and non-conformally flat hypersurface in Nn+1
s (c), n ≥ 4.

(i) If (7.7) is satisfied on UH ⊂M then (8.17) holds on UH , where the function ρ is defined by (8.16) on this set.
(ii) If (3.6) and (7.7) are satisfied on UH ⊂M then (8.20) holds on UH , where the function τ is defined by (8.19) on this
set. Moreover, λC = E on UH , where λ is some function on this set.
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[33] Deszcz, R., Głogowska, M., Jełowicki, J., Petrović-Torgašev, M., Zafindratafa, G.: On Riemann and Weyl compatible tensors. Publ. Inst. Math.
(Beograd) (N.S.). 94 (108), 111-124 (2013). DOI: 10.2298/PIM1308111D

[34] Deszcz, R., Głogowska, M., Jełowicki, J., Zafindratafa, G.: Curvature properties of some class of warped product manifolds. Int. J. Geom. Methods
Modern Phys. 13 (1), art. 1550135, 36 pp. (2016). https://doi.org/10.1142/S0219887815501352
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