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This work presents a collocation computational algorithm for solving linear Integro-Differential Equations 
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employed to solve these equations. To validate the effectiveness of the suggested approach, the authors 
examined three numerical examples. The results obtained from the proposed method were compared with 
those reported in the existing literature. The findings demonstrate that the proposed algorithm is not only 
accurate but also efficient in solving linear IDEs. In order to present the results, the study employs tables and 
figures. These graphical representations aid in displaying the numerical outcomes obtained from the 
algorithm. All calculations were performed using Maple 18 software.  
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Introduction 
 

Integro-Differential Equations (IDEs) are types of 
mathematical equations that involve both derivatives 
and integrals. They arise in various fields of science and 
engineering, including physics, biology, economics, and 
finance, where systems exhibit memory or history-
dependent behavior. Unlike Ordinary Differential 
Equations (ODEs) that involve only derivatives, integro-
differential equations incorporate the influence of past 
values of the unknown function through the integration 
term. Integro-differential equations often appear in 
problems involving diffusion, propagation of waves, 
population dynamics, and control theory, among others. 
They provide a more realistic description of phenomena 
that exhibit memory effects or spatial interactions. Since 
most IDEs cannot be solved analytically, researchers have 
focused on developing numerical methods to obtain 
approximate solutions. Several authors have contributed 
to this area. For example, [1] employed the differential 
transform method, [2] used the Bernstein operational 
matrix approach, [3] applied the Chebyshev collocation 
method, [4] employed Lucas collocation method, and [5] 
introduced the reliable iterative method for Volterra-
Fredholm IDEs. In [6], Euler polynomials with the least 
squares method are used to solve IDEs. In [7], the 
Adomian decomposition method was used to solve 
Boundary Value Problems (BVPs) associated with fourth-
order IDEs. The Trapezoidal rule and the Variational 
Iteration Method (VIM) were investigated for linear IDEs 
in [8], and VIM was also employed in [9] to solve fourth-

order IDEs. For Fredholm-Volterra IDEs, various methods 
were utilized. [10] employed the projection method 
based on a Bernstein collocation approach; [11] used the 
Bernstein collocation method; [12] applied a fixed-point 
iterative algorithm; [13] utilized the Chebyshev 
polynomial approach; and [14] employed a collocation 
method based on Bernstein polynomials. In [15], a new 
numerical method was developed specifically for solving 
systems of Volterra IDEs. In [16], the Lucas polynomial is 
employed to solve nonlinear differential equations with 
variable delays. The use of third-kind Chebyshev 
polynomials for solving IDEs was examined in [17] and 
[18]. In [19], Chebyshev Computational Approach  is used 
to find the numerical solution Volterra-Fredholm integro-
differential equations. Other methods mentioned in this 
study include the Hermite collocation method [20], the 
extended minimal residual method [21], the quadrature-
difference method [22], and Adomian's decomposition 
approach [23], which were used to solve Fredholm IDEs. 
Based on the works mentioned above, this study propose 
a computational algorithm that utilizes shifted Legendre 
polynomials. This technique is inspired by previous 
research and aims to enhance the outcomes achieved by 
[18]. 

The general form of the class of problem considered 
in this work is given as: 
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�𝜌𝜌𝑖𝑖(𝑤𝑤)𝜉𝜉𝑖𝑖(𝑤𝑤)
𝑛𝑛

𝑖𝑖=0

= 𝑓𝑓(𝑤𝑤) + � 𝐾𝐾(𝑤𝑤, 𝜐𝜐)𝜉𝜉(𝑣𝑣)𝑑𝑑𝑣𝑣,
1

0
 (2) 

 
with the initial conditions  
 
𝜉𝜉𝑟𝑟(0) = 𝜉𝜉𝑟𝑟        𝑟𝑟 = 0,1,2,⋯𝑛𝑛 − 1. 
 
Where  𝑟𝑟th represent derivatives,  𝐾𝐾 and 𝜌𝜌𝑖𝑖(𝑤𝑤), 𝑖𝑖 =

0,1,2,⋯𝑛𝑛 with  𝜌𝜌𝑖𝑖(𝑤𝑤) ≠ 0  are known functions, 𝑓𝑓(𝑤𝑤) is 
a known function and 𝜉𝜉𝑖𝑖(𝑤𝑤)  is the 𝑖𝑖th derivatives of the 
unknown function 𝜉𝜉(𝑤𝑤) to be determined, and (1) and 
(2) are referred to as Volterra and Fredholm IDEs 
respectively. 

 
Materials and Method 

 
Definition 1: An integral equation is an equation that 

has an unknown function, 𝜉𝜉(𝑤𝑤), that appears under the 
integral sign. Standard integral equation has the 
following form: 

 
𝜉𝜉(𝑤𝑤) = 𝑓𝑓(𝑤𝑤) + 𝜆𝜆 ∫ 𝐾𝐾(𝑤𝑤, 𝑡𝑡)𝜉𝜉(𝑡𝑡)𝑑𝑑𝑡𝑡  ℎ(𝑤𝑤)

𝑔𝑔(𝑤𝑤) ,            
 
where K(w,t) is a function of two variables 𝑤𝑤 and 𝑡𝑡 

known as the kernel or the nucleus of the integral 
equation, 𝑔𝑔(𝑤𝑤) and ℎ(𝑤𝑤) are the limits of integration, 𝜆𝜆 
is a constant parameter. 

Definition 2: Legendre’s polynomial of degree n is 
denoted and defined by 

 

τ𝑛𝑛(𝑤𝑤) = ∑ (−1)𝑟𝑟 (2𝑛𝑛−2𝑟𝑟)!
2𝑛𝑛.𝑟𝑟!(𝑛𝑛−𝑟𝑟)!(𝑛𝑛−2𝑟𝑟)!

𝑤𝑤𝑛𝑛−2𝑟𝑟[𝑛𝑛2]
𝑟𝑟=0  , 

 
where   
 

�𝑛𝑛
2
� = �

𝑛𝑛
2

       𝑖𝑖𝑓𝑓  𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛
𝑛𝑛−1
2

, 𝑖𝑖𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑑𝑑𝑑𝑑.
  

 
𝑛𝑛𝑛𝑛𝑛𝑛(𝑤𝑤) = (2𝑛𝑛 − 1)𝑤𝑤𝑛𝑛𝑛𝑛−1(𝑤𝑤) − (𝑛𝑛 − 1)𝑛𝑛𝑛𝑛−2(𝑥𝑥);𝑛𝑛 ≥ 2 
, starting with 

 
𝑛𝑛0(𝑤𝑤) = 1, 𝑛𝑛1(𝑤𝑤) = 𝑤𝑤 
 
Hence, the first few of Legendre Polynomials on the 

interval [-1,1] is given below: 
 

  𝑛𝑛0(𝑤𝑤) = 1
𝑛𝑛1(𝑤𝑤) = 𝑤𝑤

𝑛𝑛2(𝑤𝑤) =
1
2

(3𝑤𝑤2 − 1)

𝑛𝑛3(𝑤𝑤) =
1
2

(5𝑤𝑤3 − 3𝑤𝑤) ⎭
⎪
⎬

⎪
⎫

 (3) 

 
The shifted equivalent of (3) that valid in [0, 1] are 

given as 
 

  𝑛𝑛∗0(𝑤𝑤) = 1
𝑛𝑛∗1(𝑥𝑥) = 2𝑤𝑤 − 1

𝑛𝑛∗2(𝑤𝑤) = 6𝑤𝑤2 − 6𝑤𝑤 + 1
𝑛𝑛∗3(𝑥𝑥) = 20𝑤𝑤3 − 30𝑤𝑤2 + 20𝑤𝑤 − 1 ⎭

⎬

⎫
 (4) 

 
Definition 3: Absolute Error: We defined absolute 

error as follows in this study: Absolute Error=|𝛕𝛕(𝑤𝑤) −
𝑛𝑛(𝑤𝑤)|;  −1 ≤ 𝑤𝑤 ≤ 1,    where 𝛕𝛕(𝑤𝑤) is the exact solution 
and 𝑛𝑛(𝑤𝑤) is the approximate solution. 

 
Proposed Method 
 
In order to find the numerical approximation to the 

general class of problem considered in this study, we 
assumed an approximate solution by means of the 
shifted Legendre polynomials in the form: 

 
(𝑤𝑤) = ∑  𝑛𝑛∗𝑟𝑟(𝑤𝑤)𝑛𝑛

𝑟𝑟=0 𝑐𝑐𝑟𝑟, (5) 
 
where,  𝑐𝑐𝑟𝑟 , 𝑟𝑟 = 0(1)𝑛𝑛   are to be found.                                                                                           

Thus, substituting Eq. (5) into Eq. (1) gives 
 

�𝜌𝜌𝑖𝑖(𝑤𝑤)�𝑛𝑛∗𝑖𝑖𝑟𝑟(𝑤𝑤)
𝑛𝑛

𝑟𝑟=0

𝑐𝑐𝑟𝑟

𝑛𝑛

𝑖𝑖=0

= 𝑓𝑓(𝑤𝑤) + � 𝑘𝑘(𝑤𝑤, 𝑣𝑣)�𝑛𝑛∗𝑟𝑟(𝜐𝜐)
𝑛𝑛

𝑟𝑟=0

𝑐𝑐𝑟𝑟𝑑𝑑𝜐𝜐 ,
𝑤𝑤

𝑎𝑎
 

(6) 

 
where 𝑛𝑛∗𝑖𝑖(𝑤𝑤)  is the 𝑖𝑖th derivative of  𝑛𝑛∗(𝑤𝑤) .                                               
 
Let  𝑝𝑝(𝑤𝑤) = ∑ 𝜌𝜌𝑖𝑖(𝑤𝑤)∑ 𝑛𝑛∗𝑖𝑖𝑟𝑟(𝑤𝑤)𝑛𝑛

𝑟𝑟=0 𝑐𝑐𝑟𝑟𝑛𝑛
𝑖𝑖=0  and  𝑞𝑞(𝑤𝑤) 

= ∫ 𝑘𝑘(𝑤𝑤, 𝑣𝑣)∑ 𝑛𝑛∗𝑟𝑟(𝜐𝜐)𝑛𝑛
𝑟𝑟=0 𝑐𝑐𝑟𝑟𝑑𝑑𝜐𝜐 𝑤𝑤

𝑎𝑎 .      
 
Thus, equation (6) becomes 

 
𝑝𝑝(𝑤𝑤) − 𝑞𝑞(𝑤𝑤) = 𝑓𝑓(𝑤𝑤) (7) 

 
The linear algebraic system of equations in (𝑛𝑛 + 1) 

unknown constants  𝑒𝑒 ,
𝑖𝑖𝑖𝑖 is obtained by collocating Eq. (7) 

at the evenly spaced point 𝑤𝑤𝑖𝑖 = 𝑎𝑎 + (𝑏𝑏−𝑎𝑎)𝑖𝑖
𝑛𝑛

 , (𝑖𝑖 = 0(1)𝑛𝑛). 
Additional equations are obtained from initial 

conditions Eq. (3), which are represented in matrix form: 
 

 

(8) 

 
where Ζ𝑖𝑖′𝑖𝑖 and Ζ𝑖𝑖∗′𝑖𝑖 are the coefficients of 𝑐𝑐𝑖𝑖𝑖𝑖    and  

Ε𝑖𝑖′𝑖𝑖 are values of 𝑓𝑓(𝑤𝑤𝑖𝑖).   The matrix inversion approach 
is then used to solve the system of equations in order to 
obtain the unknown constants. 



Oyedepo  et al./ Cumhuriyet Sci. J., 44(3) (2023) 561-566 

563 

 

(9) 

 
The required approximate solution is obtained by 

solving Eq. (9) and then substituting the unknown 
constant values into the assumed approximate solution. 

 
Numerical Examples 
Example 1 [18]: Consider the second-order Fredholm 

integro-differential equation  
 
𝜉𝜉(𝑖𝑖𝑖𝑖)(𝑤𝑤) = 𝑒𝑒𝑤𝑤 − 4

3
𝑤𝑤 + ∫ 𝑤𝑤𝜐𝜐𝜉𝜉(𝜐𝜐)𝑑𝑑𝜐𝜐 1

0   
 
Subject to the initial conditions 

 
𝜉𝜉(0) = 1, 𝜉𝜉′(0) = 2. 
 
The exact solution is 𝜉𝜉(𝑤𝑤) = 𝑤𝑤 + 𝑒𝑒𝑤𝑤   
 
By applying the aforementioned technique to 

example 1, which is solved at n = 9, we obtained the 
following constants and the necessary approximation: 

 
𝑐𝑐0 = 2.21828182923867, 𝑐𝑐1 = 1.34515451545867, 
𝑐𝑐2 = 0.139863996066064, 𝑐𝑐3 = 0.0139312558593461, 
𝑐𝑐4 = 0.000992587579099529, 𝑐𝑐5 = 0.0000550476656947328, 
𝑐𝑐6 = 0.00000249897543908013, 𝑐𝑐7 = 9.59643311863878 × 10−8, 
𝑐𝑐8 = 3.20747900718829 × 10−9, 𝑐𝑐9 = 1.18693253142732 × 10−10 

  
𝜉𝜉(𝑤𝑤) = 0.9999999999 + 1.999999998𝑤𝑤 +

0.5000000002𝑤𝑤2 + 0.1666668768𝑤𝑤3 +
0.04166493183𝑤𝑤4 + 0.008339701772𝑤𝑤5 +
0.001376126408𝑤𝑤6 + 0.0002131111947𝑤𝑤7 +
0.00001531135797𝑤𝑤8 + 0.000005770865966𝑤𝑤9  

 
Table 1. Shows comparison of the absolute errors for Example 1. 
𝒘𝒘𝒊𝒊 Absolute Error 

of our Method 
n=9 

Absolute Error 
of our Method 

n=10 

Absolute 
Error of our 

Method 
n=11 

Absolute 
Error of our 

Method 
n=15 

Absolute 
Error of our 

Method 
n=16 

Absolute 
Error of our 

Method 
n=17 

Absolute 
Error of [5] 

n=10 

0.0 1.000E-10 9.000E-10 9.000E-10 1.000E-10 9.000E-10 1.000E-10 4.79E-06 

0.2 0.000E+00 7.100E-10 7.200E-10 4.000 E+00 3.000E-10 1.000E-10 5.03E-06 

0.4 1.000E-10 1.220E-09 1.230E-09 1.100E-09 2.900E-09 1.100E-09 6.74E-06 

0.6 0.000E+00 3.000E-10 1.300E-09 1.000E-09 2.200E-09 3.100E-09 7.91E-06 

0.8 0.000E+00 1.000E-10 1.200E-09 1.000E-09 1.800E-09 1.100E-09 7.58E-06 

1.0 0.000E+00 1.000E-10 1.000E-09 1.100E-09 2.000E-10 2.100E-09 1.11E-05 

 

 

 Figure 1. Shows the graphical representation of the 
exact and approximate solutions to the Example 1. 

Example 2. [18]: Consider fourth-order Volterra 
integro- differential equation  

 
𝜉𝜉(𝑖𝑖𝑖𝑖)(𝑤𝑤) = −1 + 𝜉𝜉(𝑤𝑤) + ∫ (𝑤𝑤 − 𝜐𝜐)𝜉𝜉(𝜐𝜐)𝑑𝑑𝜐𝜐 𝑤𝑤

0   
 
Subject to the initial conditions 
𝜉𝜉(0) = −1, 𝜉𝜉′(0) = 1, 𝜉𝜉′′(0) = 1, 𝜉𝜉′′′(0) = −1.  
 
The exact solution is 𝜉𝜉(𝑤𝑤) = sin𝑤𝑤 − cos𝑤𝑤  
 
By applying the aforementioned technique to 

example 2, which is solved at n = 9, we obtained the 
following constants and the necessary approximation: 
 
𝑐𝑐0 = −0.381773289713882, 𝑐𝑐1 = 0.661692203358418, 
𝑐𝑐2 = 0.0325913563567896, 𝑐𝑐3 = −0.0111522290510834, 
𝑐𝑐4 = −0.000234317964781481, 𝑐𝑐5 = 0.0000444449128009975, 
𝑐𝑐6 = 5.93499121704253 × 10−7, 𝑐𝑐7 = −7.78764893501739 × 10−8, 
𝑐𝑐8 = −7.57650814696993 × 10−10 𝑐𝑐9 = 7.61473616036433 × 10−11 

 
𝜉𝜉(𝑤𝑤) = −1.000000001 + 𝑤𝑤 + 0.5𝑤𝑤2 −

0.166666666𝑤𝑤3 − 0.04166666964𝑤𝑤4 +
0.00833351048𝑤𝑤5 + 0.001388125394𝑤𝑤6 −
0.0001969077181𝑤𝑤7 − 0.00002641124722𝑛𝑛8 +
0.000003702284721𝑤𝑤9  
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Table 2. Shows comparison of the absolute errors for Example 2. 

𝒘𝒘𝒊𝒊 
Absolute Error 
of our Method 

n=9 

Absolute Error 
of our Method 

n=10 

Absolute 
Error of our 

Method 
n=11 

Absolute 
Error of our 

Method 
n=15 

Absolute 
Error of our 

Method 
n=16 

Absolute 
Error of our 

Method 
n=17 

Absolute 
Error of [5] 

n=10 

0.0 1.000E-09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.00E-09 

0.2 1.030E-09 1.416E-10 2.000E-10 1.870E-10 0.000E+00 3.000E-10 2.10E-09 

0.4 7.400E-10 4.070E-10 3.700E-10 3.018E-10 0.000E+00 0.000E+00 6.20E-09 

0.6 2.000E-10 5.993E-10 6.000E-10 5.548E-10 1.000E-09 9.000E-10 6.80E-09 

0.8 9.000E-10 9.746E-10 8.000E-10 7.561E-10 1.000E-09 2.000E-10 4.77E-09 

1.0 3.100E-09 1.228E-09 1.200E-09 1.244E-09 1.000E-09 1.000E-09 9.55E-07 
 

 

 Figure 2. Shows the graphical representation of the 
exact and approximate solutions to the Example 2. 

 
Example 3. [18]: Consider the following second-order 

Volterra integro- differential equation  

 
𝜉𝜉(𝑖𝑖𝑖𝑖)(𝑤𝑤) = 2 − 2𝑤𝑤 sin𝑤𝑤 − ∫ (𝑤𝑤 − 𝜐𝜐)𝜉𝜉(𝜐𝜐)𝑑𝑑𝜐𝜐 𝑤𝑤

0   
 
Subject to the initial conditions 
 
𝜉𝜉(0) = 0, 𝜉𝜉′(0) = 0. 
 
The exact solution is 𝜉𝜉(𝑤𝑤) = wsin𝑤𝑤   
 
By applying the aforementioned technique to 

example 3, which is solved at n = 9, we obtained 
following constants and the necessary approximation: 

 
𝑐𝑐0 = 0.301168679731766, 𝑐𝑐1 = 0.435959616897170, 
𝑐𝑐2 = 0.121472377673670,  𝑐𝑐3 = −0.0153164866040020, 
𝑐𝑐4 = −0.00191302106873919,  𝑐𝑐5 = 0.0000925800901348493, 
𝑐𝑐6 = 0.00000746980787237939,  𝑐𝑐7 = −2.17442225378117 × 10−7 
𝑐𝑐8 = −1.28999931101810 × 10−8  

 
𝜉𝜉(𝑤𝑤) = −1.24991699 × 10−11 − 9.910471 ×

10−11𝑤𝑤 + 𝑤𝑤2 + 3.37729139 × 10−9𝑤𝑤3 −
0.1666699038𝑤𝑤4 + 0.00001365628761𝑤𝑤5 +
0.008301749153𝑤𝑤6 + 0.0000428124374𝑤𝑤7 −
0.0002324198696𝑤𝑤8 + 0.00001475487962𝑤𝑤9  

 
Table 3. Shows comparison of the absolute errors for Example 3. 

𝒘𝒘𝒊𝒊 

Absolute Error 

of our Method 

n=9 

Absolute Error 

of our Method 

n=10 

Absolute 

Error of our 

Method 

n=11 

Absolute 

Error of our 

Method 

n=15 

Absolute 

Error of our 

Method 

n=16 

Absolute 

Error of our 

Method 

n=17 

Absolute 

Error of [5] 

n=10 

0.0 1.250E-11 2.297E-11 4.294E-11 4.761E-11 4.803E-11 6.272E-11 1.13E-10 

0.2 3.100E-10 2.000E-11 7.706E-12 3.309E-11 3.522E-11 9.268E-11 2.56E-07 

0.4 7.000E-10 1.000E-10 2.571E-10 1.003E-10 1.944E-13 1.162E-10 2.22E-07 

0.6 1.000E-09 4.000E-10 6.571E-10 0.000E+00 1.150E-10 2.513E-10 1.68E-07 

0.8 1.300E-09 5.000E-10 6.571E-10 9.654E-11 1.533E-10 2.206E-10 5.38E-07 

1.0 1.700E-09 6.000E-10 9.571E-10 2.143E-10 3.412E-10 1.952E-10 9.55E-07 
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Figure 3: Shows the graphical representation of the exact 
and approximate solutions to the Example 3. 
 

Conclusion 
This work introduced a numerical approach for 

solving linear integro-differential equations by combining 
shifted Legendre polynomials with the collocation 
method. The method was applied to three specific 
numerical examples, and the results were compared to a 
previous study [18] that used the collocation method 
with Chebyshev third-kind polynomials at n = 10. The 
table of results clearly indicates that the proposed 
technique outperformed the method employed in [18] in 
terms of performance. The errors obtained using the 
suggested method were consistently smaller than those 
reported in [18]. This demonstrates the superiority of the 
recommended approach for solving IDEs. Based on these 
findings, we strongly recommend adopting the provided 
approach when dealing with linear integro-differential 
equations. 

 
Conflicts of interest 

 
There are no conflicts of interest in this work. 

 
References  
 
[1] Behiry S.H, Mohamed S.I., Solving high-order nonlinear 

Volterra-Fredholm integro-differential equations by 
differential transform method, Natural Science, 
4(8)(2012), 581-587. 

[2] Maleknejad K., Basirat B., E. Hashemizadeh E., A 
Bernstein operational matrix approach for solving a 
system of high order linear Volterra–Fredholm integro-
differential equations, Mathematical Computational 
Modell, 55(3) (2012) 1363–1372. 

[3] Mishra V.N., Marasi H.R.,  Shabanian H. Sahlan, M.N., 
Solution of Volterra –Fredholm integro-differential 
equations using Chebyshev collocation method, Global 
Journal Technology and Optimization, (1) (2017) 1-4. 

[4] Deniz E., Nurcan B.S. Numerical solution of high-order 
linear Fredholm integro-differential equations by Lucas 
Collocation method. International Journal of Informatics 
and Applied Mathematics & Statistics, 5(2) (2022) 24–40. 

[5] Deniz E., Nurcan B.S. Numerical solution of high-order 
linear Fredholm integro-differential equations by Lucas 
Collocation method. International Journal of Informatics 
and Applied Mathematics, & Statistics, 5(2) (2022) 24–40. 

[6] Shoushan A.F.  Al-Humedi H.O. The numerical solutions of 
integro-differential equations by Euler polynomials with 
least squares method. Palarch’s Journal Of Archaeology 
Of Egypt/Egyptology Journals, 18(4) (2021) 1740–1753. 

[7] Hashim I. Adomian  decomposition method  for  solving  
BVPs  for  fourth-order  integro-differential  equations,  
Journal of  Computer and Applied Mathematics, 193 
(2006) 658-664. 

[8] Saadati R., Raftari B., Adibi H. S.M., Vaezpour S.M., 
Shakeri S., A comparison between the Variational 
Iteration method and Trapezoidal rule for solving linear 
integro-differential equations, World Applied Sciences 
Journal, 4(3) (2008) 321–325. 

 

[9] Sweilam N.H., Fourth order integro-differential equations 
using variational iteration method, Computer 
Mathematics  Applications, 54 (2007) 1086-1091. 

[10]  Acar N.I., Daşcıoğlu A., Projection method for linear 
Fredholm–Volterra integro-differential equations, Journal 
of Taibah University for Science, 13(1) (2019) 644-650. 

[11] Akyüz-DaGcJoLlu A., Acar N.,  Güler C., Bernstein 
collocation method for solving nonlinear Fredholm-
Volterra integro differential equations in the most general 
form, Journal of Applied Mathematics, 134272 (2014) 1-8. 

[12] Berenguer M.I., Gamez D.,  Opez Linares, A.J.L., Fixed-
point iterative algorithm for the linear Fredholm-Volterra 
integro-differential equation, Journal of Computational 
and Applied Mathematics, 370894 (2012) 1-12.  

[13]  Yüksel G., Gülsu M. Sezer, M. A Chebyshev polynomial 
approach for high-order linear Fredholm-Volterra integro-
differential equations, Gazi University Journal of Science, 
25(2) (2012) 393-401. 

[14] Yuzbası S. A collocation method based on Bernstein 
polynomials to solve nonlinear Fredholm–Volterra 
integro-differential equations, Applied Mathematics 
Computation, 273 (2016) 142–154. 

[15] Loh R.J., Phang C., A new numerical scheme for solving 
system of Volterra integro-differential equation, 
Alexandria Enginerring Journal, 57(2) (2018) 1117-1124.  

[16] Gumgum S., Savaşaneril N.B.,, Kurkcu O.K.,, Sezer M.S., 
Lucas polynomial solution of nonlinear differential 
equations with variable delays, Hacettepe Journal of 
Mathematics & Statistics, 49(2) (2020) 553–564. 

[17] Sakran M.R.A.,  Numerical solutions of integral and 
integro -differential equations using Chebyshev 
polynomial of the third kind,  Applied Mathematics  and  
Computation,  5 (2019)  66 -82.  

[18] Ayinde A.M, James A.A., Ishaq A.A. and Oyedepo T. A new 
numerical approach using Chebyshev third kind 
polynomial for solving integro-differential equations of 



Oyedepo  et al./ Cumhuriyet Sci. J., 44(3) (2023) 561-566 

566 

higher order, Gazi University Journal of Science, Part A, 
9(3) (2022) 259-266. 

[19] Oyedepo T., Ayoade A.A., Oluwayemi M.O.,Pandurangan 
R., Solution of Volterra-Fredholm integro- differential 
equations using the Chebyshev computational approach, 
International Conference on Science, Engineering and 
Business for Sustainable Development Goals (SEB-
SDG),Omu-Aran, Nigeria, 1 (2023) 1-6.  

[20] Akgonullu N., Şahin N., Sezer M.,   A  Hermite  collocation  
method  for  the  approximation solutions  of  higher-
order  linear  Fredholm  integro-differential  equations,  
Numerical Methods for Partial Differential Equations, 
27(6) (2011) 1707-1721. 

[21] Aruchunan E., Sulaiman J., Numerical solution of second 
order linear Fredholm integro-differential equations using 

generalized minimal residual method, American, Journal 
of the Applied Sciences, 7(6) (2010) 780–783.     

[22] Jalius C., Abdul Z., Majid, Numerical solution of second-
Order Fredholm integro-differential equations with 
boundary conditions by Quadrature-Difference method, 
Hindawi Journal of Applied Mathematics, 2645097 (2017) 
1-5. 

[23] Vahidi A.R., Babolian E.,   AsadiCordshooli G., Azimzadeh, 
Z., Numerical solution of Fredholm integro-differential 
equation by Adomian’s decomposition method, 
International Journal of Mathematical Analysis, 3 (2009) 
1769–1773. 

[24]  Bhrawy A., Tohidi E.,  Soleymani F., A new Bernoulli 
matrix method for solving high-order linear and nonlinear 
Fredholm integro-differential equations with piecewise 
intervals, Appl. Math. Comput., 219(2) (2012) 482-497. 

 
 


