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ABSTRACT

Jin introduced a non-symmetric metric connection, called an (ℓ,m)-type metric connection [5,6].
There are two examples of (ℓ,m)-type: a semi-symmetric metric connection when ℓ = 1 and m = 0
and a quater-symmetric connection for ℓ = 0 and m = 1 . Our purpose is to investigate lightlike
hypersurfaces of an indefinite (complex) Kaehler manifolds with an (ℓ,m)-type metric connection
under the tangent characteristic vector field on such hypersurfaces.
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1. Introduction

The notion of a symmetric connection of (ℓ,m)-type on semi-Riemannian manifolds was introduced as
follows ([5, 6]):

A symmetric connection ∇̄ of (ℓ, m)-type on a semi-Riemannian manifold (M̄, ḡ) is satisfied with the follwoing
torsion tensor T̄ :

T̄ (X̄, Ȳ ) = ℓ{θ(Ȳ )X̄ − θ(X̄)Ȳ }+m{θ(Ȳ )JX̄ − θ(X̄)JȲ } (1.1)

for smooth functions ℓ andm, a tensor field J of type (1, 1) and a 1-form θ associated with a characteristic vector
field ζ, which has θ(X̄) = ḡ(X̄, ζ). Moreover, ∇̄ is called a symmetric metric connection of type (ℓ, m) ( simply, an
(ℓ, m)-type metric connection) if ḡ is parallel on this connection ∇̄ (i.e., ∇̄ḡ = 0).

In case (ℓ,m) = (1, 0), the (ℓ, m)-type metric connection ∇̄ becomes a semi-symmetric metric connection,
introduced by Hayden [4] and Yano [9]. In case (ℓ,m) = (0, 1), the connection ∇̄ becomes a quarter-symmetric
metric connection, introduced by Yano-Imai [10]. In the sequel, we shall assume the following:

(1) X̄, Ȳ and Z̄ are the vector fields on M̄ .
(2) (ℓ,m) ̸= (0, 0).
(3) M is a lightlike hypersurface of M̄ .
(4) The characteristic vector field ζ is unit spacelike and tangent to M .
(5) F(M) is the collection of smooth functions on M .
(6) Γ(E) is the F(M) module of smooth sections of any vector bundle E over M .
(7) (2.1)i is the i-th equation of (2.1).

In this paper, we study the geometry of a lightlike hypersurface of an indefinite Kaehler manifold M̄ with
an (ℓ, m)-type metric connection subject such that an indefinite almost complex structure J satisfies (1.1).

Jin studied lightlike hypersurfaces of an indefinite Kaehler manifold with an (ℓ, m)-type metric connection
in [6]. However, (2.1)3 and (4.1) in [6] are not correct. First, in [6], this author used the (ℓ, m)-type metric
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connection ∇̄ in (2.1)3, that is, ∇̄J = 0. This is a mistake because the connection in (2.1)3, defined on a Kaehler
manifold M̄ , must be the Levi-Civita connection ∇̃ on M̄ , that is, ∇̃J = 0. Next, in [6], Jin used the curvature
tensor R̄ of the (ℓ, m)-type metric connection ∇̄ as the curvature tensor in (4.1) . This is also a mistake because
the curvature tensor in (4.1), defined on an indefinite complex space form M̄(c), must be the curvature tensor
R̃ of the Levi-Civita connection ∇̃. In this paper, we rewrite the paper [6] replacing ∇̄ by ∇̃ in (2.1)3 and R̄ by
R̃ in (4.1) (see new correct equations (2.1)3 and (4.1) in this paper).

Theorem 1.1. A linear connection ∇̄ on M̄ is an (ℓ, m)-type metric connection if and only if it satisfies

∇̄X̄ Ȳ = ∇̃X̄ Ȳ + ℓ{θ(Ȳ )X̄ − ḡ(X̄, Ȳ )ζ} −mθ(X̄)JȲ . (1.2)

Proof. Let ∇̄ be the linear connection defined by (1.2). By directed calculations from (1.2), we see that ∇̄ satisfies
(1.1) and ∇̄ḡ = 0. Thus ∇̄ is an (ℓ, m)-type metric connection.
Conversely, if ∇̄ is an (ℓ, m)-type metric connection, then we can write

∇̄X̄ Ȳ = ∇̃X̄ Ȳ + ψ(X̄, Ȳ ). (1.3)

Substituting (1.3) into the equation (∇̄X̄ ḡ)(Ȳ , Z̄) = 0 and using the fact that ∇̃ is a metric connection, we have

ḡ(ψ(X̄, Ȳ ), Z̄) + ḡ(ψ(X̄, Z̄), Ȳ ) = 0. (1.4)

Also, from (1.1), (1.3) and the fact that ∇̃ is torsion-free, it follows that

ψ(X̄, Ȳ )− ψ(Ȳ , X̄) = ℓ{θ(Ȳ )X̄ − θ(X̄)Ȳ }+m{θ(Ȳ )JX̄ − θ(X̄)JȲ }. (1.5)

From (1.5), we get

ḡ(ψ(X̄, Ȳ ), Z̄)− ḡ(ψ(Ȳ , X̄), Z̄)

= ℓ{θ(Ȳ )ḡ(X̄, Z̄)− θ(X̄)ḡ(Ȳ , Z̄)}+m{θ(Ȳ )ḡ(JX̄, Z̄)− θ(X̄)ḡ(JȲ , Z̄)},

ḡ(ψ(X̄, Z̄), Ȳ )− ḡ(ψ(Z̄, X̄), Ȳ )

= ℓ{θ(Z̄)ḡ(X̄, Ȳ )− θ(X̄)ḡ(Z̄, Ȳ )}+m{θ(Z̄)ḡ(JX̄, Ȳ )− θ(X̄)ḡ(JZ̄, Ȳ )}.

Adding these two equations together with (1.4), we have

−ḡ(ψ(Ȳ , X̄), Z̄)− ḡ(ψ(Z̄, X̄), Ȳ )

= ℓ{θ(Ȳ )ḡ(X̄, Z̄) + θ(Z̄)ḡ(X̄, Ȳ )− 2θ(X̄)ḡ(Ȳ , Z̄)}
+m{θ(Ȳ )ḡ(JX̄, Z̄) + θ(Z̄)ḡ(JX̄, Ȳ )}.

Using (1.4) to the left term of the last equation, we have

ḡ(ψ(Ȳ , Z̄), X̄)− ḡ(ψ(Z̄, Ȳ ), X̄)

= ℓ{θ(Ȳ )ḡ(X̄, Z̄) + θ(Z̄)ḡ(X̄, Ȳ )− 2θ(X̄)ḡ(Ȳ , Z̄)}
+m{θ(Ȳ )ḡ(JX̄, Z̄) + θ(Z̄)ḡ(JX̄, Ȳ )}.

Substituting (1.4) to the last equation, we obtain

ḡ(ψ(Ȳ , Z̄), X̄) = ℓ{θ(Z̄)ḡ(Ȳ , X̄)− ḡ(Ȳ , Z̄)ḡ(ζ, X̄)} −mθ(Ȳ )ḡ(JZ̄, X̄).

As ḡ is non-degenerate, we obtain

ψ(X̄, Ȳ ) = ℓ{θ(Ȳ )X̄ − ḡ(X̄, Ȳ )ζ} −mθ(X̄)JȲ .

Thus ∇̄ satisfies (1.2). This result implies that a linear connection ∇̄ on M̄ is an (ℓ, m)-type metric connection if
and only if ∇̄ satisfies (1.2).
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2. (ℓ, m)-type metric connections

Let M̄ = (M̄, ḡ, J) be an indefinite Kaehler manifold equipped with a unique Levi-Civita connection ∇̃, a
semi-Riemannian metric g and an indefinite almost complex structure J such that

J2 = −I, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ ), (∇̃X̄J)Ȳ = 0. (2.1)

Denote by ∇̄ an (ℓ, m)-type metric connection on M̄ . Using (1.2), we have

(∇̄X̄J)(Ȳ ) = ℓ{θ(JȲ )X̄ − θ(Ȳ )JX̄ − ḡ(X̄, JȲ )ζ + g(X̄, Ȳ )Jζ}. (2.2)

For the normal subbundle TM⊥([2]) of the tangent bundle TM of rank 1 , a screen distribution S(TM) of
TM⊥ in TM is non-degenerate on M with the orthgonal direct sum ⊕orth:

TM = TM⊥ ⊕orth S(TM).

For a null section η in Γ(TM⊥) on a coordinate neighborhood U ⊂M , there exists a unique null section N ,
called the null transversal vector field of M , of a unique vector bundle tr(TM), called the transversal vector bundle,
in S(TM)⊥ such that

ḡ(η,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

Moreover, the tangent bundle TM̄ of M̄ is decomposed as follows:

TM̄ = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth S(TM).

Let P : Γ(TM) −→ Γ(S(TM)) be the natural projection. Then we have thel Gauss and Weingartan formula
of M and S(TM) as follows:

∇̄XY = ∇XY + B(X,Y )N, (2.3)
∇̄XN = −A

N
X + τ(X)N, (2.4)

∇XPY = ∇∗
XPY + C(X,PY )η, (2.5)

∇Xη = −A∗
ηX − τ(X)η (2.6)

for X,Y, Z ∈ Γ(TM), the induced connections ∇ on TM , and ∇∗ on S(TM), the local second fundamental
forms B and C, the shape operators A

N
and A∗

η on TM and S(TM), respectively and a 1-form τ .
Due to [2, Section 6.2], we have J(TM⊥)⊕ J(tr(TM)) is a subbundle of S(TM), of rank 2 for subbundles

J(TM⊥) and J(tr(TM)) of S(TM) with rank 1 and J(TM⊥) ∩ J(tr(TM)) = {0}. Therefore, there exist two non-
degenerate invariant distributions Do and D on M in terms of J (that is, J(Do) = Do and J(D) = D) satisfying

S(TM) = J(TM⊥)⊕ J(tr(TM))⊕orth Do,

D = {TM⊥ ⊕orth J(TM
⊥)} ⊕orth Do.

In this case, TM has the decomposition:

TM = D ⊕ J(tr(TM)). (2.7)

Now we consider the null vector fields U and V , corresponding to N and η in terms of J , respectively, and dual
1-forms u and v of U and V , respectively, satisfying

U = −JN, V = −Jη, u(X) = g(X,V ), v(X) = g(X,U). (2.8)

For the projection S : TM −→ D, arbitrary vector field X in Γ(TM) can be written as X = SX + u(X)U , and
also we have

JX = FX + u(X)N, (2.9)

where F = J ◦ S is a tensor field of type (1, 1) globally defined on M . From (2.9), (2.1) and (2.8), we obtain

F 2X = −X + u(X)U. (2.10)
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Therefore, (F, u, U) is an indefinite almost contact structure on M as u(U) = 1 and FU = 0. Here, F is called
the structure tensor field of M and U the structure vector field of M .
The connection ∇ is an (ℓ,m)-type non-metric connection, and satisfies

(∇Xg)(Y,Z) = B(X,Y )µ(Z) + B(X,Z)µ(Y ), (2.11)
T (X,Y ) = ℓ{θ(Y )X − θ(X)Y }+m{θ(Y )FX − θ(X)FY }, (2.12)
B(X,Y )− B(Y,X) = m{θ(Y )u(X)− θ(X)u(Y )}, (2.13)

where T is the induced torsion tensor with respect to ∇ on M and µ is a 1-form on TM such that µ(X) =
ḡ(X,N). From the fact that B(X,Y ) = ḡ(∇̄XY, η), we obtain

B(X, η) = 0, B(η,X) = 0, (2.14)

and also we have

g(A∗
ηX,Y ) = B(X,Y ), ḡ(A∗

ηX,N) = 0, (2.15)
g(A

N
X,PY ) = C(X,PY ), ḡ(A

N
X,N) = 0. (2.16)

From (2.14)2, (2.15) and the non-degeneracy of S(TM), we have

A∗
ηη = 0. (2.17)

We set b = θ(N). Applying ∇̄X to (2.8) and (2.9) by turns, we have

B(X,U) = C(X,V ) + ℓ{bu(X)− θ(V )µ(X)}, (2.18)
∇XU = F (A

N
X) + τ(X)U (2.19)

+ ℓ{θ(U)X + bFX − v(X)ζ − µ(X)Fζ},
∇XV = F (A∗

ηX)− τ(X)V + ℓ{θ(V )X − u(X)ζ}, (2.20)
(∇XF )(Y ) = u(Y )A

N
X − B(X,Y )U (2.21)

+ ℓ{θ(JY )X − θ(Y )FX − ḡ(X, JY )ζ + g(X,Y )Fζ},
(∇Xu)(Y ) = −u(Y )τ(X)− B(X,FY ) (2.22)

+ ℓ{θ(V )g(X,Y )− θ(Y )u(X)},
(∇Xv)(Y ) = v(Y )τ(X)− g(A

N
X,FY )− ℓθ(U)g(X,Y )} (2.23)

− ℓ{bg(FX, Y )− θ(Y )v(X)− µ(X)g(Fζ, Y )}.

Example 2.1. Let M̄ be a semi-Euclidean manifold R4
2, covered by coordinate neighborhoods with coordinates

{x1, y1, x2, y2}. There exist a non-degenerate metric ḡ, an endomorphism J and a natural connection ∇̃ of the
forms

ḡ((x1, y1, x2, y2), (u1, v1, u2, v2)) = −x1u1 − y1v1 + x2u2 + y2v2,

J(x1, y1, x2, y2) = (−y1, x1, −y2, x2).

From the second equation of the last relations, we see that

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= − ∂

∂xi
,

where i run over 1, 2. Then (M̄, ḡ, J) is an almost complex manifold. We let

∇̄X̄ Ȳ = ∇̃X̄ Ȳ + ℓ{θ(Ȳ )X̄ − ḡ(X̄, Ȳ )ζ} −mθ(X̄)JȲ ,

where ℓ and m are smooth functions and θ is a 1-form associated with a smooth vector field ζ. Then ∇̄ is an
(ℓ,m)-type metric connection on (M̄, ḡ, J).

Consider a hypersurface M of M̄ = R4
2 given by

x1 = y1 +
√
2
√
x22 + y22 .
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For simplicity, we set f =
√
x22 + y22 , ∂

∂xi
= ∂xi and ∂

∂yi
= ∂yi for i = 1, 2. Let

Λ(x1, y1, x2, y2) = x1 − y1 −
√
2
√
x22 + y22 ,

then M = Λ−1(0), i.e., M is a level surface of the function Λ. As ∂x1 and ∂y1 are timelike and ∂x2 and ∂y2 are
spacelike, the gradient vector field

∇Λ = − ∂ Λ

∂x1
∂x1

− ∂ Λ

∂y1
∂y1

+
∂ Λ

∂x2
∂x2

+
∂ Λ

∂y2
∂y2

= − ∂x1 + ∂y1 −
√
2

f
(x2∂x2 + y2∂y2)

is orthogonal to all vectors tangent to the level surface M , it is easy to check that M is a lightlike hypersurface
whose normal bundle TM⊥ is spanned by

ξ = f (∂x1 − ∂y1) +
√
2 (x2 ∂x2

+ y2 ∂y2
).

Then the transversal vector bundle is given by

tr(TM) = Span

{
N =

1

4f2

{
f(−∂x1

+ ∂y1
) +

√
2 (x2 ∂x2

+ y2 ∂y2
)
}}

.

Since u1 = y1, u2 = x2, u3 = y2, x1 = u1 +
√
2f and ∂ui

=
∑

∂xA

∂ui
∂A, the tangent bundle TR4

2 is spanned by{
∂u1

= ∂x1
+ ∂y1

, ∂u2
=

√
2x2
f

∂x1
+ ∂x2

, ∂u3
=

√
2y2
f

∂x1
+ ∂y2

}
.

It follows that the corresponding screen distribution S(TM) is spanned by

{W1 = ∂x1 + ∂y1 , W2 = −y2 ∂x2 + x2 ∂y2}.

By direct calculations we obtain

∇̃XW1 = ∇̃W1
X = 0,

∇̃W2W2 = −x2 ∂x2 − y2 ∂y2 ,

∇̃ξξ =
√
2 ξ, ∇̃W2

ξ = ∇̃ξW2 =
√
2W2,

for any X ∈ Γ(TM). Now we set ζ = ω + λN = a1∂x1
+ b1∂y1

+ a2∂x2
+ b2∂y2

. By using (1.2), we obtain

∇̄XW1 = ℓ{θ(W1)X − g(X,W1)ζ} −mθ(X)JW1

= ℓ{−(a1 + b1)X + (x1 + y1)ζ}+m(a1x1 + y1b1)JW1.

Using (2.3) and the fact that JW1 = 1
2{ξ − 4f2N}, we obtain

∇XW1 = ℓ{−(a1 + b1)X + (x1 + y1)ω}+
1

2
m(a1x1 + y1b1)ξ,

B(X,W1) = λℓ(x1 + y1)− 2m(a1x1 + y1b1)f
2.

Thus B(W1,W1) = 2λℓ− 2m(a1 + b1)f
2 and B(W2,W1) = 0.

By the same method, we see that

∇̄W1
X = ℓ{θ(X)W1 + g(X,W1)ζ}+mθ(W1)JX,

= ℓ{−(a1x1 + b1y1)W1 + (x1 + y1)ζ} −m(a1 + b1)JX.

Using (2.3) and (2.9), we have

∇W1
X = ℓ{−(a1x1 + b1y1)W1 + (x1 + y1)ω} −m(a1 + b1)FX,

B(W1, X) = λℓ(x1 + y1)−m(a1 + b1)u(X).

Thus B(W1,W1) = 2λℓ−m(a1 + b1)u(W1) and B(W1,W2) = −m(a1 + b1)u(W2). From the last equations, we
obtain

B(W1,W2)−B(W2,W1) = −m(a1 + b1)u(W2).

By the similar produce, we obtain all forms of ∇XY and B(X,Y ).
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3. Some results

Theorem 3.1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄ with an (ℓ, m)-type metric
connection ∇̄ subject to ζ ∈ Γ(TM) and integrable D. If F is parallel in terms of ∇ on M , then

(1) ℓ = 0 and ∇̄ is a quarter-symmetric metric connection,
(2) D and J(tr(TM)) are parallel on M , and
(3) M = C

U
×M ♯ is locally a product manifold, where C

U
is a null curve tangent to J(tr(TM)) and M ♯ is a leaf of the

distribution D.

Proof. (1) Replacing Y by η to (2.21) and using (2.14)1, we have

ℓ{θ(V )X − u(X)ζ} = 0.

Taking X = η, we have ℓθ(V )η = 0. Thus ℓθ(V ) = 0. Consequently, we get ℓu(X) = 0. Setting X = U , we have
ℓ = 0. Therefore, ∇̄ is a quarter-symmetric metric connection.

(2) Taking the product with V to (2.21): B(X,Y )U = u(Y )A
N
X , we obtain

B(X,Y ) = u(Y )u(A
N
X).

Putting Y = V and Y = FZ, we obtain

B(X,V ) = 0, B(X,FZ) = 0.

In general, by using (2.7), (2.9), (2.11), (2.15) and (2.20), we derive

g(∇Xη, V ) = −B(X,V ) = 0, g(∇XV, V ) = 0,

g(∇XZo, V ) = B(X,FZo) = 0, ∀Zo ∈ Γ(Do).

It follows that D is a parallel distribution on M , that is,

∇XY ∈ Γ(D), ∀X ∈ Γ(TM), ∀Y ∈ Γ(D).

Also, taking Y = U to (2.21): B(X,Y )U = u(Y )A
N
X , we get

A
N
X = B(X,U)U. (3.1)

From (3.1), we obtain F (A
N
X) = 0 and hance, from (2.19), we get

∇XU = τ(X)U. (3.2)

Moreover,
∇XU ∈ Γ(J(tr(TM))), ∀X ∈ Γ(TM),

which means J(tr(TM)) is parallel on M .
(3) From (2) and (2.7), by the decomposition theorem [3], M = C

U
×M ♯ is locally a product manifold, where

C
U

is a null curve tangent to J(tr(TM)) and M ♯ is a leaf of D.

Definition 3.1. The structure vector field U of M is said to be principal in terms of A∗
η if there exists a smooth

function α such that
A∗

ηU = αU.

A lightlike hypersurface M of an indefinite almost complex manifold M̄ is called a Hopf lightlike hypersurface if
it admits a principal structure vector field U .

Example 3.1. We consider a complex metric as the polynomial Q(z) = −
∑p

j=1 z
2
j +

∑n+1
j=p+1 z

2
j = gC(z, z̄). We

define S1-invariant hypersurface

M̃1 = {z = (z1, . . . , zn+1) ∈ S2n+1
2p | Q(z) ¯Q(z) = 1, rankR{z, iz, z̄, iz̄} = 4}.

We define the action and its corresponding quotient

S1 × S2n+1
2p → S2n+1

2p , (a, (z1 . . . , z2n+1)) 7→ (az1, . . . , azn+1),

π : S2n+1
2p → CPn

p = S2n+1
2p /∼.

From a semi-Riemannian submersion π, M1 = π
(
M̃1

)
is Hopf (see [1], [8]).
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Theorem 3.2. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄ with an (ℓ, m)-type metric
connection ∇̄ subject to ζ ∈ Γ(TM). If V is parallel in terms of ∇ on M , then

(1) ℓ = 0 and ∇̄ is a quarter-symmetric metric connection,
(2) the 1-form τ satisfies τ = 0,
(3) M is Hopf lightlike hypersurface of M̄ such that α = mθ(V ),
(4) the functions θ(U) and θ(V ) are satisfied 2θ(U)θ(V ) = 1.

Proof. (1) Assume that V is parallel in terms of ∇ on M . Applying the scalar product with N to (2.20), we get

B(X,U) = ℓ{bu(X)− θ(V )µ(X)}.

Taking X = η to this equation and using (2.14)2, we get ℓθ(V ) = 0. Thus

B(X,U) = ℓbu(X).

Taking X = ζ, X = U , X = V and X = Fζ to this by turns, we obtain

B(ζ, U) = 0, B(U,U) = ℓb, B(V,U) = 0, B(Fζ, U) = 0. (3.3)

Applying the scalar product with U to (2.20) and using ℓθ(V ) = 0, we obtain

τ(X) = −ℓθ(U)u(X). (3.4)

Taking X = U and Y = V to (2.13) and using (3.3)3, we obtain

B(U, V ) = mθ(V ). (3.5)

Taking the scalar product with ζ to Jζ = Fζ + θ(V )N and using the facts that ḡ(Jζ, ζ) = 0 and θ(N) = b, we
obtain θ(Fζ) = −bθ(V ). Taking X = U and Y = Fζ to (2.13) and using (3.3)4 and θ(Fζ) = −bθ(V ), we obtain

B(U,Fζ) = −mbθ(V ). (3.6)

Taking the scalar product with ζ to (2.20) and using (3.4), we obtain

B(X,Fζ) + bB(X,V ) + ℓu(X) = 0.

Replacing X by U to this and using (3.5) and (3.6), we have ℓ = 0.

(2) As ℓ = 0, from (3.4), we see that τ = 0.

(3) As τ = ℓ = 0, (2.20) reduces F (A∗
ηX) = 0. Thus J(A∗

ηX) = B(X,V )N . Applying J to this equation and
using (2.1)1, we obtain

A∗
ηX = B(X,V )U. (3.7)

Taking X = U to this equation and using (3.5), we obtain A∗
ηU = mθ(V )U . Thus M is Hopf lightlike

hypersurface of M̄ such that α = mθ(V ).

(4) Taking the scalar product with ζ to A∗
ηU = mθ(V )U , we have

B(U, ζ) = mθ(U)θ(V ).

On the other hand, taking X = U and Y = ζ to (2.13) and using (3.3)1, we get

B(U, ζ) = m{1− θ(U)θ(V )}.

From the last two equations, we get m{1− 2θ(U)θ(V )} = 0. As ℓ = 0, we see that m ̸= 0 as (ℓ,m) ̸= (0, 0).
Therefore, we obtain 2θ(U)θ(V ) = 1.

Definition 3.2. The structure tensor field F of M is said to be recurrent [7] if there exists a 1-form ϖ on M such
that

(∇XF )Y = ϖ(X)FY.

Theorem 3.3. If the structure tensor field F of a lightlike hypersurface M of an indefinite Kaehler manifold M̄ with an
(ℓ, m)-type metric connection subject to ζ ∈ Γ(TM) is recurrent, then F is parallel in terms of ∇ on M .
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Proof. If M is recurrent, then, from (3.6), we obtain

ϖ(X)FY = u(Y )A
N
X − B(X,Y )U (3.8)

+ ℓ{θ(JY )X − θ(Y )FX − ḡ(X, JY )ζ + g(X,Y )Fζ}.

Taking Y = η and Y = V at (3.8) by turns and using (2.14)1, we have

ϖ(X)V = ℓ{θ(V )X − u(X)ζ}. (3.9)

ϖ(X)η = −B(X,V )U − ℓ{θ(V )FX − u(X)Fζ}.

Applying F to the second equation and using (2.10), we have

−ϖ(X)V = ℓ{θ(V )X − u(X)ζ}.

Comparing this equation with (3.9), we obtain ϖ(X)V = 0, and hence ϖ = 0. Therefore, ∇XF = 0 and F is
parallel in terms of ∇.

Corollary 3.1. If the structure tensor field F of a lightlike hypersurface M of an indefinite Kaehler manifold M̄ with an
(ℓ, m)-type metric connection subject to ζ ∈ Γ(TM) is recurrent, then we have Theorem 3.1 is satisfied.

Definition 3.3. The structure tensor field F of M is said to be Lie recurrent [7] if there exists a 1-form ϑ on M
such that

(L
X
F )Y = ϑ(X)FY,

where (L
X
F )Y = [X,FY ]− F [X,Y ] is the Lie derivative on M with respect to X , In case ϑ = 0, we say that F

is Lie parallel.

Theorem 3.4. Let M be a lightlike hypersurface of an indefinite Kaehler manifold M̄ with an (ℓ, m)-type metric
connection such that ζ ∈ Γ(TM). If F is Lie recurrent, then the following statements are satisfied:

(1) the structure tensor field F is Lie parallel,
(2) the 1-form τ vanishes, i.e., τ = 0,
(3) A∗

ηU = −mθ(U)V, A∗
ηV = −mθ(V )V.

Proof. (1) Using (2.10), (2.12) and (2.21), we obtain

ϑ(X)FY = u(Y )A
N
X − B(X,Y )U −∇FYX + F∇YX (3.10)

+ ℓ{bu(Y )X + g(X,Y )Fζ − ḡ(X, JY )ζ}
− m{θ(Y )X + θ(FY )FX − θ(Y )u(X)U}.

Taking Y = η and Y = V to (3.10) by turns and using (2.14)1, we have

−ϑ(X)V = ∇VX + F∇ηX + ℓu(X)ζ +mθ(V )FX, (3.11)
ϑ(X)η = −B(X,V )U −∇ηX + F∇VX + ℓu(X)Fζ (3.12)

− mθ(V ){X − u(X)U}.

Taking the scalar product with U to (3.11) and N to (3.12) by turns and comparing two resulting equations, we
get ϑ = 0. Thus F is Lie parallel.

(2) Taking the scalar product with V to (3.11) with X = U , we get

τ(V ) = 0. (3.13)

Taking X = η to (3.11) and using (2.6), (2.17) and (3.13), we have

A∗
ηV = {τ(η)−mθ(V )}V ; B(V,U) = τ(η)−mθ(V ).

Taking the scalar product with V to (3.12) with X = U , we obtain

B(U, V ) = −τ(η).
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Taking X = V and Y = U to (2.13) and using the last two equations, we have

τ(η) = 0 ; B(U, V ) = 0, A∗
ηV = −mθ(V )V. (3.14)

Taking X = U to (3.10) and using (2.10), (2.13), (2.18) and (2.19), we get

u(Y )A
N
U − F (A

N
FY )− τ(FY )U −A

N
Y (3.15)

+ ℓ{v(Y )Fζ + µ(Y )ζ} −m{θ(Y )− θ(U)u(Y )}U = 0.

Taking Y = V to (3.15) and using (3.14)1, we have

A
N
V = −F (A

N
η) + ℓFζ −mθ(V )U. (3.16)

Taking the scalar product with U to (3.16) and using (2.1)2 and (2.9), we have

C(V,U) = −ℓb. (3.17)

Replacing Y by U to (3.10) and using the fact that FU = 0, we have

A
N
X = B(X,U)U − F∇UX − ℓ{bX + v(X)Fζ − µ(X)ζ} (3.18)

+ mθ(U){X − u(X)U}.

Taking X = V to this equation and using (2.13), (2.20) and (3.14)3, we get

A
N
V = A∗

ηU + τ(U)η − ℓbV +mθ(U)V −mθ(V )U.

Taking the scalar product with N and U by turns and using (3.17), we have

τ(U) = 0, B(U,U) = −mθ(U). (3.19)
A

N
V = A∗

ηU − ℓbV +mθ(U)V −mθ(V )U. (3.20)

From (2.18) and (3.19)2, we obtain
C(U, V ) = −ℓb−mθ(U). (3.21)

Taking the product with V to (3.15) and using (2.18) and (3.21), we have

B(Y, U) = − τ(FY )−mθ(Y ). (3.22)

Taking X = V to (3.10) and using (2.10), (2.13), (2.20) and (3.14)1, we get

u(Y )A
N
V − F (A∗

ηFY )−A∗
ηY + τ(FY )V − τ(Y )η (3.23)

+ ℓbu(Y )V −m{θ(Y )V + θ(FY )η − θ(V )u(Y )U} = 0.

Taking the scalar product with U and using (2.15) and (3.17), we have

B(Y, U) = τ(FY )−mθ(Y ).

Comparing this equation with (3.22), we see that τ(FY ) = 0. Replacing Y by FX to this result and using (2.10)
and (3.19)1, we have τ = 0.

(3) From (3.14)3, we show that A∗
ηV = −mθ(V )V . Replacing Y by U to (2.13) and using (3.22) with τ = 0, we

have B(U,X) = −mθ(U)u(X). From this result and (2.15), we see that A∗
ηU = −mθ(U)V . From this result and

(3.20), we have A
N
V = −ℓbV −mθ(V )U . Thus we have our theorem.

4. Indefinite complex space forms

A connected indefinite Kaehler manifold M̄(c) of constant holomorphic sectional curvature c is called an
indefinite complex space form if its curvature tensor R̃ satisfies

R̃(X,Y )Z =
c

4
{ḡ(Y,Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX (4.1)

− ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}.
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For the curvature tensor R̄ of the (ℓ, m)-type metric connection ∇̄ on M̄ , we have the following relation:

R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄ (4.2)
+ (Xℓ){θ(Z)Y − g(Y,Z)ζ} − (Xm)θ(Y )JZ

− (Y ℓ){θ(Z)X − g(X,Z)ζ}+ (Y m)θ(X)JZ

+ ℓ{(∇̄Xθ)(Z)Y − (∇̄Y θ)(Z)X

+ g(X,Z)∇̄Y ζ − g(Y, Z)∇̄Xζ

+ ℓ[g(Y,Z)X − g(X,Z)Y ]}
− m{(∇̄Xθ)(Y )− (∇̄Y θ)(X)

+ m[θ(Y )θ(JX)− θ(X)θ(JY )]}JZ
+ ℓm{[θ(Y )JX − θ(X)JY ]θ(Z)

− [θ(Y )g(JX,Z)− θ(X)g(JY, Z)]ζ}.

For the curvature tensors R and R∗ of the connection ∇ and ∇∗ on M and S(TM), respectively, we have the
Gauss equations for M and S(TM) such that

R̄(X,Y )Z = R(X,Y )Z + B(X,Z)A
N
Y − B(Y,Z)A

N
X (4.3)

+ {(∇XB)(Y,Z)− (∇Y B)(X,Z)
+ τ(X)B(Y,Z)− τ(Y )B(X,Z)
− ℓ[θ(X)B(Y,Z)− θ(Y )B(X,Z)]
− m[θ(X)B(FY,Z)− θ(Y )B(FX,Z)]}N,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗
ηY − C(Y, PZ)A∗

ηX (4.4)
+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)
− ℓ[θ(X)C(Y, PZ)− θ(Y )C(X,PZ)]
− m[θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)]}η.

Differentiating ḡ(ζ, η) = 0 with respect to ∇̄X and using (2.6) and (2.15), we have

ḡ(∇̄Xζ, η) = B(X, ζ). (4.5)

Taking the scalar product with η and N to (4.2) by turns and using (2.16)2, (4.1), (4.3), (4.4) and (4.5), we get

(∇XB)(Y,Z)− (∇Y B)(X,Z) (4.6)
+ {τ(X)− ℓθ(X)}B(Y,Z)− {τ(Y )− ℓθ(Y )}B(X,Z)
− m{θ(X)B(FY,Z)− θ(Y )B(FX,Z)}
+ {(Xm)θ(Y )− (Y m)θ(X)}u(Z)
− ℓ{g(X,Z)B(Y, ζ)− g(Y,Z)B(X, ζ)}
+ m{(∇̄Xθ)(Y )− (∇̄Y θ)(X)

+ m[θ(Y )θ(JX)− θ(X)θ(JY )]}u(Z)
− ℓm{θ(Y )u(X)− θ(X)u(Y )}θ(Z)

=
c

4
{u(X)ḡ(JY, Z)− u(Y )ḡ(JX,Z) + 2u(Z)ḡ(X,JY )},
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(∇XC)(Y, PZ)− (∇Y C)(X,PZ) (4.7)
− {τ(X) + ℓθ(X)}C(Y, PZ) + {τ(Y ) + ℓθ(Y )}C(X,PZ)
− m{θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)}
− (Xℓ){θ(PZ)µ(Y )− bg(Y, PZ)}
+ (Y ℓ){θ(PZ)µ(X)− bg(X,PZ)}
+ {(Xm)θ(Y )− (Y m)θ(X)}v(PZ)
− ℓ{(∇̄Xθ)(PZ)η(Y )− (∇̄Y θ)(PZ)µ(X)}
− ℓ{g(X,PZ)ḡ(∇̄Y ζ,N)− g(Y, PZ)ḡ(∇̄Xζ,N)}
− ℓ2{g(Y, PZ)µ(X)− g(X,PZ)µ(Y )}
+ m{(∇̄Xθ)(Y )− (∇̄Y θ)(X)

+ m[θ(Y )θ(JX)− θ(X)θ(JY )]}v(PZ)
− ℓm{θ(Y )v(X)− θ(X)v(Y )}θ(PZ)
+ ℓmb{θ(Y )ḡ(JX,PZ)− θ(X)ḡ(JY, PZ)}

=
c

4
{µ(X)g(Y, PZ)− µ(Y )g(X,PZ) + v(X)g(FY, PZ)

− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Theorem 4.1. Let M be a lightlike hypersurface of an indefinite complex space form M̄(c) with an (ℓ,m)-type metric
connection subject such that ζ is tangent to M . If one of the following four statements is satisfied, then c = 0.

(1) F is parallel with respect to the connection ∇,
(2) F is recurrent,
(3) F is Lie recurrent,
(4) U is parallel with respect to ∇ and ℓ = 0.

Moreover, in case (4), the 1-form τ satisfies τ = 0.

Proof. (1) As F is parallel with respect to ∇, we show that ℓ = 0 by Theorem 3.1. Taking the scalar product with
U to (3.1) and using (2.16), we have

C(X,U) = 0.

Differentiating C(Y,U) = 0 with respect to ∇X and using (3.2), we obtain

(∇XC)(Y,U) = 0.

Taking PZ = U to (4.7) and using the last two equations and ℓ = 0, we get
c

2
{µ(X)v(Y )− µ(Y )v(X)} = 0.

Taking X = η and Y = V to this equation, we obtain c = 0.

(2) By Theorem 3.3 and (1) of this theorem, we obtain c = 0.

(3) As τ = 0 by (2) of Theorem 3.2, the equation (3.22) reduce to

B(Y, U) = −mθ(Y ). (4.8)

Differentiating (4.8) with respect to ∇X and using (2.19) and the fact that τ = 0, we obtain

(∇XB)(Y,U) = −(Xm)θ(Y )−m{(∇̄Xθ)(Y ) + bB(X,Y )}
− g(A∗

ηY, F (AN
X))− ℓθ(U)B(Y,X)− ℓbg(A∗

ηY, FX)

+ ℓv(X)B(Y, ζ) + ℓµ(X)g(A∗
ηY, Fζ).

Taking Z = U to (4.6) and using (4.8) and the last equation, we obtain

g(A∗
ηX,F (AN

Y ))− g(A∗
ηY, F (AN

X))

+ ℓb{g(A∗
ηX,FY )− g(A∗

ηY, FX)}
+ ℓ{µ(X)g(A∗

ηY, Fζ)− µ(Y )g(A∗
ηX,Fζ)}

=
c

4
{u(Y )µ(X)− u(X)µ(Y ) + 2ḡ(X, JY )}.
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Taking Y = U andX = η to this equation and using (2.17) and the facts thatA∗
ηU = −mθ(U)V and g(V, FX) = 0,

we get c = 0.

(4) Assume that U is parallel with respect to ∇ and ℓ = 0. Taking the scalar product with V and N to (2.19)
by turns such that ∇XU = 0, we get

τ(X) = 0, C(X,U) = 0.

Differentiating C(Y, U) = 0 with respect to ∇X and using ∇XU = 0, we obtain

(∇XC)(Y,U) = 0.

Taking PZ = U to (4.7), we obtain
c{µ(X)v(Y )− µ(Y )v(X)} = 0.

Taking X = η and Y = V to this equation, we have c = 0.

Theorem 4.2. Let M be a lightlike hypersurface of an indefinite complex space form M̄(c) with an (ℓ,m)-type metric
connection such that ζ ∈ Γ(TM). If V is parallel in terms of ∇, then the following equation holds

(ηm)θ(U) +m(∇̄ηθ)(U)−m2 =
3

4
c.

Moreover, if ζ is an asymtotic direction, i.e., B(ζ, ζ) = 0, then

2(ηm)θ(U) = m2 +
3

4
c.

Proof. As V is parallel with respect to ∇, we show that ℓ = τ = 0 by Theorem 3.2. Taking the scalar product
with U to (3.7) and using (2.18), we have

C(X,V ) = 0.

Differentiating C(Y, V ) = 0 with respect to ∇X and using ∇XV = 0, we obtain

(∇XC)(Y, V ) = 0.

Taking PZ = V to (4.7), we get

(Xm)θ(Y )− (Y m)θ(X) (4.9)
+ m{(∇̄Xθ)(Y )− (∇̄Y θ)(X) +m[θ(Y )θ(JX)− θ(X)θ(JY )]}

=
c

4
{µ(X)u(Y )− µ(Y )u(X) + 2ḡ(X, JY )}.

Differentiating θ(η) = 0 in terms of ∇X and using (2.6) and (2.15), we have

(∇̄Xθ)(η) = B(X, ζ). (4.10)

Taking X = U to (4.10) and using A∗
ηU = mθ(V )U , we have

(∇̄Uθ)(η) = g(A∗
ηU, ζ) = mθ(U)θ(V ).

Taking X = η and Y = U to (4.9) and using the above equation and 2θ(U)θ(V ) = 1, we have

(ηm)θ(U) +m(∇̄ηθ)(U) = m2 +
3

4
c.

Applying ∇̄X to θ(ζ) = 1, we have (∇̄Xθ)(ζ) = 0. Taking X = η and Y = ζ to (4.9) and using (4.10) and
(∇̄ηθ)(ζ) = 0, we obtain

ηm = mB(ζ, ζ) + {m2 +
3

4
c}θ(V ).

Assume that B(ζ, ζ) = 0. Taking the product with θ(U) to the above equation and using 2θ(U)θ(V ) = 1, we have
2(ηm)θ(U) = m2 + 3

4c.
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