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Introduction 
 

A set-valued optimization problem is a problem which 
has a set-valued objective map. The set optimization 
approach, which is based on the idea of comparing 
values of objective map, is one of the solution concepts 
to solve set-valued optimization problems. For set 
comparison Nishnianidze [1], Young [2], Kuroiwa [3], 
Jahn and Ha [4] and Karaman et. al. [5] defined set order 
relations. One can see [6-20] for further works based on 
these order relations, including existence theorems for 
minimal elements, scalarizations, derivatives and 
optimality conditions etc.  

In this article, the set of minimal elements of a family 
of sets with respect to set order relations 
≼𝑐𝑐 ,≼𝑚𝑚𝑐𝑐 ,≼𝑚𝑚𝑚𝑚,≼𝑚𝑚,≼𝑠𝑠,≼𝑙𝑙 ,≼𝑢𝑢,≼𝑚𝑚1 ,≼𝑚𝑚2  are compared 
each other in detail. The cases when a set of minimal 
elements includes the other one is proved and counter 
examples are given for other cases. Some of the counter 
examples in this article also can be given by using 
relations given in Example 3.4 in [4]. Also, in [Example 
2.2, 11], it is shown that an 𝑚𝑚2 −minimal element may 
not be an 𝑙𝑙 −minimal element and vice versa. But in this 
article, it is also aimed to present different examples to 
contribute to the literature. Finally, all the relations 
presented in this article are summarized in figures.  
 

Known Set Order Relations  
In this section, we recall the known set order 

relations defined by Nischnianidze [1], Young [2], 
Kuroiwa [3], Jahn and Ha [4], Karaman et.al. [5].   

For a normed space (𝑌𝑌, ⃦ ⋅  ⃦) the algebraic sum and 
Minkowski (Pontryagin) difference of 𝐴𝐴 and 𝐵𝐵 is defined 
by  

𝐴𝐴 + 𝐵𝐵: = {𝑎𝑎 + 𝑏𝑏 | 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵}, 
       𝐴𝐴−̇𝐵𝐵: = { 𝑥𝑥 ∈ 𝑌𝑌 ∣ 𝑥𝑥 + 𝐵𝐵 ⊂ 𝐴𝐴 }, 

respectively. 
A set 𝐾𝐾 ⊂ 𝑌𝑌 is called a cone if 𝜆𝜆𝜆𝜆 ∈ 𝐾𝐾 for all 𝜆𝜆 ≥ 0 

and 𝜆𝜆 ∈ 𝐾𝐾. In this work, 𝐾𝐾 ⊂ 𝑌𝑌 is a nonempty, convex, 
pointed (𝐾𝐾 ∩ (−𝐾𝐾) = {0𝑌𝑌}), cone with nonempty 
interior. conv 𝐴𝐴 and int 𝐴𝐴 denotes the convex hull of 𝐴𝐴 
and the topological interior of 𝐴𝐴, respectively.  Also, 
𝐵𝐵(𝑥𝑥, 𝜀𝜀) denotes the closed ball with center 𝑥𝑥 and radius 
𝜀𝜀, and  

 
𝒫𝒫(𝑌𝑌) = {𝐴𝐴 ⊂ 𝑌𝑌 ∣ 𝐴𝐴 ≠ ∅}. 
 
A partial order relation ≤𝐾𝐾 is defined on 𝑌𝑌 via cone 𝐾𝐾 

as the following way:  
 
𝑥𝑥 ≤𝐾𝐾 𝜆𝜆 ∶⟺ 𝜆𝜆 − 𝑥𝑥 ∈ 𝐾𝐾. 
 
By using this vector order relation, the set of minimal 

and maximal elements of a nonempty subset 𝐴𝐴 of 𝑌𝑌 are 
given as follows: 

 
min𝐴𝐴 : = { 𝑥𝑥 ∈ 𝐴𝐴 ∣ 𝐴𝐴 ∩ (𝑥𝑥 − 𝐾𝐾) = {𝑥𝑥}}. 
max𝐴𝐴 : = �  𝑥𝑥 ∈ 𝐴𝐴 ∣∣ 𝐴𝐴 ∩ (𝑥𝑥 + 𝐾𝐾) = {𝑥𝑥} �. 

 
The set less order relation ≼𝑠𝑠 was defined by 

Nishnianidze [1] and Young [2],  𝑢𝑢-type less order 
relation ≼𝑢𝑢 and 𝑙𝑙-type less order relation ≼𝑙𝑙 were given 
by Kuroiwa [3] and useful characterizations of these 
relations was given by Jahn and Ha [4] as the following 
definition.   
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Definiton 2.1. Let 𝐴𝐴,𝐵𝐵 ∈ 𝒫𝒫(𝑌𝑌). Then,  
i. 𝐴𝐴 ≼𝑙𝑙 𝐵𝐵:⟺𝐵𝐵 ⊂ 𝐴𝐴 + 𝐾𝐾, 

ii. 𝐴𝐴 ≼𝑢𝑢 𝐵𝐵:⟺ 𝐴𝐴 ⊂ 𝐵𝐵 − 𝐾𝐾, 
iii. 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵:⟺ 𝐵𝐵 ⊂ 𝐴𝐴 + 𝐾𝐾 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 ⊂ 𝐵𝐵 − 𝐾𝐾. 

 
Proposition 2.2. [4] Let 𝐴𝐴,𝐵𝐵 ∈ 𝒫𝒫(𝑌𝑌). Then, the 

following assertion holds: 
 

𝐴𝐴 ≼𝑠𝑠 𝐵𝐵 and 𝐵𝐵 ≼𝑠𝑠 𝐴𝐴 ⟺ 𝐵𝐵 + 𝐾𝐾 = 𝐴𝐴 + 𝐾𝐾,𝐵𝐵 − 𝐾𝐾 = 𝐴𝐴 − 𝐾𝐾. 

 
The certainly less order relation ≼𝑐𝑐 is defined as 

follows: 
 
Definition 2.3. [4] Let 𝐴𝐴,𝐵𝐵 ∈ 𝒫𝒫(𝑌𝑌). Then, 

𝐴𝐴 ≼𝑐𝑐 𝐵𝐵 ∶⟺ (𝐴𝐴 = 𝐵𝐵) or (𝐴𝐴 ≠ 𝐵𝐵,∀𝑥𝑥 ∈ 𝐴𝐴 ∀𝜆𝜆 ∈ 𝐵𝐵: 𝑥𝑥 ≤𝐾𝐾 𝜆𝜆). 
 
The minmax less order relation (≼𝑚𝑚), the minmax 

certainly less order relation (≼𝑚𝑚𝑐𝑐) and the minmax 
certainly nondominated order (≼𝑚𝑚𝑚𝑚)  relations are 
defined as: 

 
Definition 2.4. [4] Let 𝐴𝐴,𝐵𝐵 ∈ ℳ.   
i. 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 ∶⟺ min𝐴𝐴  ≼𝑠𝑠 min𝐵𝐵 and max𝐴𝐴 ≼𝑠𝑠 max𝐵𝐵, 

ii. 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 ∶⟺ (𝐴𝐴 = 𝐵𝐵) 
or (𝐴𝐴 ≠ 𝐵𝐵, min𝐴𝐴 ≼𝑐𝑐 min𝐵𝐵 and max𝐴𝐴 ≼𝑐𝑐 max𝐵𝐵), 

iii. 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 ∶⟺ (𝐴𝐴 = 𝐵𝐵) or (𝐴𝐴 ≠ 𝐵𝐵, max𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵), 

where ℳ =
{𝐴𝐴 ∈ 𝒫𝒫(𝑌𝑌) ∣∣ min𝐴𝐴 and max𝐴𝐴 are nonempty }. 

 
Definition 2.5. [4] Let 𝐴𝐴 ∈ ℳ.  If the following 

equivalent conditions are satisfied 
i. min𝐴𝐴 + 𝐾𝐾 = 𝐴𝐴 + 𝐾𝐾 and max𝐴𝐴 − 𝐾𝐾 = 𝐴𝐴 − 𝐾𝐾, 

ii. 𝐴𝐴 ⊂ min𝐴𝐴 + 𝐾𝐾 and 𝐴𝐴 ⊂ max𝐴𝐴 − 𝐾𝐾, 
then 𝐴𝐴 is said to have the quasi domination property.  
We denote the family of sets which have quasi 

domination property as ℳ0. 
The following relations are satisfied for ≼𝑠𝑠,≼𝑙𝑙 ,≼𝑢𝑢.  
 
Proposition 2.6. [4] Let 𝐴𝐴,𝐵𝐵 ∈ 𝒫𝒫(𝑌𝑌). Then,  
i. 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵 ⟹  𝐴𝐴 ≼𝑙𝑙 𝐵𝐵, 

ii. 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑢𝑢 𝐵𝐵, 
iii. 𝐴𝐴 ≼𝑙𝑙 𝐵𝐵 doesn’t always imply 𝐴𝐴 ≼𝑢𝑢 𝐵𝐵 and vice 

versa.  
 

Proposition 2.7. [4] Let 𝐴𝐴,𝐵𝐵 ∈ ℳ0 with 𝐴𝐴 ≠ 𝐵𝐵. Then,  
i. 𝐴𝐴 ≼𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵, 

ii. 𝐴𝐴 ≼𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵, 
iii. 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 doesn’t always imply 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 and 

vice versa.  
 
Indeed, quasi domination property is not required for 

relations 𝐴𝐴 ≼𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 and  
𝐴𝐴 ≼𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 and 𝐴𝐴 ≼𝑐𝑐 𝐵𝐵 ⟹ 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵.  
Following set order relations ≼𝑚𝑚1and ≼𝑚𝑚2were 

introduced by Karaman et.al. [5] 
 
Definition 2.8. Let 𝐴𝐴,𝐵𝐵 ∈ 𝒫𝒫(𝑌𝑌).  

i. 𝐴𝐴 ≼𝑚𝑚1 𝐵𝐵:⟺ (𝐵𝐵−̇𝐴𝐴) ∩ 𝐾𝐾 ≠ ∅, 
ii. 𝐴𝐴 ≼𝑚𝑚2 𝐵𝐵:⟺ (𝐴𝐴−̇𝐵𝐵) ∩ (−𝐾𝐾) ≠ ∅. 
  
≼𝑚𝑚1and ≼𝑚𝑚2  are partial order relations on the family 

of nonempty and bounded subsets of 𝑌𝑌.  
 
Proposition2.9. [4]: Let 𝐴𝐴,𝐵𝐵 ∈ ℳ. Then, following 

statements hold:   
i. 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ≼𝑚𝑚 𝐴𝐴 ⟺

min𝐴𝐴 + 𝐾𝐾 = min𝐵𝐵 + 𝐾𝐾, max𝐴𝐴 − 𝐾𝐾 = max𝐵𝐵 − 𝐾𝐾,
min𝐴𝐴 − 𝐾𝐾 = min𝐵𝐵 − 𝐾𝐾, max𝐴𝐴 + 𝐾𝐾 = max𝐵𝐵 + 𝐾𝐾. 

ii. If 𝐾𝐾 is pointed then,  
𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 and 𝐵𝐵 ≼𝑚𝑚𝑐𝑐 𝐴𝐴 ⟺ min𝐴𝐴 =

min𝐵𝐵 and max𝐴𝐴 = max𝐵𝐵. 
 

iii. If 𝐾𝐾 is pointed and 𝐴𝐴,𝐵𝐵 ∈ ℳ0 then,  
 
𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ≼𝑚𝑚 𝐴𝐴⟺ min𝐴𝐴 = min𝐵𝐵 and 

max𝐴𝐴 = max𝐵𝐵. 
 

Remark 2.10: Quasi domination property was not 
used in the proof of Proposition 2.9 (iii) [Proposition 3.4, 
4]. Since, we assume the pointedness of 𝐾𝐾, the 
proposition can be restated as: 
 

Proposition 2.11: Let 𝐴𝐴,𝐵𝐵 ∈ ℳ. Then, following 
statements are equivalent:   

i. 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ≼𝑚𝑚 𝐴𝐴, 
ii. 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 and 𝐵𝐵 ≼𝑚𝑚𝑐𝑐 𝐴𝐴, 

iii. min𝐴𝐴 = min𝐵𝐵 and max𝐴𝐴 = max𝐵𝐵. 
 

By using these set order relations, minimal element 
of a family of sets is defined as the following way. 
 

Definition 2.12. [4,5,12] Let 𝒮𝒮 ⊂ 𝒫𝒫(𝑌𝑌) and ∗∈
{𝑢𝑢, 𝑙𝑙, 𝑠𝑠,𝑚𝑚, 𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚𝑐𝑐,𝑚𝑚1,𝑚𝑚2}. The set 𝐴𝐴 ∈ 𝒮𝒮 is called a ∗-
minimal element of  𝒮𝒮 if for any 𝐵𝐵 ∈ 𝒮𝒮 such that 𝐵𝐵 ≼∗ 𝐴𝐴 
implies 𝐴𝐴 ≼∗ 𝐵𝐵. The family of  ∗-minimal elements of  𝒮𝒮 is 
denoted by ∗ −min𝒮𝒮.   
  

Relations Between Minimal Sets with Respect 
to Set Order Relations 

In this section, we compare the set of minimal 
elements of a family of sets with respect to set orders 
mentioned in the previous section.  

 
Proposition 3.1: Let 𝒮𝒮 ⊂ ℳ. Then, we have 𝑚𝑚𝑎𝑎 −

min𝒮𝒮 ⊂ 𝑐𝑐 − min𝒮𝒮. 
Proof: Let 𝐴𝐴 ∈ 𝑚𝑚𝑎𝑎 − min𝒮𝒮 and there exist 𝐵𝐵 ∈

𝒮𝒮 such that 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴. Since ≼𝑐𝑐 is a partial order it suffices 
to show 𝐴𝐴 = 𝐵𝐵.   As 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴 from Proposition 2.7 we 
have 𝐵𝐵 ≼𝑚𝑚𝑚𝑚 𝐴𝐴. Since 𝐴𝐴 is an 𝑚𝑚𝑎𝑎-minimal element of 𝒮𝒮 
we get 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵. So, from the definition of ≼𝑚𝑚𝑚𝑚 we have 
max𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵 which gives 

 
min𝐵𝐵 ⊂ max𝐴𝐴 + 𝐾𝐾, (3.1) 
max𝐴𝐴 ⊂ min𝐵𝐵 − 𝐾𝐾. (3.2) 
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Now, we show that 𝐴𝐴 = 𝐵𝐵. Assume the contrary. 
Inequality 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴 implies that  
 

𝑏𝑏 ≤𝐾𝐾 𝑎𝑎 for all 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝐵𝐵. (3.3) 
 

Let 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ∈ min𝐵𝐵. From (3.1) there exists 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ∈
max𝐴𝐴 and 𝑘𝑘1 ∈ 𝐾𝐾 such that 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘1. Hence,  
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ≤𝐾𝐾 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚. From (3.3), we have 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ≤𝐾𝐾 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚. 
Pointedness of 𝐾𝐾 gives that 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚. So, 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ∈
max𝐴𝐴. Thus, min𝐵𝐵 ⊂ max𝐴𝐴. Similarly, the converse 
implication can be proved by using (3.2). So, min𝐵𝐵 =
max𝐴𝐴.  This equality implies that 𝐴𝐴 = 𝐵𝐵. Indeed, let 𝑏𝑏 ∈
𝐵𝐵. For any 𝜆𝜆 ∈ max𝐴𝐴 (= min𝐵𝐵), from (3.3), we have 
𝑏𝑏 ≤𝐾𝐾 𝜆𝜆. Since 𝜆𝜆 ∈ min𝐵𝐵 and 𝐾𝐾 is pointed we obtain 𝑏𝑏 =
𝜆𝜆 ∈ min𝐵𝐵 which means 𝐵𝐵 ⊂ min𝐵𝐵. As min𝐵𝐵 ⊂ 𝐵𝐵, we 
get min𝐵𝐵 = 𝐵𝐵. The equality 𝐴𝐴 = max𝐴𝐴 can be shown 
similarly. Therefore, we obtain 𝐵𝐵 = min𝐵𝐵 = max𝐴𝐴 = 𝐴𝐴. 
This contradicts with assumption. So 𝐴𝐴 = 𝐵𝐵 and hence 
𝐴𝐴 ∈ 𝑐𝑐 − min𝒮𝒮.  

Note that a 𝑐𝑐-minimal element does not have to be 
an 𝑚𝑚𝑎𝑎-minimal element. 
  

Example 3.2: Let 𝑌𝑌 = ℝ2, 𝐾𝐾 = ℝ+
2 , 𝐴𝐴 =

𝐵𝐵�(0,0), 1�,𝐶𝐶 = 𝐵𝐵 ��2, 3
2
� , 1� and 𝒮𝒮 = {𝐴𝐴,𝐶𝐶}. Then, we 

have (0,1) ∈ 𝐴𝐴, �2, 1
2
� ∈ 𝐶𝐶 and (0,1) ≰𝐾𝐾 �2, 1

2
� ,

�2, 1
2
� ≰𝐾𝐾 (0,1) which gives 𝐴𝐴 ⋠𝑐𝑐 𝐶𝐶 and 𝐶𝐶 ⋠𝑐𝑐 𝐴𝐴. Hence, 

𝑐𝑐 − min𝒮𝒮 = {𝐴𝐴,𝐶𝐶}. In addition, 
  

min𝐴𝐴 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝑥𝑥2 + 𝜆𝜆2 = 1, 𝑥𝑥,𝜆𝜆 ≤ 0 },
max𝐴𝐴 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝑥𝑥2 + 𝜆𝜆2 = 1, 𝑥𝑥,𝜆𝜆 ≥ 0 },

min𝐶𝐶 = � (𝑥𝑥,𝜆𝜆) ∣∣
∣ (𝑥𝑥 − 2)2 + �𝜆𝜆 − 3

2�
2

= 1, 𝑥𝑥 ≤ 2,𝜆𝜆 ≤ 3
2 � ,

max𝐶𝐶 = � (𝑥𝑥,𝜆𝜆) ∣∣
∣ (𝑥𝑥 − 2)2 + �𝜆𝜆 − 3

2�
2

= 1, 𝑥𝑥 ≥ 2,𝜆𝜆 ≥ 3
2 � .

 

 
Since max𝐴𝐴 ⊂ min𝐶𝐶 − 𝐾𝐾 and  min𝐶𝐶 ⊂ max𝐴𝐴 +

𝐾𝐾 we have 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐶𝐶. It is obvious that 𝐶𝐶 ⋠𝑚𝑚𝑚𝑚 𝐴𝐴. So,  
𝐶𝐶 ∉ 𝑚𝑚𝑎𝑎 − min𝒮𝒮.  
 
Proposition 3.3: Let 𝒮𝒮 ⊂ ℳ. Then, we have 𝑚𝑚𝑐𝑐 −

min𝒮𝒮 ⊂ 𝑐𝑐 − min𝒮𝒮. 
Proof: Let 𝐴𝐴 ∈ 𝑚𝑚𝑐𝑐 − min𝒮𝒮 and there exist 𝐵𝐵 ∈

𝒮𝒮 such that 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴. Suppose 𝐵𝐵 ≠ 𝐴𝐴. Since 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴 from 
Proposition 2.7 we have 𝐵𝐵 ≼𝑚𝑚𝑐𝑐 𝐴𝐴. From 𝑚𝑚𝑐𝑐-minimality 
of 𝐴𝐴 we have 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵.  So, by Proposition 2.11, we 
obtain  

 
min𝐴𝐴 = min𝐵𝐵 , max𝐴𝐴 = max𝐵𝐵.  

 
Since 𝐵𝐵 ≠ 𝐴𝐴 and 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴, inequality (3.3) holds. Let 

𝑎𝑎 ∈ 𝐴𝐴. Then, from (3.3) 𝜆𝜆 ≤ 𝑎𝑎 for any 𝜆𝜆 ∈ max𝐵𝐵 =
max𝐴𝐴. As         𝜆𝜆 ∈ max𝐴𝐴 and 𝐾𝐾 is pointed we get 𝑎𝑎 =
𝜆𝜆 ∈ max𝐴𝐴. Hence, 𝐴𝐴 ⊂ max𝐴𝐴 = max𝐵𝐵 ⊂ 𝐵𝐵.  

Let 𝑏𝑏 ∈ 𝐵𝐵. Then, from (3.3), 𝑏𝑏 ≤𝐾𝐾 𝑎𝑎 for all 𝑎𝑎 ∈
min𝐴𝐴 = min𝐵𝐵. Hence from minimality of 𝑎𝑎 and 
pointedness of 𝐾𝐾 we obtain 𝑏𝑏 = 𝑎𝑎 ∈ min𝐵𝐵. Thus, 𝐵𝐵 ⊂

min𝐵𝐵 = min𝐴𝐴 ⊂ 𝐴𝐴. So, 𝐴𝐴 = 𝐵𝐵 which contradicts with 
the assumption.  

 
Proposition 3.4: Let 𝒮𝒮 ⊂ ℳ. Then,  𝑚𝑚 − min𝒮𝒮 ⊂

𝑚𝑚𝑐𝑐 − min𝒮𝒮.  
 
Proof: Let 𝐴𝐴 ∈ 𝑚𝑚 − min𝒮𝒮 and 𝐵𝐵 ≼𝑚𝑚𝑐𝑐 𝐴𝐴 for some 𝐵𝐵 ∈

𝒮𝒮.  Then, from Proposition 2.7 we have 𝐵𝐵 ≼𝑚𝑚 𝐴𝐴. As 𝐴𝐴 is  
𝑚𝑚-minimal element we get 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵. From 

Proposition 2.11 we obtain 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵. Hence, 𝐴𝐴 ∈ 𝑚𝑚𝑐𝑐 −
min𝒮𝒮. 

 
The converse inclusion in Proposition 3.4 is not true 

in general. The following example shows this fact.  
 
Example 3.5: Let 𝑌𝑌 = ℝ2, 𝐾𝐾 = ℝ+

2 ,𝐴𝐴 =
𝐵𝐵�(0,0), 1�,𝐵𝐵 = 𝐴𝐴 ∩ { (𝑥𝑥,𝜆𝜆) ∣∣ 𝜆𝜆 ≥ −𝑥𝑥 }. Then,  

min𝐴𝐴 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝑥𝑥2 + 𝜆𝜆2 = 1, 𝑥𝑥,𝜆𝜆 ≤ 0 }, min𝐵𝐵 =
conv ��− 1

√2
, 1
√2

 � , � 1
√2

,− 1
√2

 ��,  
max𝐴𝐴 = max𝐵𝐵 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝑥𝑥2 + 𝜆𝜆2 = 1, 𝑥𝑥,𝜆𝜆 ≥ 0 }.  
 
Since min𝐴𝐴 ⋠𝑐𝑐 min𝐵𝐵 and min𝐵𝐵 ⋠𝑐𝑐 min𝐴𝐴 we have 

𝐴𝐴 ⋠𝑚𝑚𝑐𝑐 𝐵𝐵 and 𝐵𝐵 ⋠𝑚𝑚𝑐𝑐 𝐴𝐴. So, 𝑚𝑚𝑐𝑐 − min𝒮𝒮 = {𝐴𝐴,𝐵𝐵}.  
Furthermore, min𝐴𝐴 ⊂ min𝐵𝐵 − 𝐾𝐾,  min𝐵𝐵 ⊂ min𝐴𝐴 +

𝐾𝐾, max𝐴𝐴 = max𝐵𝐵. Then, we have min𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵 and 
max𝐴𝐴 ≼𝑠𝑠 max𝐵𝐵, i.e. 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵. As min𝐵𝐵 ⊄ min𝐴𝐴 − 𝐾𝐾 
we get 𝐵𝐵 ⋠𝑚𝑚 𝐴𝐴. Hence, 𝑚𝑚 − min𝒮𝒮 = {𝐴𝐴}.  

This example also implies that  𝑚𝑚𝑐𝑐 − min𝒮𝒮 ⊄∗
−min𝒮𝒮 where ∗∈ {𝑠𝑠, 𝑙𝑙,𝑚𝑚1,𝑚𝑚2}. Now, we show this fact.  

It is clear that 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵, 𝐵𝐵 ⋠𝑠𝑠 𝐴𝐴,𝐴𝐴 ≼𝑙𝑙 𝐵𝐵, 𝐵𝐵 ⋠𝑙𝑙 𝐴𝐴. So, 
𝐵𝐵 ∉ 𝑠𝑠 − min𝒮𝒮 and 𝐵𝐵 ∉ 𝑙𝑙 − min𝒮𝒮.  

Furthermore, 𝐴𝐴−̇𝐵𝐵 = {(0,0)} and 𝐵𝐵−̇𝐴𝐴 = ∅. Thus, 
𝐴𝐴 ≼𝑚𝑚2 𝐵𝐵, 𝐵𝐵 ≼𝑚𝑚1 𝐴𝐴,𝐵𝐵 ⋠𝑚𝑚2 𝐴𝐴 and 𝐴𝐴 ⋠𝑚𝑚1 𝐵𝐵. Then it 
follows  

𝑚𝑚2 − min𝒮𝒮 = {𝐴𝐴} and 𝑚𝑚1 − min𝒮𝒮 = {𝐵𝐵}. 
 
Remark 3.6: Also note that an 𝑚𝑚𝑐𝑐 −minimal element 

does not have to be a 𝑢𝑢 −minimal element. For example, 
if  

𝑌𝑌 = ℝ2, 𝐾𝐾 = ℝ+
2 ,𝐴𝐴 = 𝐵𝐵�(0,0), 1�,𝐵𝐵 = 𝐴𝐴 ∩

{ (𝑥𝑥,𝜆𝜆) ∣∣ 𝜆𝜆 ≤ −𝑥𝑥 }, then it can be shown that  𝑚𝑚𝑐𝑐 −
min𝒮𝒮 = {𝐴𝐴,𝐵𝐵} and  

𝑢𝑢 − min𝒮𝒮 = {𝐵𝐵}, similar with Example 3.5. 
The following corollary is a direct consequence of 

Proposition 3.3 and Proposition 3.4.  
 
Corollary 3.7: Let 𝒮𝒮 ⊂ ℳ. Then,  𝑚𝑚− min𝒮𝒮 ⊂ 𝑐𝑐 −

min𝒮𝒮. 
 
Proposition 3.8:  Let 𝒮𝒮 ⊂ 𝒫𝒫(𝑌𝑌). Then 𝑠𝑠 − min𝒮𝒮 ⊂

𝑐𝑐 − min𝒮𝒮.  
Proof: Let 𝐴𝐴 ∈ 𝑠𝑠 − min𝒮𝒮. Suppose there exists 𝐵𝐵 ∈ 𝒮𝒮 

such that 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴 and 𝐴𝐴 ≠ 𝐵𝐵. 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴 implies 
𝐵𝐵 ≼𝑠𝑠 𝐴𝐴 from Proposition 2.7. Since 𝐴𝐴 is an 𝑠𝑠-minimal 
element, we obtain 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵. Therefore,  
𝐵𝐵 ⊂ 𝐴𝐴 + 𝐾𝐾, (3.4) 
𝐴𝐴 ⊂ 𝐵𝐵 − 𝐾𝐾. (3.5) 
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Let 𝑏𝑏 ∈ 𝐵𝐵. Then, from (3.4), there exists 𝑎𝑎 ∈ 𝐴𝐴 and 
𝑘𝑘1 ∈ 𝐾𝐾 such that 𝑏𝑏 = 𝑎𝑎 + 𝑘𝑘. So, 𝑎𝑎 ≤𝐾𝐾 𝑏𝑏. Since 𝐵𝐵 ≼𝑐𝑐 𝐴𝐴 
and 𝐵𝐵 ≠ 𝐴𝐴, we have inequality (3.3) and hence 𝑏𝑏 ≤𝐾𝐾 𝑎𝑎. 
From pointedness of 𝐾𝐾 we obtain 𝑏𝑏 = 𝑎𝑎 ∈ 𝐴𝐴 which gives 
𝐵𝐵 ⊂ 𝐴𝐴. Conversely, let 𝑎𝑎 ∈ 𝐴𝐴. Then from (3.5), there 
exists 𝑏𝑏 ∈ 𝐵𝐵 and 𝑘𝑘2 ∈ 𝐾𝐾 such that 𝑎𝑎 = 𝑏𝑏 − 𝑘𝑘2. Thus, we 
have 𝑎𝑎 ≤𝐾𝐾 𝑏𝑏. The inequality (3.3) implies 
𝑏𝑏 ≤𝐾𝐾 𝑎𝑎. Pointedness of 𝐾𝐾 gives 𝑎𝑎 = 𝑏𝑏 ∈ 𝐵𝐵. Since 𝑎𝑎 ∈ 𝐴𝐴  
is arbitrary we obtain 𝐴𝐴 ⊂ 𝐵𝐵. Therefore, 𝐴𝐴 = 𝐵𝐵 which 
contradicts with the assumption. So, 𝐴𝐴 = 𝐵𝐵 and 𝐴𝐴 ∈ 𝑐𝑐 −
min𝒮𝒮.  

As seen in the following example an 𝑙𝑙 −minimal or an 
𝑢𝑢 −minimal element does not have to be a ∗ −minimal 
element where ∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠,𝑢𝑢,𝑚𝑚1,𝑚𝑚2} or  

 
∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙,𝑚𝑚1,𝑚𝑚2}, respectively.    

 
Example 3.9: Let 𝑌𝑌 = ℝ2, 𝐾𝐾 = ℝ+

2 ,𝐴𝐴 = [0,1] ×
[0,1],𝐵𝐵 = {(1,1)} and 𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. Then, 𝐴𝐴 ≼𝑢𝑢 𝐵𝐵 and 
𝐵𝐵 ≼𝑢𝑢 𝐴𝐴. Hence, 𝑢𝑢 − min  𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. Since 𝑥𝑥 ≤𝐾𝐾 (1,1) 
for all 𝑥𝑥 ∈ 𝐴𝐴, 𝐴𝐴 ≼𝑐𝑐 𝐵𝐵. Also, the relation 𝐵𝐵 ⋠𝑙𝑙 𝐴𝐴 is 
obvious. So, from Proposition 2.6 and Proposition 2.7 we 
have 𝐴𝐴 ≼∗ 𝐵𝐵 and 𝐵𝐵 ⋠∗ 𝐴𝐴 ,and then it follows  
∗ −min𝒮𝒮 = {𝐴𝐴} where ∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙}. 

In addition, (0,0) ∈ 𝐴𝐴−̇𝐵𝐵 = {(−1,−1)} + 𝐴𝐴 and 
𝐵𝐵−̇𝐴𝐴 = ∅. Hence, we get 𝐵𝐵 ≼𝑚𝑚1 𝐴𝐴,𝐴𝐴 ≼𝑚𝑚2 𝐵𝐵,𝐴𝐴 ⋠𝑚𝑚1 𝐵𝐵 
and 𝐵𝐵 ⋠𝑚𝑚2 𝐴𝐴.Thus, 𝑚𝑚1 − min𝒮𝒮 = {𝐵𝐵} and 𝑚𝑚2 −
min𝒮𝒮 = {𝐴𝐴}. 

If 𝐴𝐴 = {(0,0)},𝐵𝐵 = [0,1] × [0,1] and 𝒮𝒮 = {𝐴𝐴,𝐵𝐵} one 
can easily see 𝑙𝑙 − min  𝒮𝒮 = {𝐴𝐴,𝐵𝐵}, ∗ −min𝒮𝒮 = {𝐴𝐴} 
where  

∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠,𝑢𝑢,𝑚𝑚1} and 𝑚𝑚2 − min𝒮𝒮 = {𝐵𝐵}. 
 
Also note that an 𝑚𝑚1 −minimal or an 𝑚𝑚2 −minimal 

element does not have to be a ∗ −minimal element 
where 

 
∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙,𝑢𝑢,𝑚𝑚2} and  
∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙,𝑢𝑢,𝑚𝑚1}, respectively.  
 
Example 3.10: Let 𝑌𝑌 = ℝ2, 𝐾𝐾 = ℝ+

2 , 𝐴𝐴 =
𝐵𝐵�(0,0), 1�,𝐶𝐶 = 𝐵𝐵((4,4), 2) and 𝒮𝒮 = {𝐴𝐴,𝐶𝐶}. Then, 
𝐴𝐴−̇𝐶𝐶 = ∅ and  

𝐶𝐶−̇𝐴𝐴 = 𝐵𝐵((4,4), 1)} ⊂ 𝐾𝐾. So, we have 𝐴𝐴 ⋠𝑚𝑚2 𝐶𝐶 and 
𝐶𝐶 ⋠𝑚𝑚2 𝐴𝐴, respectively. Hence, 𝑚𝑚2 − min𝒮𝒮 = {𝐴𝐴,𝐶𝐶}. In 
addition,  

 
min𝐴𝐴 = {(𝑥𝑥,𝜆𝜆) ∣ 𝑥𝑥2 + 𝜆𝜆2 = 1, 𝑥𝑥,𝜆𝜆 ≤ 0},
max  𝐴𝐴 = {(𝑥𝑥,𝜆𝜆) ∣ 𝑥𝑥2 + 𝜆𝜆2 = 1, 𝑥𝑥,𝜆𝜆 ≥ 0},
min𝐶𝐶 = { (𝑥𝑥,𝜆𝜆) ∣∣ (𝑥𝑥 − 4)2 + (𝜆𝜆 − 4)2 = 4, 𝑥𝑥,𝜆𝜆 ≤ 4 },
max𝐶𝐶 = { (𝑥𝑥,𝜆𝜆) ∣∣ (𝑥𝑥 − 4)2 + (𝜆𝜆 − 4)2 = 4, 𝑥𝑥,𝜆𝜆 ≥ 4 }.

 

 
Since (𝑥𝑥,𝜆𝜆) ≤𝐾𝐾 (𝑎𝑎, 𝑏𝑏) for all  (𝑥𝑥,𝜆𝜆) ∈ 𝐴𝐴 and (𝑎𝑎, 𝑏𝑏) ∈

𝐶𝐶 it follows 𝐴𝐴 ≼𝑐𝑐 𝐶𝐶.  Also, 𝐶𝐶 ⊄ 𝐴𝐴 − 𝐾𝐾  and 𝐴𝐴 ⊄ 𝐶𝐶 + 𝐾𝐾, 
i.e. 𝐶𝐶 ⋠𝑢𝑢 𝐴𝐴  and 𝐶𝐶 ⋠𝑙𝑙 𝐴𝐴, respectively. Hence, from 
Proposition 2.6 and Proposition 2.7 we have 
𝐴𝐴 ≼∗ 𝐶𝐶 and 𝐶𝐶 ⋠∗ 𝐴𝐴 where  

∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙,𝑢𝑢}. Thus, 𝐶𝐶 ∉∗ −min𝒮𝒮 for ∗∈
{𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙,𝑢𝑢}. 

Furthermore, since 𝐴𝐴−̇𝐶𝐶 = ∅ and 𝐶𝐶−̇𝐴𝐴 =
𝐵𝐵((4,4), 1)} ⊂ 𝐾𝐾, we have 𝐶𝐶 ⋠𝑚𝑚1 𝐴𝐴 and 𝐴𝐴 ≼𝑚𝑚1 𝐶𝐶, 
respectively. Thus, 

𝐶𝐶 ∉ 𝑚𝑚1 − min𝒮𝒮. 
If 𝐴𝐴 = 𝐵𝐵�(0,0), 2�,𝐶𝐶 = 𝐵𝐵((4,4), 1), then similarly we 

have, 𝑚𝑚1 − min𝒮𝒮 = {𝐴𝐴,𝐶𝐶} and 𝐶𝐶 ∉∗ −min𝒮𝒮 for  
∗∈ {𝑐𝑐,𝑚𝑚𝑐𝑐,𝑚𝑚𝑎𝑎,𝑚𝑚, 𝑠𝑠, 𝑙𝑙,𝑢𝑢,𝑚𝑚2}.  
Following example shows that a 𝑐𝑐-minimal element 

does not have to be a ∗-minimal element where  
∗∈ { 𝑚𝑚𝑐𝑐,𝑚𝑚,𝑚𝑚1,𝑚𝑚2, 𝑠𝑠, 𝑙𝑙,𝑢𝑢 }. 
 

Example 3.11: Let 𝑌𝑌 = ℝ2, 𝐾𝐾 = ℝ+
2 , 𝐴𝐴 =

𝐵𝐵�(1,1), 1�,𝐵𝐵 = ([0,2] × [0,2])\{(𝑥𝑥,𝜆𝜆) ∣ (𝑥𝑥 − 1)2 +
(𝜆𝜆 − 1)2 > 1, 𝑥𝑥,𝜆𝜆 ≤ 1} and 𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. Since, 
(1,0), (0,1) ∈ 𝐴𝐴 ∩ 𝐵𝐵, (1,0) ≰𝐾𝐾 (0,1) and (0,1) ≰𝐾𝐾 (1,0), 
we have 𝐴𝐴 ⋠𝑐𝑐 𝐵𝐵 and 𝐵𝐵 ⋠𝑐𝑐 𝐴𝐴. Hence,  
𝑐𝑐 − min𝒮𝒮 = {𝐴𝐴,𝐵𝐵}.  

Also, min𝐴𝐴 = min𝐵𝐵 = {(𝑥𝑥,𝜆𝜆) ∣ (𝑥𝑥 − 1)2 +
(𝜆𝜆 − 1)2 = 1, 𝑥𝑥,𝜆𝜆 ≤ 1},  

max𝐴𝐴 = {(𝑥𝑥,𝜆𝜆) ∣ (𝑥𝑥 − 1)2 + (𝜆𝜆 − 1)2 = 1, 𝑥𝑥,𝜆𝜆 ≥
1}  and max𝐵𝐵 = {(2,2)}. 
 

Now, we show this fact for each order relation. 
i. It is obvious that (𝑥𝑥,𝜆𝜆) ≤𝐾𝐾 (2,2) for all (𝑥𝑥,𝜆𝜆) ∈

max𝐴𝐴. So, min𝐴𝐴 ≼𝑐𝑐 min𝐵𝐵 , max𝐴𝐴 ≼𝑐𝑐 max𝐵𝐵, 
i.e.  𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵. Also, 𝐵𝐵 ⋠𝑚𝑚𝑐𝑐 𝐴𝐴 because 
(2,2) ≰𝐾𝐾 (𝑥𝑥,𝜆𝜆) for any (𝑥𝑥,𝜆𝜆) ∈ max𝐴𝐴. 
Therefore, 𝐵𝐵 ∉ 𝑚𝑚𝑐𝑐 − min𝒮𝒮.  

ii. Since min𝐴𝐴 = min𝐵𝐵 and max𝐴𝐴 ≼𝑠𝑠 max𝐵𝐵, we 
have 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵.  Also, max𝐵𝐵 ⋠𝑠𝑠 max𝐴𝐴 which 
implies 𝐵𝐵 ⋠𝑚𝑚 𝐴𝐴. So, 𝐵𝐵 ∉ 𝑚𝑚 − min𝒮𝒮. 

iii. 𝐴𝐴 ⊂ 𝐵𝐵 − 𝐾𝐾 and 𝐵𝐵 ⊄ 𝐴𝐴 − 𝐾𝐾 imply 𝐴𝐴 ≼𝑢𝑢 𝐵𝐵 and 
𝐵𝐵 ⋠𝑢𝑢 𝐴𝐴, respectively. Thus, 𝐵𝐵 ∉  𝑢𝑢 − min𝒮𝒮. 

iv. From (iii) and (iv), we have 𝐴𝐴 ≼𝑠𝑠 𝐵𝐵 and 𝐵𝐵 ⋠𝑠𝑠 𝐴𝐴. 
So,  𝐵𝐵 ∉ 𝑠𝑠 − min𝒮𝒮.  

v. Since 𝐵𝐵−̇𝐴𝐴 = {(0,0)},𝐴𝐴−̇𝐵𝐵 = ∅, we get 
𝐴𝐴 ≼𝑚𝑚1 𝐵𝐵, 𝐵𝐵 ⋠𝑚𝑚1 𝐴𝐴 and 𝐵𝐵 ≼𝑚𝑚2 𝐴𝐴, 𝐴𝐴 ⋠𝑚𝑚2 𝐵𝐵. 
Hence, 𝐵𝐵 ∉ 𝑚𝑚1 − min𝒮𝒮 and 𝐴𝐴 ∉ 𝑚𝑚2 − min𝒮𝒮. 

 
This example also shows that an 𝑚𝑚𝑎𝑎 −minimal 

element does not have to be a ∗-minimal element where  
∗∈ { 𝑚𝑚𝑐𝑐,𝑚𝑚,𝑚𝑚1,𝑚𝑚2, 𝑠𝑠,𝑢𝑢 }. Indeed, max𝐴𝐴 ⋠𝑠𝑠 min𝐵𝐵 

and max𝐵𝐵 ⋠𝑠𝑠 min𝐴𝐴. Hence, 𝑚𝑚𝑎𝑎 − min𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. 
If we consider 𝐴𝐴 = 𝐵𝐵�(1,1), 1�,𝐵𝐵 = ([0,2] × [0,2])\

{(𝑥𝑥,𝜆𝜆) ∣ (𝑥𝑥 − 1)2 + (𝜆𝜆 − 1)2 > 1, 𝑥𝑥,𝜆𝜆 ≥ 1}, it can easily 
be seen that 𝑚𝑚𝑎𝑎 − min𝒮𝒮 = 𝑐𝑐 − min𝒮𝒮 = {𝐴𝐴,𝐵𝐵} and 𝑙𝑙 −
min𝒮𝒮 = {𝐵𝐵}.  

 
Proposition 3.12: Let 𝒮𝒮 ⊂ ℳ0. Then, following 

conditions are satisfied: 
i. 𝑚𝑚 − min𝒮𝒮 ⊂ 𝑚𝑚𝑎𝑎 − min𝒮𝒮, 

ii. 𝑠𝑠 − min𝒮𝒮 ⊂ 𝑚𝑚 − min𝒮𝒮, 
iii. 𝑠𝑠 − min𝒮𝒮 ⊂ 𝑚𝑚𝑐𝑐 − min𝒮𝒮, 
iv. 𝑠𝑠 − min𝒮𝒮 ⊂ 𝑚𝑚𝑎𝑎 − min𝒮𝒮. 

 
 
Proof:  
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i. Let 𝐴𝐴 ∈ 𝑚𝑚 − min𝒮𝒮 and there exist 𝐵𝐵 ∈ 𝒮𝒮 such 
that 𝐵𝐵 ≼𝑚𝑚𝑚𝑚 𝐴𝐴. If 𝐴𝐴 = 𝐵𝐵 then, 𝐴𝐴 is obviously an 
𝑚𝑚𝑎𝑎-minimal  element. If 𝐴𝐴 ≠ 𝐵𝐵 then, 
max𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵. From Proposition 2.7, we have 
𝐵𝐵 ≼𝑚𝑚 𝐴𝐴. Since 𝐴𝐴 ∈ 𝑚𝑚 − min𝒮𝒮, we obtain 
𝐴𝐴 ≼𝑚𝑚 𝐵𝐵. From Proposition 2.11, we get min𝐴𝐴 =
min𝐵𝐵 and max𝐴𝐴 = max𝐵𝐵. Hence, we obtain 
max𝐵𝐵 = max𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵 = min𝐴𝐴 which 
implies 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵. So 𝐴𝐴 ∈ 𝑚𝑚𝑎𝑎 − min𝒮𝒮.  

ii. Let 𝐴𝐴 ∈ 𝑠𝑠 − min𝒮𝒮 and there exist 𝐵𝐵 ∈ 𝒮𝒮 such 
that 𝐵𝐵 ≼𝑚𝑚 𝐴𝐴.  𝐵𝐵 ≼𝑚𝑚 𝐴𝐴 implies 𝐵𝐵 ≼𝑠𝑠 𝐴𝐴 from 
Proposition 2.7. Since  𝐴𝐴 ∈ 𝑠𝑠 − min𝒮𝒮, we have 
𝐴𝐴 ≼𝑠𝑠 𝐵𝐵. Hence, we get 𝐴𝐴 + 𝐾𝐾 = 𝐵𝐵 + 𝐾𝐾 and  
𝐴𝐴 − 𝐾𝐾 = 𝐵𝐵 − 𝐾𝐾 from Proposition 2.2. Also, 
quasi domination property of 𝐴𝐴 and 𝐵𝐵 implies 
min𝐴𝐴 + 𝐾𝐾 = 𝐴𝐴 + 𝐾𝐾 = 𝐵𝐵 + 𝐾𝐾 = min𝐵𝐵 + 𝐾𝐾,  
max𝐴𝐴 − 𝐾𝐾 = 𝐴𝐴 − 𝐾𝐾 = 𝐵𝐵 − 𝐾𝐾 = max𝐵𝐵 − 𝐾𝐾. 
Since, 𝐵𝐵 ≼𝑚𝑚 𝐴𝐴, we have min𝐴𝐴 = min𝐵𝐵 and  
max𝐴𝐴 = max𝐵𝐵. So, from Proposition 2.11, we 
obtain 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵. Thus, 𝐴𝐴 ∈ 𝑚𝑚 − min𝒮𝒮.  

iii. Proof is obtained directly from (ii) and 
Proposition 3.4.   

iv. It can be obtained directly from (i) and (ii).  

If quasi domination property in Proposition 3.12 is 
omitted then, results may not be true as seen in the 
following examples.  
 

Example 3.13: Let 𝐾𝐾 = ℝ+
2 ,  

𝐴𝐴 = { (𝑥𝑥,𝜆𝜆) ∣∣  −𝑥𝑥 < 𝜆𝜆 ≤ 1 − 𝑥𝑥 } ∪
{ (𝑥𝑥,𝜆𝜆) ∣∣ 𝜆𝜆 = −𝑥𝑥, 𝑥𝑥 ≤ 0 },𝐵𝐵 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝜆𝜆 = 2 − 𝑥𝑥 } and  
𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. Then,  

 
min𝐴𝐴 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝜆𝜆 = −𝑥𝑥, 𝑥𝑥 ≤ 0 },
max𝐴𝐴 = { (𝑥𝑥,𝜆𝜆) ∣∣ 𝜆𝜆 + 𝑥𝑥 = 1 },

min𝐵𝐵 = max𝐵𝐵 = 𝐵𝐵,
 

 
And 𝐴𝐴 ∉ ℳ0. As min𝐵𝐵 ⊄ min𝐴𝐴 + 𝐾𝐾, we have 

min𝐴𝐴 ⋠𝑠𝑠 min𝐵𝐵. So, 𝐴𝐴 ⋠𝑚𝑚 𝐵𝐵. Also, it is clear that 
𝐵𝐵 ⋠𝑚𝑚 𝐴𝐴.  It follows 𝐴𝐴,𝐵𝐵 ∈ 𝑚𝑚 − min𝒮𝒮. Also, it is obvious 
that max𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵 and max𝐵𝐵 ⋠𝑠𝑠 min𝐴𝐴. Hence, 
𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ⋠𝑚𝑚𝑚𝑚 𝐴𝐴, respectively. Then, we obtain 
𝐵𝐵 ∉ 𝑚𝑚𝑎𝑎 − min𝒮𝒮.  
 

Example 3.14: Let 𝐾𝐾 = ℝ+
2 ,  𝐴𝐴 = {(−1,1)} ∪

int 𝐵𝐵�(1,0), 1�, 𝐵𝐵 = {(0,2)} and 𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. It can be 
easily seen that  

 
min𝐴𝐴 = max𝐴𝐴 = {(−1,1)},
min𝐵𝐵 = max𝐵𝐵 = 𝐵𝐵,  

 
and 𝐴𝐴 ∉ ℳ0. Since 𝐴𝐴 ⊄ 𝐵𝐵 − 𝐾𝐾, we obtain 𝐴𝐴 ⋠𝑢𝑢 𝐵𝐵 

which implies 𝐴𝐴 ⋠𝑠𝑠 𝐵𝐵. Also, as 𝐴𝐴 ⊄ 𝐵𝐵 + 𝐾𝐾 i. e.  𝐵𝐵 ⋠𝑙𝑙 𝐴𝐴 
and it follows 𝐵𝐵 ⋠𝑠𝑠 𝐴𝐴. So, 𝐴𝐴,𝐵𝐵 ∈ 𝑠𝑠 − min𝒮𝒮.  

However, we have 𝐴𝐴 ≼𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ⋠𝑚𝑚 𝐴𝐴 which imply 
𝐵𝐵 ∉ 𝑚𝑚 − min𝒮𝒮. 

Also, since max𝐴𝐴 ≼𝑠𝑠 min𝐵𝐵 and max𝐵𝐵 ⋠𝑠𝑠 min𝐴𝐴 we 
obtain 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ⋠𝑚𝑚𝑚𝑚 𝐴𝐴, respectively. Then,  
𝐵𝐵 ∉ 𝑚𝑚𝑎𝑎 − min𝒮𝒮. 

Furthermore, since (−1,1) ≤𝐾𝐾 (0,2) and 
(0,2) ≰𝐾𝐾 (−1,1), we have min𝐴𝐴 ≼𝑐𝑐 min𝐵𝐵,
max𝐴𝐴 ≼𝑐𝑐 max𝐵𝐵 ,  min𝐵𝐵 ⋠𝑐𝑐 min𝐴𝐴 and 
max𝐵𝐵 ⋠𝑐𝑐 max𝐴𝐴. These relations imply 𝐴𝐴 ≼𝑚𝑚𝑐𝑐 𝐵𝐵 and 
𝐵𝐵 ⋠𝑚𝑚𝑐𝑐 𝐴𝐴.  Hence,  

𝐵𝐵 ∉ 𝑚𝑚𝑐𝑐 − min𝒮𝒮.  
 
An 𝑚𝑚𝑐𝑐 −minimal element does not have to be an 

𝑚𝑚𝑎𝑎 −minimal element. To show this fact Example 3.4 in 
[4] by Jahn and Ha can be used as follows. 

 
Example 3.15 [4] Let 𝐾𝐾 = ℝ+

2 , 𝐴𝐴 =
conv{(−2,0), (−3,−1), (0,−2)},  

𝐵𝐵 = conv{(4,2), (0,2), (4,−2)} and  
𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. Then as proved in [4], we have 𝐴𝐴 ≼𝑚𝑚𝑚𝑚 𝐵𝐵 

and 𝐴𝐴 ⋠𝑚𝑚𝑐𝑐 𝐵𝐵. It is obvious that 𝐵𝐵 ⋠𝑚𝑚𝑚𝑚 𝐴𝐴. Hence, 𝐵𝐵 ∈
𝑚𝑚𝑐𝑐 − min𝒮𝒮 and 𝐵𝐵 ∉ 𝑚𝑚𝑎𝑎 − min𝒮𝒮. 

Next example shows that 𝑚𝑚− min𝒮𝒮 ⊄∗ −min𝒮𝒮 and 
𝑠𝑠 − min𝒮𝒮 ⊄∗ −min𝒮𝒮   where ∗∈ {𝑢𝑢, 𝑙𝑙,𝑚𝑚1,𝑚𝑚2}. 
 

Example 3.16: Let 𝐾𝐾 = ℝ+
2 , 𝐴𝐴 = [−1,1] ×

[−1,1],𝐵𝐵 = {(0,0)} and 𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. Then,  
 

min𝐴𝐴 = {(−1,−1)},
max𝐴𝐴 = {(1,1)},
min𝐵𝐵 = max𝐵𝐵 = {(0,0)}.

 

 
Since (0,0) ≰𝐾𝐾 (−1,−1) and (1,1) ≰𝐾𝐾 (0,0), we 

have min𝐵𝐵 ⋠𝑠𝑠 min𝐴𝐴 and max𝐴𝐴 ⋠𝑠𝑠 max𝐵𝐵, 
respectively. Then, it follows 𝐵𝐵 ⋠𝑚𝑚 𝐴𝐴 and 𝐴𝐴 ⋠𝑚𝑚 𝐵𝐵 and 
𝑚𝑚 − min𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. However, as 𝐵𝐵 = {(0,0)} ⊂ 𝐴𝐴 − 𝐾𝐾 
and 𝐴𝐴 ⊄ {(0,0)} − 𝐾𝐾 = −𝐾𝐾 we obtain 𝐵𝐵 ≼𝑢𝑢 𝐴𝐴 and 
𝐴𝐴 ⋠𝑢𝑢 𝐵𝐵, respectively. Thus, 𝐴𝐴 ∉ 𝑢𝑢 − min𝒮𝒮. Also, since 
𝐵𝐵 = {(0,0)} ⊂ 𝐴𝐴 + 𝐾𝐾 and 𝐴𝐴 ⊄ 𝐵𝐵 + 𝐾𝐾 we get 𝐴𝐴 ≼𝑙𝑙 𝐵𝐵 and 
𝐵𝐵 ⋠𝑙𝑙 𝐴𝐴 . Hence, 𝐵𝐵 ∉ 𝑙𝑙 − min𝒮𝒮. Furthermore, since 
𝐵𝐵 ⋠𝑙𝑙 𝐴𝐴 and 𝐴𝐴 ⋠𝑢𝑢 𝐵𝐵, we have 𝐵𝐵 ⋠𝑠𝑠 𝐴𝐴 and 𝐴𝐴 ⋠𝑠𝑠 𝐵𝐵. So, 
𝑠𝑠 − min𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. In addition, it can be easily seen that 
𝐴𝐴−̇𝐵𝐵 = 𝐴𝐴 and 𝐵𝐵−̇𝐴𝐴 = ∅. Then, it follows 𝐵𝐵 ≼𝑚𝑚1 𝐴𝐴, 
𝐴𝐴 ≼𝑚𝑚2 𝐵𝐵, 𝐴𝐴 ⋠𝑚𝑚1 𝐵𝐵 and 𝐵𝐵 ⋠𝑚𝑚2 𝐴𝐴. So, 𝐴𝐴 ∉ 𝑚𝑚1 − min𝒮𝒮 
and 𝐵𝐵 ∉ 𝑚𝑚2 − min𝒮𝒮. 

The following example implies that an 𝑚𝑚−minimal 
element does not have to be an 𝑠𝑠 −minimal element.  
 

Example 3.17: Let 𝐾𝐾 = ℝ+
2 ,  𝐴𝐴 = conv {(1,0), (0,1)},

𝐵𝐵 = [1,2] × [0,1] and 𝒮𝒮 = {𝐴𝐴,𝐵𝐵}. We have  
 

min𝐵𝐵 = {(1,0)},
max𝐵𝐵 = {(2,1)},
min𝐴𝐴 = max𝐴𝐴 = 𝐴𝐴.

 

 
So, it follows min𝐴𝐴 ⋠𝑠𝑠 min𝐵𝐵 and min𝐵𝐵 ⋠𝑠𝑠 min𝐴𝐴. 

Hence, 𝐴𝐴 ⋠𝑚𝑚 𝐵𝐵 and 𝐵𝐵 ⋠𝑚𝑚 𝐴𝐴. Then, we obtain 𝑚𝑚−
min𝒮𝒮 = {𝐴𝐴,𝐵𝐵}.  Also, we get 𝐴𝐴 ≼𝑙𝑙 𝐵𝐵,𝐴𝐴 ≼𝑢𝑢 𝐵𝐵,𝐵𝐵 ⋠𝑙𝑙 𝐴𝐴 
and  𝐵𝐵 ⋠𝑢𝑢 𝐴𝐴 which imply  𝐴𝐴 ≼𝑠𝑠 𝐵𝐵,𝐵𝐵 ⋠𝑠𝑠 𝐴𝐴. Thus, 𝐵𝐵 ∉ 𝑠𝑠 −
min𝒮𝒮. 

The results in this article are summarized in Figures 1-
9 below.  
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We have  

 
 

So, these relations will be omitted in the figures. 

 
Figure 1. Comparison of 𝑐𝑐 −minimal elements with others 

 

 
Figure 2. Comparison of 𝑚𝑚𝑐𝑐 −minimal elements with others 

under quasi domination assumption 
 

 
Figure 3. Comparison of 𝑚𝑚𝑐𝑐 −minimal elements with others 

without quasi domination assumption 
 

 
Figure 4. Comparison of 𝑚𝑚𝑎𝑎 −minimal elements with others 

under quasi domination assumption 

 
Figure 5. Comparison of 𝑚𝑚𝑎𝑎 −minimal elements with others 

without quasi domination assumption 
 

 
Figure 6. Comparison of 𝑚𝑚 −minimal elements with others 

under quasi domination property assumption 
 

 
Figure 7. Comparison of 𝑚𝑚 −minimal elements with others 

without quasi domination assumption 
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