
Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi  https://dergipark.org.tr/sdufeffd  

Süleyman Demirel University Faculty of Arts and Sciences Journal of Science  e-ISSN: 1306-7575 

Research Article, 2023, 18(3): 203-212, DOI: 10.29233/sdufeffd.1262031 

 

 

203 

 

On Neutrosophic Square Matrices and Solutions of Systems of Linear Equations 

 

Yılmaz Çeven1,*, Ali İhsan Sekmen2 

1Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, 32260, 

Isparta, TURKEY  

https://orcid.org/0000-0002-2968-1546 

*corresponding author: yilmazceven@sdu.edu.tr 
2 Graduate School of Natural and Applied Sciences, Süleyman Demirel University, 32260, Isparta, 

TURKEY 

https://orcid.org/0000-0002-5342-0418 

 

(Received: 08.03.2023, Accepted: 31.08.2023, Published: 23.11.2023) 

Abstract: We started this work with a theorem that shows in which case the abbreviation rule 

for neutrosophic real numbers is true. We then detail in which cases the division of two 

neutrosophic real numbers yields a new neutrosophic number. Then, the solution cases of a 

neutrosophic linear equation with one unknown were examined. After calculating the 

determinant of a square matrix and giving the necessary and sufficient conditions for a square 

matrix to be invertible, the solution conditions of the systems of equations with the number of 

unknowns equal to the number of equations were examined. 

Key words: Neutrosophic matrices, Neutrosophic systems of linear equations, Determinant of 
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1. Introduction 

Smarandache firstly studied the concept of neutrosophy to address the uncertainty in 

nature and science. [1]. Neutrosophy has important applications in a lot of fields and 

researchers done many studies on the subject. Neutrophic number theory and neutrophic 

linear algebra are just two of these fields. Some of the studies carried out in these areas 

are given in the references [2-10].  

We firstly started this work with a theorem that shows in which case the abbreviation 

rule for neutrosophic real numbers is true. We then detail in which cases the division of 

two neutrosophic real numbers yields a new neutrosophic number. Then, the solution 

cases of a neutrosophic linear equation with one unknown were examined. After 

calculating the determinant of a square matrix and giving the necessary and sufficient 

conditions for a square matrix to be invertible, the solution conditions of the systems of 

equations with the number of unknowns equal to the number of equations were 

examined. Also, we gave some important examples to clarify the theory. 

2. Material and Method 

In this section, some definitions and theorems of neutrosophic numbers and matrices 

will be given, which we will use in later chapters. As known, the set of neutrosophic 

real numbers 𝑖𝑠 𝑅[𝐼] = {𝛼 + 𝛽𝐼|𝛼, 𝛽 ∈ 𝑅, 𝐼2 = 𝐼} and the I used here is called the 

unknown. 
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The following definition is given for neutrosophic rational numbers in [3]. But it would 

not be wrong to define it for real numbers as well. 

Definition 2.1 [3] Let 𝛼 + 𝛽𝐼 ∈ 𝑅[𝐼]. The norm and the conjugate of 𝛼 + 𝛽𝐼 are defined 

by 𝑁(𝛼 + 𝛽𝐼) = 𝛼(𝛼 + 𝛽) and 𝛼 + 𝛽𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛼 + 𝛽 − 𝛽𝐼. 

It is seen that (𝛼 + 𝛽𝐼)(𝛼 + 𝛽𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅) = 𝑁(𝛼 + 𝛽𝐼). Also, it is seen that 𝑁(𝛼 + 𝛽𝐼) = 0 if 

and only if 𝛼 = 0 or 𝛼 + 𝛽 = 0. 

Also, it is true that  𝑁(𝓍. 𝓎) = 𝑁(𝓍). 𝑁(𝓎) for 𝓍,𝓎 ∈ 𝑅[𝐼] by Proposition 3.5 (vi) in 

[3]. 

Definition 2.2 [8] Let 𝐴 = 𝑁 +𝑀𝐼  be a 𝑛 × 𝑛 neutrosophic matrix where 𝑁 and 𝑀 are 

𝑛 × 𝑛 real matrices. The determinant of A is defined as 

𝑑𝑒𝑡𝐴 = 𝑑𝑒𝑡𝑁 + (det(𝑁 +𝑀) − 𝑑𝑒𝑡𝑁)𝐼. 

Theorem 2.3 [8] Let 𝐴 = 𝑁 +𝑀𝐼  be a 𝑛 × 𝑛 neutrosophic matrix where N and M are 

𝑛 × 𝑛 real matrices. Then a necessary and sufficient condition for the inverse of A to 

exist 𝑁 and 𝑁 +𝑀 invertible matrices and 

𝐴−1 = 𝑁−1 + ((𝑁 +𝑀)−1 − 𝑁−1)𝐼. 

3. Results  

Theorem 3.1 Let 𝛼, 𝛽, 𝛾 ∈ 𝑅[𝐼]. If 𝛼𝛽 = 𝛼𝛾 and 𝑁(𝛼) ≠ 0, then 𝛽 = 𝛾. 

Proof. Let 𝛼𝛽 = 𝛼𝛾 and 𝑁(𝛼) ≠ 0 where 𝛼 = 𝛼1 + 𝛼2𝐼, 𝛽 = 𝛽1 + 𝛽2𝐼 and 𝛾 = 𝛾1 +
𝛾2𝐼. Since 𝑁(𝛼) = 𝛼(𝛼 + 𝛽) ≠ 0, we have 𝛼 ≠ 0 and 𝛼 + 𝛽 ≠ 0. Since 𝛼𝛽 = 𝛼𝛾, we 

have (𝛼1 + 𝛼2𝐼)(𝛽1 + 𝛽2𝐼) = (𝛼1 + 𝛼2𝐼)(𝛾1 + 𝛾2𝐼) ⇒ 𝛼1𝛽1 + ((𝛼1 + 𝛼2)(𝛽1 + 𝛽2) −

𝛼1𝛽1)𝐼 = 𝛼1𝛾1 + ((𝛼1 + 𝛼2)(𝛾1 + 𝛾2) − 𝛼1𝛾1)𝐼. Hence, we get 𝛼1𝛽1 = 𝛼1𝛾1 and since 

𝛼1 ≠ 0, we have  𝛽1 = 𝛾1. Also, since (𝛼1 + 𝛼2)(𝛽1 + 𝛽2) = (𝛼1 + 𝛼2)(𝛾1 + 𝛾2), 𝛼 +
𝛽 ≠ 0 and 𝛽1 = 𝛾1, we have 𝛽2 = 𝛾2. Consequently, it is seen that 𝛽 = 𝛾. 

 

Definition 3.2 Let 0 ≠ 𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼 ∈ 𝑅[𝐼]. If there exists a neutrosophic real number 

𝑘 + 𝑡𝐼 ∈ 𝑅[𝐼] such that 𝑐 + 𝑑𝐼 = (𝑘 + 𝑡𝐼)(𝑎 + 𝑏𝐼), then we say 𝑎 + 𝑏𝐼 divides c+𝑑𝐼 

and denote 𝑎 + 𝑏𝐼|𝑐 + 𝑑𝐼. In this case 
c dI

a bI




= 𝑘 + 𝑡𝐼 ∈ 𝑅[𝐼]. 

Note that the set 𝑅[𝐼] is not closed according to the division. The quotient of two 

neutrosophic numbers may not be a neutrosophic number. 

Example 3.3 Since 10 + 5𝐼 = (2 + 3𝐼)(5 − 2𝐼), we have 2+3𝐼|10 + 5𝐼. But there do 

not exist any neutrosophic real number 𝑘 + 𝑡𝐼 such that 2 + 4𝐼 = (𝑘 + 𝑡𝐼)(1 − 𝐼), we 

have 1−𝐼 ∤ 2 + 4𝐼. 

Teorem 3.4 Let 0 ≠ 𝛼 + 𝛽𝐼,  𝛾 + 𝛿𝐼 ∈ 𝑅[𝐼]  and 𝑥 =
I

I

 

 




. Then   

𝑖)   if 𝑁(𝛼 + 𝛽𝐼) ≠ 0, then x  



 ( )

 

  
𝐼 ∈ 𝑅[𝐼], 

𝑖𝑖)  in case 𝑁(𝛼 + 𝛽𝐼) = 0,  
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a) if 𝛼 = 0, 𝛾 ≠ 0, then 𝑥 =
I

I

 

 




=
𝛾+𝛿𝐼
𝛽𝐼

 ∉ 𝑅[𝐼],  

b) if 𝛼 = 0, 𝛾 = 0, then 𝑥 =
I

I

 

 




=

I

I




 = 𝑚 + 𝑛𝐼 ∈ 𝑅[𝐼] where 𝑚 + 𝑛 =




 , 

c) if 𝛽 = −𝛼 ≠ 0, 𝛾 + 𝛿 ≠ 0, then 𝑥 =
I

I

 

 




=

I

I

  

 
∉ 𝑅[𝐼],  

d) if 𝛽 = −𝛼 ≠ 0, 𝛾 = −𝛿 ≠ 0, then 𝑥 =
I

I

 

 




=

I

I

 

 




=




+ 𝑛𝐼 ∈ 𝑅[𝐼] where   

𝑛 ∈ 𝑅.  

Proof. 𝑖)   Let 𝑁(𝛼 + 𝛽𝐼) = 𝛼(𝛼 + 𝛽) ≠ 0. Then 𝛼 ≠ 0 and 𝛼 + 𝛽 ≠ 0.  Hence, we 

get  

                                              𝑥 =
I

I

 

 




 

=
( )( )

( )( )

I I

I I

    

    

  

  
 

=
( ) ( )

( )N I

    

 

  


 

   =



+

( )

 

  
𝐼 ∈ 𝑅[𝐼]. 

 

𝑖𝑖) Let 𝑁(𝛼 + 𝛽𝐼) = 𝛼(𝛼 + 𝛽) = 0. Then 𝛼 = 0 or 𝛼 + 𝛽 = 0. (since 𝛼 + 𝛽𝐼 ≠ 0, 𝛼 

and 𝛽 can not both be zero)  Firstly, let 𝛼 = 0 and 𝛼 + 𝛽 ≠ 0. Then if 𝑥 =
I

I

 

 




=

𝑚 + 𝑛𝐼 for any 𝑚, 𝑛 ∈ 𝑅, we have 𝑚𝛼 = 𝛾 and (𝑚 + 𝑛)(𝛼 + 𝛽) = 𝛾 + 𝛿. (a) Since 

𝛼 = 0, if 𝛾 ≠ 0, there do not exist any 𝑚 ∈ 𝑅 such that 𝑚𝛼 = 𝛾. That is, 𝑥 =
I

I

 




∉

𝑅[𝐼] for 𝛾 ≠ 0. (b) If 𝛼 = 0, 𝛾 = 0, the equality 𝑚𝛼 = 𝛾 is true for all 𝑚 ∈ 𝑅. From the 

equality (𝑚 + 𝑛)(𝛼 + 𝛽) = 𝛾 + 𝛿, we have 𝑚 + 𝑛 =



. So 𝑥 =

I

I

 

 




=

I

I




=

𝑚 + 𝑛𝐼 ∈ 𝑅[𝐼] where 𝑚 + 𝑛 =



.  (c) Let 𝛼 ≠ 0 and 𝛼 + 𝛽 = 0. Then we have 𝛽 =

−𝛼.  From the equality 𝑚𝛼 = 𝛾, we have 𝑚 =



 and from the equality (𝑚 + 𝑛)(𝛼 +

𝛽) = 𝛾 + 𝛿, we have (



+ 𝑛) . 0 = 𝛾 + 𝛿. Then if 𝛾 + 𝛿 ≠ 0, there are not any 𝑛 ∈ 𝑅 

such that  (



+ 𝑛) . 0 = 𝛾 + 𝛿. Hence 𝑥 =

I

I

 

 




=

I

I

 

 




∉ 𝑅[𝐼] where 𝛾 + 𝛿 ≠

0. (d) If 𝛾 + 𝛿 = 0, it is true the equality (



+ 𝑛) . 0 = 𝛾 + 𝛿 for all 𝑛 ∈ 𝑅. In this 

case  𝑥 =
I

I

 

 




=

I

I

 

 




=




 +𝑛𝐼 ∈ 𝑅[𝐼] for all 𝑛 ∈ 𝑅.  
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Example 3.5 
2 I

1 I




= 2 −

1

2
𝐼 ∈ 𝑅, 

2 I

I


∉ 𝑅[𝐼], 

4I

2I
= 𝑚 + 𝑛𝐼 ∈ 𝑅[𝐼] where 𝑚 + 𝑛 =

2, 
2 I

1 I




∉ 𝑅[𝐼], 

2 2I

1 I




= 2 + 𝑛𝐼 ∈ 𝑅[𝐼] where 𝑛 ∈ 𝑅.  

Theorem 3.6 Let 𝛼𝑥 = 𝛽 be a neutrosophic liner equation where 0 ≠ 𝛼, 𝛽 ∈ 𝑅[𝐼].  

i) If 𝑁(𝛼) ≠ 0, then 𝛼𝑥 = 𝛽 has unique solution in 𝑅[𝐼] and the solution is 𝑥 = 
�̅�.𝛽

𝑁(𝛼)
  

ii) If 𝑁(𝛼) = 0 and 𝛼|𝛽, then 𝛼𝑥 = 𝛽 has an infinite number of solutions. 

iii) If 𝑁(𝛼) = 0 and 𝛼 ∤ 𝛽, then 𝛼𝑥 = 𝛽 has no solutions in 𝑅[𝐼]. 

Proof. It is clear by Theorem 3.4. 

Example 3.7 i) Consider the neutrosophic linear equation (2 + 3𝐼)𝑥 = 4 − 𝐼. Since 

𝑁(2 + 3𝐼) = 10 ≠ 0 and 2 + 3𝐼̅̅ ̅̅ ̅̅ ̅̅ = 5 − 3𝐼, we have 
(2 3I)(4 I) 7

x 2 I
N(2 3I) 5

 
  


. 

ii) For (1 − 𝐼)𝑥 = 3 − 3𝐼, since 1 − 𝐼 ≠ 0,𝑁(1 − 𝐼) = 0 and 1 − 𝐼|3 − 3𝐼, the 

equation has an infinite number of solutions: Let 𝑥 = 𝑎 + 𝑏𝐼. Then since  (1 − 𝐼)(𝑎 +
𝑏𝐼) = 3 − 3𝐼, we have 𝑎 − 𝑎𝐼 = 3 − 3𝐼. Hence, we see that 𝑎 = 3, 𝑏 ∈ 𝑅. Then the 

solution set is {3 + 𝑏𝐼: 𝑏 ∈ 𝑅}. 
iii) Consider the neutrosophic linear equation (1 − 𝐼)𝑥 = 2 + 𝐼. We have 1 − 𝐼 ≠
0, 𝑁(1 − 𝐼) = 0 and  1 − 𝐼 ∤ 2 + 𝐼. Since there are no neutrosophic number 𝑎 + 𝑏𝐼 such 

that (1 − 𝐼)(𝑎 + 𝑏𝐼) = 2 + 𝐼, the equation has no solutions. 

iv)  The solution set of the equation 2𝐼𝑥 = 4𝐼 is {𝑚 + 𝑛𝐼:𝑚 + 𝑛 = 2,𝑚, 𝑛 ∈ 𝑅}. 

Consider the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 (𝑎 ≠ 0 or 𝑏 ≠ 0) in 𝑅. It is known that 

i) if 𝑏 ≠ 0, then the solution set is {(𝑥,
𝑐−𝑎𝑥
𝑏
  ) : 𝑥 ∈ 𝑅}, 

ii) if 𝑎 ≠ 0, then the solution set is {(
𝑐−𝑏𝑦
𝑎

, 𝑦) : 𝑦 ∈ 𝑅}. 

Now we investigate the solutions of a neutrosophic liner equation with two variables. 

Theorem 3.8 Let 𝛼𝑥 + 𝛽𝑦 = 𝛾 be a neutrosophic liner equation with two variables 

where 𝛼, 𝛽, 𝛾 ∈ 𝑅[𝐼] and 𝛼 ≠ 0, 𝛽 ≠ 0. 

i) If 𝑁(𝛼) ≠ 0, then the solution set is {(
(𝛾−𝛽𝑦)�̅�
𝑁(𝛼)

, 𝑦) |𝑦 ∈ 𝑅[𝐼]}, 

ii) If 𝑁(𝛽) ≠ 0, then the solution set is {(𝑥,
(𝛾−𝛼𝑥)�̅�
𝑁(𝛽)

) |𝑥 ∈ 𝑅[𝐼]}, 

iii) If 𝑁(𝛼) = 0 𝑎𝑛𝑑 𝑁(𝛽) = 0, then  

     a) there exist infinitely many 𝑦 ∈ 𝑅[𝐼] for all 𝑥 that satisfies the property 𝛽|𝛾 − 𝛼𝑥, 

     b) there do not exist any 𝑦 ∈ 𝑅[𝐼] for an 𝑥 that satisfies the property 𝛽 ∤ 𝛾 − 𝛼𝑥, 

or 

     c) there exist infinitely many 𝑥 ∈ 𝑅[𝐼] for all 𝑦 that satisfies the property 𝛼|𝛾 − 𝛽𝑦, 

     d) there do not exist any 𝑥 ∈ 𝑅[𝐼] for an y that satisfies the property 𝛼 ∤ 𝛾 − 𝛽𝑦 

Proof.  i) If 𝑁(𝛼) ≠ 0, then we have 𝑥 =  
𝛾−𝛽𝑦

𝛼
 = 

(𝛾−𝛽𝑦)�̅�

𝛼�̅�
 = 

(𝛾−𝛽𝑦)�̅�

𝑁(𝛼)
 ∈ 𝑅[𝐼]. 

Then the solution set is {(
(𝛾−𝛽𝑦)�̅�
𝑁(𝛼)

, 𝑦) |𝑦 ∈ 𝑅[𝐼]} 𝑦 ∈ 𝑅[𝐼]. 

ii) 𝑁(𝛽) ≠ 0, the proof is similar (i). 
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iii) Let 𝑁(𝛼) = 0 𝑎𝑛𝑑 𝑁(𝛽) = 0. From the equation 𝛼𝑥 + 𝛽𝑦 = 𝛾, we have 𝑦 =
𝛾−𝛼𝑥
𝛽

. 

In this case, by Theorem 3.6, if 𝛽|𝛾 − 𝛼𝑥  for any 𝑥 ∈ 𝑅[𝐼], then there exist infinitely 

many  𝑦 =
𝛾−𝛼𝑥
𝛽

 ∈ 𝑅[𝐼]. But if 𝛽 ∤ 𝛾 − 𝛼𝑥 for any 𝑥 ∈ 𝑅[𝐼], then there do not exist an 

𝑦 =
𝛾−𝛼𝑥
𝛽

 in R[I]. Hence (a) and (b) are true. Similarly (c) and (d) are true. 

In [9], according to Alhasan’s analysis in part 3.1, every neutrosophic linear equation 

with two variables is solvable. But as seen from the Theorem 3.8, some equations may 

be unsolvable. 

Example 3.9 i) Consider the equation (1 + 𝐼)𝑥 + (2 − 𝐼)𝑦 = 1 + 2𝐼. Since 𝑁(2 −
𝐼) = 2 ≠ 0 and 2 − 𝐼̅̅ ̅̅ ̅̅ ̅ = 1 + 𝐼, we see that, the solution is 

𝑦 = 
1+2𝐼

2−𝐼
 - 
1+𝐼

2−𝐼
 𝑥  

    =  
1

2
 - 
5

2
 I – ( 

1
2
 + 
3

2
 I)x  

for all 𝑥 ∈ 𝑅[𝐼]. 

ii)  Consider the equation 2𝐼𝑥 + 3𝐼𝑦 = 4𝐼. We see that 𝑁(2𝐼) = 0 and 𝑁(3𝐼) = 0. In 

this case,  since 𝑦 = 
4𝐼−2𝐼𝑥

3𝐼
 and  3𝐼|4𝐼 − 2𝐼𝑥 for all 𝑥 ∈ 𝑅[𝐼], there exist infinitely 

many solutions. For example, for 𝑥 = 0, 𝑦 = 𝑎 + 𝑏𝐼 (𝑎 + 𝑏 =
4

3
) are the solutions 

since 
4I

3I
= {𝑎 + 𝑏𝐼 ∈ 𝑅[𝐼]|𝑎 + 𝑏 =

4

3
} .  

iii) Consider the equation 2𝐼𝑥 + 3𝐼𝑦 = 1 + 4𝐼. We see that 𝑁(2𝐼) = 0 and 𝑁(3𝐼) = 0. 

In this case, since 𝑦 = 
1+4𝐼−2𝐼𝑥

3𝐼
 and 3𝐼 ∤ 1 + 4𝐼 − 2𝐼𝑥 for all 𝑥 ∈ 𝑅[𝐼],  So this 

equation has no solution.   

 

In [8, Definition 3.2], the determinant of the matrix 𝑀 = 𝐴 + 𝐵𝐼 is given as a definition 

in terms of 𝐴 and 𝐵.  In the following theorem, we give this property as a theorem. 

Theorem 3.10  Let 𝒜 and ℬ be 𝑛 × 𝑛 real matrix and ℳ = 𝒜 +ℬ𝐼. Then the 

determinant of ℳ is 

𝑑𝑒𝑡ℳ = 𝑑𝑒𝑡𝒜 + (det(𝒜 + ℬ) − 𝑑𝑒𝑡𝒜)𝐼. 

Proof. Let ℳ = 𝒜 +ℬ𝐼 = [𝑚𝑖𝑗]2×2, 𝒜 = [𝑎𝑖𝑗]2×2 and ℬ = [𝑏𝑖𝑗]2×2. Then 

det(ℳ) = 𝑚11𝑚22 −𝑚12𝑚21 

               = (𝑎11 + 𝑏11𝐼)(𝑎22 + 𝑏22𝐼) − (𝑎12 + 𝑏12𝐼)(𝑎21 + 𝑏21𝐼) 

              = 𝑎11𝑎22 − 𝑎12𝑎21 + (𝑎11𝑏22 + 𝑏11𝑎22 + 𝑏11𝑏22 − 𝑎12𝑏21 − 𝑏12𝑎21 −
𝑏12𝑏21)𝐼 

       = 𝑎11𝑎22 − 𝑎12𝑎21+(𝑎11𝑏22 + 𝑏11𝑎22 + 𝑏11𝑏22 + 𝑎11𝑎22 − 𝑎12𝑎21 − 𝑎11𝑎22 −
𝑎12𝑎21 −𝑎12𝑏21 − 𝑏12𝑎21 − 𝑏12𝑏21)𝐼 



DOI: 10.29233/sdufeffd.1262031  2023, 18(3): 203-212y 

 

 

208 

 

        = 𝑎11𝑎22 − 𝑎12𝑎21
− ((𝑎11 + 𝑏11)(𝑎22 + 𝑏22) − (𝑎21 + 𝑏21)(𝑎12 + 𝑏12) − (𝑎11𝑎22
− 𝑎12𝑎21))𝐼 

        = 𝑑𝑒𝑡𝒜 + (det(𝒜 + ℬ) − 𝑑𝑒𝑡𝒜)𝐼. 

Hence the claim is true for case n=2. Now suppose that the assertion is true for case n-1. 

Then, by the cofactor expansion about the first row, we have 

det(ℳ) = 𝑚11𝑀11 +𝑚12𝑀12 +⋯+𝑚1𝑛𝑀1𝑛 

where 𝑀1𝑗 is the cofactor of 𝑚1𝑗 = 𝑎1𝑗 + 𝑏1𝑗𝐼 for 1 ≤ 𝑗 ≤ 𝑛. Let 𝑀1𝑗
′ , 𝐴1𝑗

′  and 𝐵1𝑗
′  be 

the (𝑛 − 1) × (𝑛 − 1) submatrices of ℳ,𝒜 and ℬ obtained by deleting the first row 

and jth column respectively. Then since 𝑀1𝑗
′ = 𝐴1𝑗

′ + 𝐵1𝑗
′ 𝐼, we have by induction 

hypothesis, and 𝑀1𝑗 = (−1)
1+𝑗𝑑𝑒𝑡𝑀1𝑗

′ = (−1)1+𝑗(𝑑𝑒𝑡𝐴1𝑗
′ + (det (𝐴1𝑗

′ + 𝐵1𝑗
′ ) −

det 𝐴1𝑗
′ )𝐼).  Hence, we get that 

det(ℳ) = 𝑚11(𝑑𝑒𝑡𝐴11
′ + (det (𝐴11

′ + 𝐵11
′ ) − det 𝐴11

′ )𝐼)
− 𝑚12(𝑑𝑒𝑡𝐴12

′ + (det (𝐴12
′ + 𝐵12

′ ) − det 𝐴12
′ )𝐼) 

           +⋯+𝑚1𝑛(−1)
1+𝑛(𝑑𝑒𝑡𝐴1𝑛

′ + (det (𝐴1𝑛
′ + 𝐵1𝑛

′ ) − det 𝐴1𝑛
′ )𝐼) 

               = 𝑚11𝑑𝑒𝑡𝐴11
′ −𝑚12𝑑𝑒𝑡𝐴12

′ +⋯+𝑚1𝑛(−1)
1+𝑛𝑑𝑒𝑡𝐴1𝑛

′  

      +(𝑚11 det(𝐴11
′ + 𝐵11

′ ) − 𝑚12 det(𝐴12
′ + 𝐵12

′ ) + ⋯+𝑚1𝑛(−1)
1+𝑛 det(𝐴1𝑛

′ + 𝐵1𝑛
′ ) 

                      −(𝑚11𝑑𝑒𝑡𝐴11
′ −𝑚12𝑑𝑒𝑡𝐴12

′ +⋯+𝑚1𝑛(−1)
1+𝑛𝑑𝑒𝑡𝐴1𝑛

′ ))𝐼 
                    = 𝑑𝑒𝑡𝒜 + (det(𝒜 + ℬ) − 𝑑𝑒𝑡𝒜)𝐼. 

So, theorem is true for all 𝑛 ∈ 𝑍+. 

We can write the following theorem examining the existence of the matrix 𝑀−1. Note 

that if 𝑁(𝑎 + 𝑏𝐼) = 0 for any 𝑎 + 𝑏𝐼 ∈ 𝑅[𝐼], we have 𝑎(𝑎 + 𝑏) = 0. So, we see that 

𝑎 = 0 or 𝑎 + 𝑏 = 0. Then 𝑎 + 𝑏𝐼 is a neutrosophic number such that 𝑏𝐼 or 𝑎 − 𝑎𝐼. 
Also, we see that 𝑁(𝑑𝑒𝑡𝑀) = 𝑑𝑒𝑡𝐴. 𝑑𝑒𝑡(𝐴 + 𝐵) where 𝑀 = 𝐴 + 𝐵𝐼 by Theorem 3.10, 

Definition 2.1 and Definition 2.2.  

Theorem 3.11 Let 𝒜 and ℬ be 𝑛 × 𝑛 real matrix and ℳ = 𝒜 +ℬ𝐼. Then 

𝑁(𝑑𝑒𝑡ℳ) ≠ 0 if and only if ℳ is invertible. 

Proof. Let 𝑁(𝑑𝑒𝑡ℳ) ≠ 0. Then we have 𝑑𝑒𝑡𝒜 ≠ 0 and 𝑑𝑒𝑡 (𝒜 + ℬ) ≠ 0. Hence 

𝑑𝑒𝑡ℳ ≠ 0. We know that ℳ.𝐴𝑑𝑗(ℳ) = 𝑑𝑒𝑡ℳ. 𝐼𝑛. Hence it is seen that 

ℳ
1

𝑑𝑒𝑡ℳ
𝐴𝑑𝑗(ℳ) = 𝐼𝑛. Say 𝐾 =

1
𝑑𝑒𝑡ℳ

𝐴𝑑𝑗(ℳ). Since 

 
1

𝑑𝑒𝑡ℳ
=

𝑑𝑒𝑡ℳ̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑒𝑡ℳ.𝑑𝑒𝑡ℳ̅̅ ̅̅ ̅̅ ̅̅  = 
𝑑𝑒𝑡ℳ̅̅ ̅̅ ̅̅ ̅̅

𝑁(𝑑𝑒𝑡ℳ)
 ∈ 𝑅[𝐼], all entries of the matrix K are 

neutrosophic real numbers and 𝐾 =ℳ−1. So ℳ is invertible matrix. Conversely, let 

ℳ is invertible matrix. Then there exists a neutrosophic matrix 𝑁 = 𝐶 + 𝐷𝐼 such that 

ℳ𝑁 = 𝑁ℳ = 𝐼𝑛. Hence since (𝒜 + ℬ𝐼)(𝐶 + 𝐷𝐼) = 𝐼𝑛 and (𝐶 + 𝐷𝐼)(𝒜 + ℬ𝐼) = 𝐼𝑛, 

we have 𝒜𝐶 = 𝐶𝒜 = 𝐼𝑛 and (𝒜 + ℬ)(𝐶 + 𝐷) = (𝐶 + 𝐷)(𝒜 + ℬ) = 𝐼𝑛. So 𝒜 and 

𝒜 +ℬ are invertible real matrices. In this case, since 𝑑𝑒𝑡𝒜 ≠ 0 and det (𝒜 + ℬ) ≠ 0, 

we obtain 𝑁(ℳ) = 𝑑𝑒𝑡𝒜. det (𝒜 + ℬ) ≠ 0. Note that, in case 𝑁(detℳ) = 0 (this 

includes 𝑑𝑒𝑡ℳ = 0), suppose that ℳ is invertible. Then since ℳ.ℳ−1 = 𝐼𝑛, we have 

𝑑𝑒𝑡(ℳ.ℳ−1) = 1. Hence det(ℳ) ∙ det(ℳ−1) = 1. Then the equality N(det(ℳ) ∙
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det(ℳ−1)) = 𝑁(𝑑𝑒𝑡ℳ)⏟      
0

. 𝑁(𝑑𝑒𝑡ℳ−1) = 𝑁(1) = 1 is not true. So ℳ is not an 

invertible matrix. 

Example 3.12 i) Let 𝑀 = [
1 + 𝐼 3 − 𝐼
0 0

]. Then since 𝑁(𝑑𝑒𝑡𝑀) = 𝑁(0) = 0, 𝑀 is not 

invertible. 

ii) Let 𝑀 = [
2 − 𝐼 1 + 𝐼
3 4𝐼

]. Then 𝑑𝑒𝑡𝑀 = −3 + 𝐼 ≠ 0 and 𝑁(𝑑𝑒𝑡𝑀) = 6 ≠ 0.  Hence 

𝑀 is an invertible matrix and  

𝑀−1 =
1

−3 + 𝐼
∙ [
4𝐼 −1 − 𝐼
−3 2 − 𝐼

] 

        =
−2−𝐼

(−3+𝐼)(−2−𝐼)
 .[
4𝐼 −1 − 𝐼
−3 2 − 𝐼

] 

         =
1

6
∙ (−2 − 𝐼). [

4𝐼 −1 − 𝐼
−3 2 − 𝐼

] 

          =
1

6
∙ [
−12𝐼 2 + 4𝐼
6 + 3𝐼 −4 + 𝐼

] 

iii) Let 𝑀 = [
3𝐼 0
0 2𝐼

]. Then 𝑑𝑒𝑡𝑀 = 6𝐼 ≠ 0,𝑁(𝑑𝑒𝑡𝑀) = 0. There do not exist any 

inverse of M by Theorem 3.11. As a second way, if there exists an inverse of the matrix 

𝑀 such that 𝑀−1 = [
𝑎 + 𝑏𝐼 𝑐 + 𝑑𝐼
𝑒 + 𝑓𝐼 𝑔 + ℎ𝐼

], since 𝑀.𝑀−1 = 𝐼, we get 3𝐼(𝑎 + 𝑏𝐼) = 1 and 

2𝐼(𝑔 + ℎ𝐼) = 1. But there do not exist 𝑎, 𝑏 ∈ 𝑅 and 𝑔, ℎ ∈ 𝑅 satisfying the above 

equations by Theorem 3.4. So, the matrix 𝑀 do not have any inverse. 

Remark 1. By Theorem 3.11 and Example 3.12 (iii), we see that the condition 𝑑𝑒𝑡𝑀 ≠
0 is not sufficient for 𝑀 to be an invertible matrix. Therefore, Theorem 3.4 in [8] is not 

entirely correct. 

Now, let 𝒜 and ℬ be 𝑛 × 𝑛 real matrix and C = 𝐷 + 𝐸𝐼 be 𝑛 × 1 be column vector  and 

ℳ = 𝒜 +ℬ𝐼. Consider the systems of neutrosophic linear equations ℳ𝑍 = 𝐶. 

Theorem 3.13 If 𝑁(𝑑𝑒𝑡𝑀) ≠ 0, then the systems of neutrosophic linear equation 𝑀𝑍 =
𝐶 has unique solution and this solution is 𝑍 = 𝑀−1𝐶. 

Proof. By Theorem 3.11, 𝑀 is an invertible matrix. Multiplying 𝑀𝑍 = 𝐶 by 𝑀−1 from 

the left, we get 𝑍 = 𝑀−1𝐶. If 𝑍1 𝑎𝑛𝑑 𝑍2 are two solutions of 𝑀𝑍 = 𝐶, then we have 

𝑀𝑍1 = 𝑀𝑍2. Multiplying by 𝑀−1 from the left, we get 𝑍1 = 𝑍2.  

The following Corollary states the solution vector 𝑍 = 𝑋 + 𝑌𝐼 of the systems of 

neutrosophic linear equation 𝑀𝑍 = 𝐶 in terms of 𝐴, 𝐵, 𝐶 and 𝐷 where 𝑀 = 𝐴 + 𝐵𝐼 and 

𝐶 = 𝐷 + 𝐸𝐼. 

Corollary 3.14 Let 𝒜 and ℬ are 𝑛 × 𝑛 real matrices and 𝐶 𝑎𝑛𝑑 𝐷 are 𝑛 × 1 real 

column vector. Let ℳ = 𝒜 +ℬ𝐼 be an 𝑛 × 𝑛 matrix and C = 𝐷 + 𝐸𝐼 be 𝑛 × 1 be 

column vector.  If 𝑁(𝑑𝑒𝑡𝑀) ≠ 0, then the solution of the systems of neutrosophic linear 

equations 𝑀𝑍 = 𝐶 is the vector 𝑍 = 𝑋 + 𝑌𝐼 where 𝑋 = 𝒜−1𝐷 and 𝑌 = (𝒜 +
ℬ)−1(𝐷 + 𝐸) −𝒜−1𝐷. 

Proof. By Theorem 3.13, we have 𝑍 = 𝑀−1𝐶. Hence using Theorem 2.3, we obtain that 
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𝑍 = 𝑋 + 𝑌𝐼 
    = 𝑀−1𝐶 

    = (𝒜−1 + ((𝒜 + ℬ)−1 −𝒜−1)𝐼)(𝐷 + 𝐸𝐼) 
    = 𝒜−1𝐷 + (𝒜−1𝐸 + (𝒜 + ℬ)−1𝐷 −𝒜−1𝐷 + (𝒜 + ℬ)−1𝐸 −𝒜−1𝐸)𝐼 
    = 𝒜−1𝐷 + ((𝒜 + ℬ)−1(𝐷 + 𝐸) −𝒜−1𝐷)𝐼. 

Example 3.15 Consider the systems of neutrosophic equations 

(2 − 𝐼)𝑍1 + (1 + 𝐼)𝑍2 = 1 + 2𝐼 

                   3𝑍1 + 4𝐼𝑍2 = 3 + 4𝐼. 

Then 𝑀 = [
2 − 𝐼 1 + 𝐼
3 4𝐼

] = [
2 1
3 0

]
⏟  
𝐴

+ [
−1 1
0 4

]
⏟    

𝐵

𝐼, 𝐶 = [
1 + 2𝐼
3 + 4𝐼

] = [
1
3
]

⏟
𝐷

+ [
2
4
]

⏟
𝐸

𝐼, 

𝑍 = [
𝑍1
𝑍2
]. If we use Theorem 3.13, since 𝑀−1 =

1

6
[
−12𝐼 2 + 4𝐼
6 + 3𝐼 −4 + 𝐼

], we have  

𝑍 = 𝑀−1𝐶 = [
1

−1 + 2𝐼
]. If we use the Corollary 3.14, since 𝐴−1 =

1

3
[
0 −1
−3 2

], 

 (𝐴 + 𝐵)−1 = −
1

2
[
4 −2
−3 1

], we have  

𝑋 = 𝐴−1𝐷 = [
1
−1
] , 𝑌 = (𝐴 + 𝐵)−1(𝐷 + 𝐸) − 𝐴−1𝐷 = [

0
2
]. 

 Hence 𝑍 = 𝑋 + 𝑌𝐼 = [
1

−1 + 2𝐼
]. 

In Theorem 3.13 and Corollary 3.14, we investigate the solutions of the systems of 

neutrosophic linear equations 𝑀𝑍 = 𝐶 where 𝑁(𝑑𝑒𝑡𝑀) ≠ 0. If 𝑁(𝑑𝑒𝑡𝑀) = 0, since 𝑀 

has not an inverse, we can not find a solution using the matrix 𝑀−1. In case 𝑁(𝑑𝑒𝑡𝑀) =
0, we can write the following Theorem: 

Theorem 3.16 If 𝑑𝑒𝑡𝑀 ≠ 0 but  𝑁(𝑑𝑒𝑡𝑀) = 0, then the systems of neutrosophic linear 

equations 𝑀𝑍 = 𝐶 has either more than one solution or no solution.  

Proof. Since 𝑑𝑒𝑡𝑀 ≠ 0 and 𝑁(𝑑𝑒𝑡𝑀) = 0, we can use Cramer’s rule. We know that ith 

component of the solution 𝑍 is 𝑍𝑖 =
i

det M

det M
  for 𝑖 = 1,2, … , 𝑛 where 𝑀𝑖 is the matrix 

obtained from 𝑀 by replacing the ith column of 𝑀 by the vector 𝐶. If 𝑑𝑒𝑡𝑀|𝑑𝑒𝑡𝑀𝑖, 
then 𝑍𝑖 ∈ 𝑅[𝐼] for all 𝑖 by Theorem 3.4. Hence  𝑀𝑍 = 𝐶 has more than one solution. If 

𝑑𝑒𝑡𝑀 ∤ 𝑑𝑒𝑡𝑀𝑖 for some 𝑖, then 𝑍𝑖 ∉ 𝑅[𝐼]. Hence 𝑀𝑍 = 𝐶 has no solution. 

Example 3.17 For the system 

3𝐼𝑋 + (1 + 𝐼)𝑌 = 6𝐼 
                      2𝐼𝑌 = 4𝐼, 

𝑀 = [
3𝐼 1 + 𝐼
0 2𝐼

], 𝐶 = [
6𝐼
4𝐼
], 𝑑𝑒𝑡𝑀 = 6𝐼 ≠ 0,𝑁(𝑑𝑒𝑡𝑀) = 0. Then, by the second 

equation, we have  𝑌 =
4𝐼
2𝐼
= 𝑝 + 𝑞𝐼 (𝑝 + 𝑞 = 2, 𝑝, 𝑞 ∈ 𝑅). Substituting it in the first 

equation, we see that  𝑋 =
−𝑝+(4−𝑞)𝐼

3𝐼
. In this case, if p=0, we obtain 3𝐼|(4 − 𝑞)𝐼  and 

𝑋 =
(4−𝑞)𝐼
3𝐼

 ∈ 𝑅[𝐼]. (For 𝑝 ≠ 0, since 3𝐼 ∤ −𝑝 + (4 − 𝑞)𝐼, there are no solution) 

Hence since 𝑝 + 𝑞 = 2, we have 𝑞 = 2 and 𝑌 = 2𝐼. So, the solutions of the given 

systems of the neutrosophic linear equations are 
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𝑋 =
2𝐼

3𝐼
= {𝑢 + 𝑣𝐼: 𝑢, 𝑣 ∈ 𝑅, 𝑢 + 𝑣 =

2

3
} 

                                       𝑌 = 2𝐼. 

Note that, if 𝑑𝑒𝑡𝐴 ≠ 0, then the system 𝐴𝑋 = 𝐵 has only one solution in real linear 

algebra. 

Example 3.18 The system 

3𝐼𝑋 + (1 + 𝐼)𝑌 = 6𝐼 
                              2𝐼𝑌 = 1 + 4𝐼 

has no solutions since  2𝐼 ∤ 1 + 4𝐼. 

Corollary 3.19 Consider the system 𝑀𝑍 = 𝐶 where 𝑀 is a neutrosophic 𝑛 × 𝑛 square 

matrix and C is an 𝑛 × 1 be neutrosophic column vector.  

i) If 𝑁(𝑑𝑒𝑡𝑀) ≠ 0, then the systems of neutrosophic linear equation 𝑀𝑍 = 𝐶 has 

unique solution. (Theorem 3.13) 

ii) If 𝑑𝑒𝑡𝑀 ≠ 0 but  𝑁(𝑑𝑒𝑡𝑀) = 0, then the systems of neutrosophic linear equations 

𝑀𝑍 = 𝐶 has either more than one solution or no solution. (Theorem 3.16) 

iii) If 𝑑𝑒𝑡𝑀 = 0, the systems of equations 𝑀𝑍 = 𝐶 has either more than one solution or 

no solution. 

Remark 2. Considering Corollary 3.18 and the examples above, in Alhasan's article 

([9]), it can be seen that there are some errors in the results and some examples in 

Section 4.2. The system in Example 4.2.2 in Alhasan’s article has unlimited number 

solutions:  

𝑥 =
13I

19I
 = {𝑢 + 𝑣𝐼|𝑢, 𝑣 ∈ 𝑅, 𝑢 + 𝑣 =

13

19
} 

                                   𝑦 =
1

19
 I 

are the solutions of the equation of the systems: 

2𝐼𝑥 + 7𝑦 = 𝐼 

3𝐼𝑥 + 𝑦 = 2𝐼. 

4. Conclusion 

In this paper, we firstly researched the subject in which cases the division of two 

neutrosophic real numbers yields a new neutrosophic number. Then, from a different 

perspective, the solution cases of a neutrosophic linear equation with one unknown were 

examined. After calculating the determinant of a square matrix and giving the necessary 

and sufficient conditions for a square matrix to be invertible, the solution conditions of 

the systems of equations with the number of unknowns equal to the number of 

equations were examined. In doing so, we used the real and neutrophic parts of a 

neutrophisophic matrix. Also, we gave some important examples to clarify the theory.  
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