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ABSTRACT

The present paper is devoted to 4-dimentional Hermitain manifold. We give a new necessary and
sufficient condition of integrability and we introduce a new class of locally conformal Kähler
manifolds that we consider a twin of the Vaisman ones. Then, some basic properties of this class is
discussed, also the existence of such manifolds is shown with concrete examples.
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1. Introduction

The study of complex manifolds has attracted the attention of many authors interested in different fields in
mathematics and physics since complex structures have proved to be an important tool in the description and
geometrization of several phenomena.

Because of their nice topological properties Kähler manifolds have been studied much more extensively than
other kinds of almost Hermitian manifolds. In the study of non-Kähler almost Hermitian manifolds it is natural
to consider those whose almost complex structure satisfies similar but weaker conditions than those of Kahler
manifolds.

Although known since 1954 from P. Libermann’s paper [4], locally conformal Kähler (l.c.K.) structures have
been intensively studied only since 1976 after the impetus given by I. Vaisman in [9]. A great number of research
papers has appeared since then studying the main properties of l.c.K. manifolds, generalized Hopf (g.H.)
manifolds, the relations with contact metric manifolds and some important classifications of submanifolds
in g.H. manifolds. In 1998, the monograph by S. Dragomir and L. Ornea [1] brought together all known results
in this field at that moment. After the book, the geometers continued to study l.c.K. manifolds and many other
interesting results have appeared so far.

A Vaisman manifold is a particular l.c.K. manifold (M,J, g) with its fundamental form Ω(., .) := g(., J.)
satisfying the relation dΩ = ω ∧ Ω, for a nonzero one-form ω, which is parallel with respect to the Levi-Civita
connection of the metric g. The one-form ω is called the Lee form. Note that many of the known l.c.K manifolds
are in fact Vaisman. Recently, in [8], the authors studied a new class of locally conformal Kähler manifolds
which will generalize the Vaisman manifold.

The present paper is devoted to Hermitian structure on a 4-dimensional manifold. In Section 2, we review
basic definitions and results that are needed to state and prove our results. In Section 3, we derive certain
necessary and sufficient conditions for almost Hermitian structure on M to be integrable and we point out
some of their consequences. In Section 4, we establish an interesting class of locally conformal Kähler manifolds
which is a twin of the Vaisman manifolds, called by us B-Hermitian manifolds. We build concrete examples
and we show that there is a one-to-one correspondence between B-Hermitian and Kenmotsu structures.

2. Review definitions and needed results

Throughout the paper, the Lie algebra of all C∞ vector fields on M will be denoted by X(M).
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2.1. Almost Hermitian manifolds

An almost complex manifold M is a differentiable manifold equipped with a (1, 1) tensor field J which
satisfies J2 = −I , where I is the identity. Such a manifold is even-dimensional. M2n is an almost Hermitian
manifold provided it is almost complex and has a Riemannian metric g for which

g(JX, JY ) = g(X,Y )

for all X,Y ∈ X(M2n) where C∞ denotes the Lie algebra of all vector fields on M . To describe the geometry of
an almost Hermitian manifold M2n, it is useful to consider two special tensors. The first, called the Nijenhuis
tensor, is a (1, 2) tensor field NJ defined by

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ]. (2.1)

An almost complex structure J is integrable if its Nijenhuis tensor NJ vanishes. A well known theorem that J
is integrable if and only if (see [5])

(∇JXJ)JY = (∇XJ)Y, (2.2)

where ∇ denote the Levi-Civita connection corresponding to g. In the case, the almost Hermitian manifold
M2n is a Hermitian manifold.
The second tensor is a 2-form Ω, called the Kähler form, and it is defined by

Ω(X,Y ) = g(X,JY )

for all X,Y ∈ X(M2n).
In the classification of Gray-Hervella [2] of almost Hermitian manifolds an interesting class that arises in the

scheme is the class corresponding to W4. This is the class of almost Hermitian manifolds (M2n, J, g) satisfying
the identity

2(n− 1)(∇XΩ)(Y, Z) = g(X,Z)δΩ(Y )− g(X,Y )δΩ(Z)

+ g(X,JZ)δΩ(JY )− g(X, JY )δΩ(JZ), (2.3)

where δΩ denotes the codifferential of the form Ω. For an adapted local frame given by {ei}1≤i≤4, δΩ is given
by

δΩ(X) =
(
∇eiΩ

)
(ei, X)

= −g
(
(∇eiJ)ei, X). (2.4)

An important fact about the class W4 is noteworthy, any manifold in W4 automatically has an integrable almost
complex structure.

Definition 2.1. [1, 7] A Hermitian manifold (M,J, g) is called locally conformal Kähler (shortly, l.c.K) manifold
if there exists a closed one-form ω (called the Lee form) such that:

dΩ = ω ∧ Ω.

It is well known that a locally conformal Kähler manifold belong to the class W4. In [1], the 2n-dimensional
l.c.K manifolds are characterized by:

2(∇XJ)Y = θ(Y )X − ω(Y )JX − g(X,Y )A− Ω(X,Y )B, (2.5)

where θ = ω ◦ J and A = −JB are respectively the anti-Lee form and the anti-Lee vector field.
The most important subclass of l.c.K manifolds is defined by the parallelism of the Lee form with respect to

the Levi-Civita connection of g

Definition 2.2. [9] An l.c.K manifold (M,J, ω, g) is called a Vaisman manifold if ∇ω = 0.

Also, the almost Hermitian manifold M2n is an almost Kähler manifold if Ω is closed, i.e., dΩ = 0. If both
dΩ = 0 and NJ = 0 are satisfied, then M2n is called a Kähler manifold. Recall that dΩ = 0 and NJ = 0 are
equivalent to

∇J = 0.

dergipark.org.tr/en/pub/iejg 698

https://dergipark.org.tr/en/pub/iejg


B. Gherici

Torse forming vector fields were introduced by K. Yano [11] satisfies

∇Xξ = aX + η(X)ξ, (2.6)

for some smooth function a and 1-form η on M . The 1-form η is called the generating form and the function a
is called the conformal scalar.

Further, a complex analogue of a torse forming vector field is called K-torse forming vector field and it was
introduced by S.Yamaguchi and W. N. Yu [10],

∇Xξ = aX + bJX + η1(X)ξ + η2(X)Jξ, (2.7)

where a and b are functions, η1 and η2 are 1-forms on M . The functions a and b (resp. 1-forms η1 and η2)
appearing in (2.7) will be called the associated functions (resp. forms) of ξ. Moreover if the associated functions
a and b satisfy a2 + b2 ̸= 0 in M , then we call such a vector field a proper K-torse-forming vector field. For the
existence of torse-forming vector field on Riemannian manifold see for example [10].

Finally, we recall the Koszul’s formula for the metric g which is used to calculate the components of the
Levi-Civita connection ∇

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g
(
X, [Y,Z]

)
+ g

(
Y, [Z,X]

)
+ g

(
Z, [X,Y ]

)
. (2.8)

For more background on almost complex manifolds, we refer to [1, 12].

2.2. Almost contact metric manifolds

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost contact metric manifold if there
exist on M a (1, 1) tensor field φ, a vector field ξ (called the structure vector field) and a 1-form η such that

η(ξ) = 1, φ2(X) = −X + η(X)ξ and g(φX,φY ) = g(X,Y )− η(X)η(Y ), (2.9)

for any vector fields X ,Y on M . In particular, in an almost contact metric manifold we also have φξ = 0 and
η ◦ φ = 0.

Such a manifold is said to be a contact metric manifold if dη = ϕ, where ϕ(X,Y ) = g(X,φY ) is called the
fundamental 2-form of M .
On the other hand, the almost contact metric structure of M is said to be normal if

N (1)(X,Y ) = Nφ(X,Y ) + 2dη (X,Y )ξ = 0, (2.10)

for any X,Y ∈ X(M), where d denotes the exterior derivative and Nφ denotes the Nijenhuis torsion of φ, given
by

[φ,φ](X,Y ) = φ2[X,Y ] + [φX,φY ]− φ[φX, Y ]− φ[X,φY ].

A 3-dimensional almost contact metric structure (φ, ξ, η, g) on M is said to be Kenmotsu structure [3], if and
only if

dη = 0, dϕ = 2ϕ ∧ η and N (1) = 0. (2.11)

This manifold can be characterized through their Levi-Civita connection, by requiring

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX. (2.12)

Moreover, in [6] the 3-dimensional Kenmotsu manifolds is also characterized by

∇Xξ = −φ2X. (2.13)

3. 4-dimensional almost Hermitian manifolds

Through the rest of this paper M always denotes the 4-dimensional differentiable manifolds. Here, we have
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Proposition 3.1. [2, 6] A 4-dimensional almost Hermitian manifold M is Hermitian if and only if the covariant
derivative of Ω is of the form

2(∇XΩ)(Y,Z) = g(X,Z)δΩ(Y )− g(X,Y )δΩ(Z)

+ g(X, JZ)δΩ(JY )− g(X, JY )δΩ(JZ). (3.1)

Let ω be the Lee form of M defined by ω = δΩ ◦ J and B the contravariant field of ω called the Lee field.
Then, the identity (3.1) can be expressed equivalently in the following:

2(∇XJ)Y = g(X,Y )JB − g(X, JY )B − ω(Y )JX + ω(JY )X. (3.2)

Remark 3.1. By comparing the two equations (2.5) and (3.2), one can check that any 4-dimensional Hermitian
manifold with dω = 0 is an l.c.K manifold.

From (3.2), we find B = −J
∑4

i=1(∇eiJ)ei and this Lee field is not necessary unitary. If ω ̸= 0 everywhere, we
put ξ1 = e−σB where eσ = |B| and ξ2 = −Jξ1 we get immediately that η1 = e−σω and η2 = eσω ◦ J such that

ηi(X) = g(ξi, X), and ηi(ξj) = δij for all i, j ∈ {1, 2}.

Then, the formula 3.2 becomes

2e−σ(∇XJ)Y = g(JX, Y )ξ1 − η1(Y )JX − g(X,Y )ξ2 + η2(Y )X, (3.3)

For a 4-dimensional manifold M with an almost Hermitian structure (J, g) we can also construct a useful local
orthonormal basis. Let U be a coordinate neighborhood on M and e any unit vector field on U orthogonal to ξ1
and ξ2. Then Je is a unit vector field orthogonal to both ξ1, ξ2 and e. Then, we obtain a local orthonormal basis
{ξ1, ξ2, e, Je}, called a J-basis. Let’s start with the following main result:

Theorem 3.1. For an almost Hermitian structure (J, g) on M , we have

(∇XJ)Y =g
(
J∇Xξ1 +∇Xξ2, Y

)
ξ1 − η1(Y )

(
J∇Xξ1 +∇Xξ2

)
+ g

(
J∇Xξ2 −∇Xξ1, Y

)
ξ2 − η2(Y )

(
J∇Xξ2 −∇Xξ1

)
. (3.4)

Proof. Since η1 ∧ η2 ∧ Ω is up to a constant factor the volume element on M , it is parallel with respect to ∇, i.e.,

∇X(η1 ∧ η2 ∧ Ω) = 0.

Knowing that

4(η1 ∧ η2 ∧ Ω)(X,Y, U, V ) = (η1 ∧ η2)(X,Y )Ω(U, V )

− (η1 ∧ η2)(X,U)Ω(Y, V )

+ (η1 ∧ η2)(X,V )Ω(Y,U)

+ (η1 ∧ η2)(Y, U)Ω(X,V )

− (η1 ∧ η2)(Y, V )Ω(X,U)

+ (η1 ∧ η2)(U, V )Ω(X,Y ),

and also,

3(dΩ)(X,Y, Z) = (∇XΩ)(Y,Z) + (∇Y Ω)(Z,X) + (∇ZΩ)(X,Y ),

then, the equation (
∇X(η1 ∧ η2 ∧ Ω)

)
(X,Y, ξ1, ξ2) = 0,

gives

(∇ZΩ)(X,Y ) = η1(X)
(
Ω(Y,∇Zξ1) + (∇Zη2)Y

)
− η1(Y )

(
Ω(X,∇Zξ1) + (∇Zη2)X

)
+ η2(X)

(
Ω(Y,∇Zξ2)− (∇Zη1)Y

)
− η2(Y )

(
Ω(X,∇Zξ2)− (∇Zη1)X

)
, (3.5)
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hence

(∇ZJ)Y =g
(
J∇Zξ1 +∇Zξ2, Y

)
ξ1 − η1(Y )

(
J∇Zξ1 +∇Zξ2

)
+ g

(
J∇Zξ2 −∇Zξ1, Y

)
ξ2 − η2(Y )

(
J∇Zξ2 −∇Zξ1

)
,

which leads to (3.4).

Now, we shall introduce a new necessary and sufficient condition of integrability for 4-dimensional almost
Hermitian structures.

Theorem 3.2. A 4-dimensional almost Hermitian manifold M is Hermitian if and only if

(∇XJ)ξ1 =
eσ

2

(
− JX − η1(X)ξ2 + η2(X)ξ1

)
, (3.6)

or equivalently,

(∇XJ)ξ2 =
eσ

2

(
X − η1(X)ξ1 + η2(X)ξ2

)
. (3.7)

Proof. Let (M,J, g) be an almost Hermitian manifold. Firstly, we have

(∇XJ)ξ2 = (∇XJ)Jξ1

= −∇Xξ1 − J
(
(∇XJ)ξ1 + J∇Xξ1

)
= −J(∇XJ)ξ1,

which demonstrates the equivalence between (3.6) and (3.7). Now, suppose that

(∇XJ)ξ1 =
eσ

2

(
− JX − η1(X)ξ2 + η2(X)ξ1

)
.

for all X vector field on M . Using (∇XJ)ξ1 = −∇Xξ2 − J∇Xξ1 we get

J∇Xξ1 +∇Xξ2 =
eσ

2

(
JX + η1(X)ξ2 − η2(X)ξ1

)
, (3.8)

and by applying J we obtain

J∇Xξ2 −∇Xξ1 =
eσ

2

(
−X + η1(X)ξ1 + η2(X)ξ2

)
. (3.9)

Substituting (3.8) and (3.9) in (3.4) we obtain (3.3), then the structure is Hermitian.
Conversely, assuming that (M,J, g) is a Hermitian manifold, this is equivalent to

2e−σ(∇XJ)Y = g(JX, Y )ξ1 − η1(Y )JX − g(X,Y )ξ2 + η2(Y )X.

Setting Y = ξ1 gives
2e−σ(∇XJ)ξ1 = η2(X)ξ1 − JX − η1(X)ξ2,

and hence
(∇XJ)ξ1 =

eσ

2

(
− JX − η1(X)ξ2 + η2(X)ξ1

)
.

This completes the proof.

It is convenient to rewrite equation (3.6) in term of ∇B as follows

Corollary 3.1. A 4-dimensional almost Hermitian manifold M is Hermitian if and only if

2(∇XJ)B = −|B|2JX + ω(X)JB + ω(JX)B. (3.10)

Proof. The proof is direct just using the notation given above in formula (3.6).

By examining formula 3.10 we can extract two important cases:
1) For ∇XB = 0 we get the Vaisman state.
3) For ∇XJB = 0, we get

2∇XB = |B|2X − ω(X)B + ω(JX)JB.

This means that B is a K-torse forming vector field that was included by S.Yamaguchi [10]. Since this case is
new and interesting, we dedicate the next section to study its properties with illustrative examples.
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4. A special type of 4-dimensional Hermitian manifolds

Let’s start with providing the following definition:

Definition 4.1. A 4-dimensional almost Hermitian manifold (M,J, g) is called B-Hermitian manifold if there
exists a global vector field B such that for all X vector field on M

2∇XB = |B|2X − ω(X)B + ω(JX)JB. (4.1)

B-Hermitian manifold is a type of l.c.K manifolds and we can consider it as a counterpart to Vaisman
manifold. To prove the existence of such manifolds we present the following examples:

Example 4.1. Let A be the 4-dimensional Lie algebra whose skew-symmetric multiplication is given by

[E1, E3] = E3, [E1, E4] = E4 and [Ei, Ej ] = 0 in other cases,

where {E1, E2, E3, E4} is certain fixed basis of A.
Consider a connected Lie subgroup G of general linear group GL(k,R) for certain natural k, such that the

Lie algebra g of G is isomorphic to A.
Let s : A → g be the isomorphism. Let {e1, e2, e3, e4} be the basis og g formed by left invariant vector fields on
G such that s(Ei) = ei, 1 ≤ i ≤ 4. Then we have

[e1, e3] = e3, [e1, e4] = e4 and [ei, ej ] = 0 in other cases.

Let (J, g) be the left invariant almost Hermitian structure on G defined by

Je1 = e2, Je2 = −e1, Je3 = e4, Je4 = −e3,

and
g(ei, ej) = δij , 1 ≤ i, j ≤ 4.

By Koszul’s formula, the covariant derivatives of the basis elements are as follows:

∇e3e1 = −e3, ∇e3e3 = e1, ∇eiej = 0 in other cases.

we have JB =
∑4

i=1(∇eiJ)ei which gives B = −2e1. Hence

∇e1B = ∇e2B = 0, ∇e3B = 2e3, ∇e4B = 2e4 and ∇eiJB = 0.

So, we can easily verify that
2∇eiB = |B|2ei − ω(ei)B + ω(Jei)JB,

or, equivalently
∇eie1 = −ei + δ1ie1 + δ2ie2.

Therefore, (J, g) is a B-Hermitian structure on G

The second type of examples are closely related to the conformal transformation. It is well known that any
conformal transformation

g̃ = e2ρg, ρ ∈ C∞(M) and dρ ̸= 0

of the metric g in a Kähler manifold (M,J, g) gives rise to an l.c.K manifold (M,J, g̃). Easily, one can get Ω̃ = e2ρΩ

implies dΩ̃ = 2dρ ∧ Ω̃ which gives ω = 2dρ and B = 2gradρ.
Let ∇ and ∇̃ be the Levi-Civita connections associated with the metrics g and g̃ respectively. As is well know,

they are connected by
∇̃XY = ∇XY +X(ρ)Y + Y (ρ)X − g(X,Y )gradρ. (4.2)

Now, let’s calculate ∇̃B. Using (4.2), we get

∇̃XB = ∇XB +
1

2
|B|2. (4.3)
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On the other hand, using (3.2) taking into account ∇̃XJB = 0, one can get

J∇̃XB = −(∇̃XJ)B

= −1

2

(
g(X,B)JB − g(X,JB)B − ω(B)JX

)
= −1

2

(
ω(X)JB + ω(JX)B − |B|2JX

)
,

which gives

∇̃XB =
1

2

(
− ω(X)B + ω(JX)JB + |B|2X

)
(4.4)

From (4.3) and (4.4) we conclude that in order for the (M,J, g̃) to be B-Hermitian manifold, the following
condition must be fulfilled

2∇XB = −ω(X)B + ω(JX)JB, (4.5)

or, equivalently
∇Xgradρ = −X(ρ)gradρ+ JX(ρ)Jgradρ. (4.6)

Therefore, summing up the arguments above, we have the following proposition:

Proposition 4.1. Let (J, g) be a Kählerian structure on M and ρ a non-zero function on M . Then, the structure (J, g̃)
defined above is B-Hermitian structure on M if and only if the function ρ satisfies the equation (4.5).

According to [7], Vaisman geometry is intimately related to Sasakian one. In what follows, we prove that the
B-Hermitian manifolds are closely related to the Kenmotsu ones.

Let (M,φ, ξ, η, g) be a 3-dimensional Kenmotsu manifold and M̃ = R×M be the product manifold of M and
a real line R with natural coordinate system ∂t equipped with the following almost Hermitian structure (J, g̃)
defined by

g̃ = dt2 + g, J∂t = ξ and JX = φX − η(X)∂t.

The manifold (M̃, J, g̃) possesses a fundamental 2-form, Ω, the Kähler form, defined by

Ω
(
(a∂t,X), (b∂t, Y )

)
= g̃

(
(a∂t,X), J(b∂t, Y )

)
= g̃

(
(a∂t,X), (−η(Y )∂t, φY + bξ)

)
,

we can check that is very simply as follows:

Ω = ϕ− 2dt ∧ η, (4.7)

where ϕ denotes the fundamental 2-form of the Kenmotsu structure (φ, ξ, η). We have immediately that,

dΩ = 2η ∧ Ω.

Taking ω = 2η we get B = 2ξ and |B| = 2. We compute{
2∇̃∂tB = 0

2∇̃XB = 4∇Xξ,
(4.8)

on the other hand, {
|B|2∂t − ω(∂t)B + ω(J∂t)JB = 0
|B|2X − ω(X)B + ω(JX)JB = −4φ2X,

(4.9)

which gives ∇Xξ = −φ2X and this is true as long as (M,φ, ξ, η, g) is a Kenmotsu manifold. Therefore, we have
the following proposition:

Proposition 4.2. Let (M,φ, ξ, η, g) be a 3-dimensional Kenmotsu manifold. Then, the product M̃ = R×M equipped
with the almost Hermitian (J, g̃) defined above is a B-Hermitian manifold.
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Now, we will show that from a 4-dimensional B-Hermitian manifold (more general, 4-dimensional
Hermitian manifold) we can build a 5-dimensional Kenmotsu one.

Let (N, J, h) be a 4-dimensional Hermitian manifold. According to the remark 3.1, (N, J, h) is a 4-dimensional
l.c.K manifold. Then, we have

NJ = 0, dΩ = ω ∧ Ω and dω = 0. (4.10)

On the product M = R×N one can define an almost contact structure (φ, ξ, η) by setting

φ∂r = 0, φX = JX − 2ω(JX)∂r, ξ = ∂r, η = dr + 2ω, (4.11)

and a Riemannian metric g by
g = fh+ η ⊗ η, (4.12)

for any vector filed X ∈ X(M) and ∂r denote the unit tangent field to R where f is a positive function on R.

Proposition 4.3. The structure (φ, ξ, η, g) constructed on the product M is an almost contact metric structure.

Proof. It is easy to see that η(ξ) = 1 and φ2∂r = −∂r + η(∂r)ξ = 0. For all X ∈ X(M), we compute:

φ2X = φ(JX − 2ω(JX)ξ)

= φ(JX)− 2ω(JX)φξ

= J2X − 2ω(J2X)ξ

= −X + 2ω(X)ξ

= −X + η(X)ξ.

Let X,Y ∈ X(M), we have

g(φX,φY ) = g(JX − 2ω(JX)ξ, JY − 2ω(JY )ξ)

= g(JX, JY )− 2ω(JY )g(JX, ξ)− 2ω(JX)g(ξ, JY )

+4ω(JX)ω(JY )g(ξ, ξ),

by the definition of the metric g with η = dr + 2ω, we obtain

g(φX,φY ) = h(JX, JY ) + 4ω(JX)ω(JY )− 4ω(JX)ω(JY )

−4ω(JX)ω(JY ) + 4ω(JX)ω(JY )

= h(JX, JY ),

as h(JX, JY ) = h(X,Y ) and g(X,Y ) = h(X,Y ) + 4ω(X)ω(Y ), we conclude that

g(φX,φY ) = g(X,Y )− 4ω(X)ω(Y )

= g(X,Y )− η(X)η(Y ).

As φξ = 0, g(X, ξ) = 2ω(X) = η(X), η(ξ) = 1 and g(ξ, ξ) = 1, we get

g(φX,φξ) = g(X, ξ)− η(X)η(ξ) = 0,

g(φξ, φξ) = g(ξ, ξ)− η(ξ)η(ξ) = 0.

According to (2.9), (φ, ξ, η, g) is an almost contact metric structureon M .

Since the vanishing of the tensor field N (1) of (φ, ξ, η, g) is a necessary and sufficient condition for normality,
we seek to express the condition of integrability in terms of NJ , the Nijenhuis torsion of J .

Since N (1) is a tensor field of type (1, 2), it suffices to compute N (1)
(
(∂r, 0), (0, X)

)
and N (1)

(
(0, X), (0, Y )

)
for

vector fields X and Y on M . A direct calculation gives

N (1)
(
(∂r, 0), (0, X)

)
= 0.

For N (1)
(
(0, X), (0, Y )

)
, we have

N (1)
(
(0, X), (0, Y )

)
≡ N (1)(X,Y )

= φ2[X,Y ] + [φX,φY ]− φ[X,φY ]− φ[φX, Y ] + 2dη(X,Y )ξ,
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using definition of φ in (4.11) with dη(X,Y ) = 2dω(X,Y ) = 0, one can get

N (1)
(
(0, X), (0, Y )

)
= NJ(X,Y )− 2ω

(
NJ(X,Y )

)
∂r,

since NJ = 0 then N (1) = 0 therefore the almost contact metric structure (φ, ξ, η) is normal.
On the other hand, the fundamental 2-form ϕ of (φ, ξ, η) is

ϕ
((

a
∂

∂r
, X

)
,
(
b
∂

∂r
, Y

))
= g

((
a
∂

∂r
, X

)
, φ

(
b
∂

∂r
, Y

))
,

we can check that is very simply as follows:
ϕ = fΩ, (4.13)

then we have {
ϕ = fΩ
η = dr + 2ω

⇒
{

dϕ = ( f
′

f dr + 2ω) ∧ ϕ

dη = 0.

Taking ω = 2θ
We can claim the following Proposition:

Proposition 4.4. Let (N, J, h) be a 4-dimensional Hermitian manifold. The almost contact metric structure (φ, ξ, η, g)
defined above on M = R×N is a Kenmotsu structure if and only if dΩ = 2θ ∧ Ω and f = ce2r where ω = 2θ and c > 0.

Proof. The necessity was observed above. For the sufficiency, first note that dϕ
(
(∂r, 0), (0, X), (0, Y )

)
= f ′Ω(X,Y ),

dϕ
(
(0, X), (0, Y ), (0, Z)

)
= fdΩ(X,Y, Z),

dη
(
(0, X), (0, Y )

)
= 0,

(4.14)

Suppose that (φ, ξ, η, g) is a Kenmotsu structure on M i.e. we have dϕ = 2η ∧ ϕ and dη = 0. From equations
(4.14) we obtain

f = ce2r and dΩ = ω ∧ Ω,

which shows that (M,J, g) is a Locally conformally Kähler manifold with f = ce2r and c > 0.
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