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Introduction 
 

Complex partial differential equations first were 
discovered in the early 1900. D. Pompeiu is one of the 
important mathematicians who made substantial 
contributions to the field and left a name. He described 
the Pompeiu integral operator, which carries his name. It 
still serves as the foundation for the theory of complex 
differential equations today. Integral transforms, the 
Adomian decomposition approach, and the reduced 
differential transform were used to solve complex 
differential equations [1-4]. These approaches divide the 
equation into real and imaginer components before 
solving it. The Sumudu differential transformation 
method can be utilized in this article to resolve the 
problem without dividing it into real and imaginer 
components. Because of this, a solution can be developed 
with minimal effort. Watugala introduced the Sumudu 
transform with the article [5] in 1993. It is a 
transformation that is crucial in the solution of several 
ordinary differential equations in control engineering. The 
Sumudu transform's characteristics and uses are 
described[5-6]. The Laplace transform and its 
characteristics are also taken into account, and the theory 
that establishes the relationship between Sumudu and 
Laplace transformations is presented. Sumudu 
transformation is used in this study to solve partial 
differential equations more quickly. The fundamental 
details for integral transformations, as well as the 
fundamental properties of the Laplace and Sumudu 
transformations, are provided in the study's first sections. 
In the following chapters, the solution of the partial 
equation was obtained by applying the Sumudu transform 

to appropriate ordinary complex differential equations 
and partial differential equations. 

Watugala's Sumudu transform method (STM) was 
used to address engineering issues [6]. Weerakoon used 
the technique to solve partial differential equations [7]. 
Subsequently, Weerakoon discovered this 
transformation's inverse formula [8]. The Sumudu 
transformation technique (STM) was employed by 
Demiray et al. [9] to discover precise answers to fractional 
differential equations. The Sumudu transform iterative 
method (STIM) was expanded by Kumar and Daftardar-
Gejji [10] to handle various time and spatial FPDEs and 
FPDE systems. To solve linear fuzzy fractional differential 
equations (FFDEs) using Caputo fuzzy fractional 
derivative, Rahman and Ahmad used the fuzzy Sumudu 
transform (FST) [11]. Prakash et al. [12] solved nonlinear 
fractional Zakharov–Kuznetsov equations with the help of 
the Sumudu transform method, which is a new iterative 
technique. 

Given the wealth of literature on stochastic and 
deterministic differential equation models, the 
application of random differential equations (RDE) in 
mathematical models is not as common. By including 
random effect terms in the model's parameters, 
deterministic models can be changed to random models. 
Because random parameters offer the chance to account 
for parameter changes, this method enables more 
realistic modeling of physical processes. The probability 
properties of the equations that are randomized in the 
deterministic model by choosing the coefficients on the 
second side of the equation or the initial conditions from  
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continuous probability distributions will be investigated. 
Ordinary differential equations in mathematical modeling 
are not necessarily adequate for investigating natural 
processes. Using random and stochastic differential 
equations to investigate occurrences with random 
components yields superior findings. Using ordinary 
differential equations, random differential equations can 
be produced in three methods[13]. ii. Differential 
equations with random non-homogeneous sections iii. 
Equations using random coefficients. In this study, we 
considered complex partial differential equations with 
inhomogeneous parts and initial conditions with random 
values. Many physical and engineering problems can be 
modeled more reliably with random differential 
equations. In recent decades, there has been a significant 
amount of research in the disciplines of parameter 
uncertainty and randomness, as well as stochastic 
differential processes. 

In this study, the two-dimensional Sumudu transform 
method is used to solve linear complex partial differential 
equations. The structure of the essay is as follows. Section 
2 provides information on the one dimensional and two-
dimensional Sumudu transformation and its attributes. 
Examples of the random complex differential equation are 
provided in Section 3. The solutions' probability features 
were computed and graphically displayed. Section 4 
provides the conclusions. 

 

Materials and Methods  
 

Sumudu Transform Method 
Definition 2.1. Let A be a function set defined[14] by 

𝐴 = {𝑔 (𝑡)| ∃𝑀, 𝜏1, 𝜏2 > 0, |𝑔(𝑡)| < 𝑀𝑒
𝑡

𝜏𝑗  ,     (1) 

𝑖𝑓 𝑡 ∈ (−1)𝑗𝑥 [0, ∞ )}        
 
the Sumudu transform is defined over the set of functions 
by 

𝐺(𝑢) = 𝑆[𝑔(𝑡)] = ∫ 𝑔(𝑢𝑡)𝑒−𝑡𝑑𝑡, 𝑢 ∈ (−𝜏1, 𝜏2)
∞

0
        (2) 

Table 1. Special Sumudu transforms[14]. 
 𝒈(𝒕) 𝑮(𝒖) = 𝑺[𝒈(𝒕)] 

1 1 1 

2 𝑡 𝑢 

3 sin (𝑎𝑡) 𝑎𝑢

1 + (𝑎𝑢)2 
 

4 cos (𝑎𝑡) 1

1 + (𝑎𝑢)2 
 

5 𝑡𝑛, 𝑛 > 0 Γ(𝑛 + 1)𝑢𝑛 

6 𝑒𝑎𝑡 1

1 − 𝑎𝑢
 

7 𝑒𝑏𝑡cos (𝑎𝑡) 1 − 𝑏𝑢

(1 − 𝑏𝑢)2 + (𝑎𝑢)2
 

8 𝑒𝑏𝑡sin (𝑎𝑡) 𝑎𝑢

(1 − 𝑏𝑢)2 + (𝑎𝑢)2 

9 𝑡𝑛𝑒𝑎𝑡  Γ(𝑛 + 1)𝑢𝑛

(1 − 𝑎𝑢)𝑛
 

The Double Sumudu Transform 
The Sumudu transform is a simple and somewhat 

elegant approach to implement the double Sumudu 
transform, assuming the function has a power series 
transformation with regard to its variables. The double 
Laplace transform of a function defined in the positive 
quadrant of the xy plane is:  

ℒ2[𝑔(𝑥, 𝑦); (𝑟, 𝑠)] = ∫ ∫ 𝑔(𝑥, 𝑦)𝑒−(𝑟𝑥+𝑠𝑦)𝑑𝑥𝑑𝑦        (3)

∞

0

∞

0

 

where 𝑝 and 𝑞 are the transformation variables of 𝑥 and 
𝑦, respectively. 

 
Definition 1. [15-17] Let 𝑔(𝑡, 𝑥): 𝑡, 𝑥 ∈  ℝ+, If a 

function is written as a convergent infinite series, its 
double Sumudu transform is as follows: 
 
𝐺(𝑢, 𝑣) = 𝕊2[𝑔(𝑡, 𝑥); (𝑢, 𝑣)]                  

= 𝕊[𝕊{𝑔(𝑡, 𝑥); 𝑡 → 𝑢}; 𝑥 → 𝑣] 

                =
1

𝑢𝑣
∫ ∫ 𝑒−(

𝑡
𝑢

+
𝑥
𝑣

)𝑔(𝑡, 𝑥)𝑑𝑡𝑑𝑥                         (4)

∞

0

∞

0

 

We propose applications of the double Sumudu transform 
to several specific functions, which are similar to those 
obtained by solving population dynamics equations with 
age structure. However, it is a simple exercise to 
demonstrate that the double Sumudu and Laplace 
transforms are also theoretical dual. That is: 

𝑢𝑣𝐺(𝑢, 𝑣)

= ℒ2 [𝑔(𝑥, 𝑦); (
1

𝑢
,
1

𝑣
)]                                                       (5) 

The relationship between the Sumudu Transform and 
double Laplace Transform can be expressed as in (5). 
 

Theorem 1. [15-17] Let 𝐺 (𝑥, 𝑦) be a real-valued 
function of 𝑥, 𝑦 ∈  ℝ+. 

Then, 

𝕊2[𝑔(𝑥 + 𝑦); (𝑢, 𝑣)] =
1

𝑢 − 𝑣
{𝑢𝐺(𝑢) − 𝑣𝐺(𝑣)}.  (6) 

 
𝑔 represents population density, age 𝑥, and time 𝑦, or vice 
versa. The  (𝑥 −  𝑦) example is even more interesting 
from the point of view of biology, which is often 
encountered with these works in Mathematical Biology. 
The proof of the condition 𝑥 ≥ 𝑦 is also simple and 
sufficient. Thus, geometrically, although the line dividing 
the first quarter into two equal parts represents the 𝜂 axis 
(represented by the lower part 𝑄1 and the upper part 𝑄2 
), dividing both the second and fourth quarters is the 𝜂 - 
axis (the row facing up) and the 𝜁 −axis (the arrow from 
the starting point to the fourth quarter), then the test is: 
Let's assume that 𝑔 is a dual function, then 𝑔 (0) is odd 
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𝕊2[𝑔(𝑥 − 𝑦); (𝑢, 𝑣)] =
1

𝑢𝑣
∫ ∫ 𝑔(𝑥 − 𝑦)𝑒−(

𝑥
𝑢

+
𝑦
𝑣

)𝑑𝑥𝑑𝑦 −
1

𝑢𝑣
∫ ∫ 𝑔(𝑥 − 𝑦)𝑒−(

𝑥
𝑢

+
𝑦
𝑣

) 𝑑𝑥𝑑𝑦.                                             (7)

𝑄2𝑄1

 

 

𝑥 =
1

2
(𝜁 + 𝜂); 𝑦 =

1

2
(𝜁 − 𝜂) 

variable transformation 

∫ ∫ 𝑔(𝑥 − 𝑦)𝑒−(
𝑥
𝑢

+
𝑦
𝑣

)𝑑𝑥𝑑𝑦 =
1

2
∫ 𝑔(𝜁)𝑑𝜁 ∫ 𝑒−

1
2

(
1
𝑢

+
1
𝑣

)𝜁−
1
2

(
1
𝑢

−
1
𝑣

)𝜂𝑑𝜂

∞

𝜁

∞

0𝑄1

 

 

                                                      =
𝑢𝑣

𝑢 − 𝑣
∫ 𝑒−

𝜁
𝑣𝑔(𝜁)𝑑𝜁

∞

0

 

                                                       =
𝑢𝑣2

𝑢 − 𝑣
𝐺(𝑢). 

similarly, 

∫ ∫ 𝑔(𝑥 − 𝑦)𝑒−(
𝑥
𝑢

+
𝑦
𝑣

)𝑑𝑥𝑑𝑦 =
𝑣2𝑢

𝑢 − 𝑣
𝐺(𝑣).

𝑄1

 

 
Therefore, for the odd function 𝑔 
𝕊2[𝑔(𝑥 − 𝑦); (𝑢, 𝑣)]

=
𝑢𝐺(𝑢) − 𝑣𝐺(𝑣)

𝑢 + 𝑣
                                                                                                                                                (8) 

and if 𝑔 is a even function 
 

𝕊2[𝑔(𝑥 − 𝑦); (𝑢, 𝑣)] =
𝑢𝐺(𝑢) + 𝑣𝐺(𝑣)

𝑢 − 𝑣
                                                                                                                                          (9) 

 

𝐺(𝑢) = 𝕊[𝑔(𝑡)] = ∫ 𝑔(𝑢𝑡)𝑒−𝑡𝑑𝑡,   𝑢𝜖(−𝜏1, 𝜏2)
∞

0
 Sumudu conversion 

From the equations 𝐺 (𝑢) and (8), if 𝑔 is an even function, then it is obvious that 
 
(𝑢 + 𝑣)𝕊2[𝑔(𝑥 − 𝑦)] = (𝑢 − 𝑣)𝕊2[𝑔(𝑥 + 𝑦)]                                                                                                                            (10) 

 
are obtained. If STM is applied to partial derivatives as follows: 𝑔(0, 𝑎) =  𝐺0(𝑎), 
 

𝕊2 [
𝜕𝑔(𝑡, 𝑎)

𝜕𝑡
; (𝑢, 𝑣)] =

1

𝑢𝑣
∫ ∫ 𝑒−(

𝑡
𝑢

+
𝑠
𝑣

) 𝜕

𝜕𝑡
𝑔(𝑡, 𝑎)𝑑𝑡𝑑𝑎 =

1

𝑣
∫ 𝑒−

𝑠
𝑣 {

1

𝑢
∫ 𝑒−

𝑡
𝑢

𝜕

𝜕𝑡
𝑔(𝑡, 𝑎)𝑑𝑡

∞

0

} 𝑑𝑎.

∞

0

 

∞

0

∞

0

 

 
The inner integral given in the equation (5), 
 
𝐺(𝑢, 𝑎) − 𝑔(0, 𝑎)

𝑢
                                                                                                                                                                                  (11) 

 

𝕊2 [
𝜕𝑔(𝑡, 𝑎)

𝜕𝑡
; (𝑢, 𝑣)] =

1

𝑢
{
1

𝑣
∫ 𝑒−

𝑎
𝑣𝐺(𝑢, 𝑎)𝑑𝑎 −

1

𝑣
∫ 𝑒−

𝑎
𝑣𝑔0(𝑎)𝑑𝑎 

∞

0

 

∞

0

} 

=
1

𝑢
{𝐺(𝑢, 𝑣) − 𝐺0(𝑣)}                                                                                                                                 (12) 

Also, 

𝕊2 [
𝜕𝑔(𝑡, 𝑎)

𝜕𝑎
; (𝑢, 𝑣)] =

1

𝑣
∫ 𝑒−

𝑎
𝑣 {

1

𝑢
∫ 𝑒−

𝑡
𝑢

𝜕

𝜕𝑎
𝑔(𝑡, 𝑎)𝑑𝑡

∞

0

} 𝑑𝑎

∞

0

 

=
1

𝑣
∫ 𝑒−

𝑎
𝑣

𝜕

𝜕𝑎
𝐺(𝑢, 𝑎)𝑑𝑎

∞

0

 

 
= 𝐺𝑢(𝑢, 𝑣).                                                                                                                                                                                            (13) 
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Alternatively, 

𝕊2 [
𝜕𝑔(𝑡, 𝑎)

𝜕𝑡
; (𝑢, 𝑣)] =

1

𝑢
∫ 𝑒−

𝑎
𝑣 {

1

𝑣
∫ 𝑒−

𝑎
𝑢

𝜕𝑔

𝜕𝑎
𝑑𝑎

∞

0

} 𝑑𝑡

∞

0

 

 =
1

𝑢
∫ 𝑒−

𝑡
𝑢

1

𝑣
[𝐺(𝑡, 𝑣) − 𝑔(𝑡, 0)]𝑑𝑡                        

∞

0

 

                                                            =
1

𝑣
(𝐺(𝑢, 𝑣) − 𝐺0(𝑢))                                                                                                 (14) 

 
Where 𝐺 (𝑢, 0) = 𝐺0(𝑢) and 𝐺(0, 𝑣) = 𝐺0(𝑣). From the equations (12) and (13) 

𝐺𝑣(𝑢, 𝑣) =
𝐺(𝑢, 𝑣) − 𝐺0

𝑣
 

it is expressed as. 
Definition 2.[15-17]: Let 𝐺(𝑡, 𝑋) and 𝐻(𝑇, 𝑋) functions have a two-dimensional Sumudu transformation. Then the two-
dimensional Sumudu transformation of 𝑔(𝑡, 𝑥) and ℎ(𝑡, 𝑥) of two-dimensional convolution, 

(𝑔 ∗∗ ℎ)(𝑡, 𝑥) = ∫ ∫ 𝑔(𝜁, 𝜂)ℎ(𝑡 − 𝜁, 𝑥 − 𝜂)𝑑𝜁𝑑𝜂

𝑡

0

𝑥

0

 

 
𝕊2[(𝑔 ∗∗ ℎ)(𝑡, 𝑥); 𝑢, 𝑣] = 𝑢𝑣𝐺(𝑢, 𝑣)𝐻(𝑢, 𝑣) 
 
Also, the two-dimensional Sumudu transformation of the partial derivative of the two-dimensional convolution with 
respect to x e was obtained below, 

 
 

𝕊2 [
𝜕

𝜕𝑥
(𝑔 ∗∗ ℎ)(𝑡, 𝑥); 𝑢, 𝑣] = 𝑢𝑣𝕊2 [

𝜕

𝜕𝑥
(𝑡, 𝑥); 𝑢, 𝑣] = 𝕊2[ℎ(𝑡, 𝑥); 𝑢, 𝑣]  

or 
 

𝑢𝑣𝕊2[𝑓(𝑡, 𝑥); 𝑢, 𝑣]𝕊2 [
𝜕

𝜕𝑥
ℎ(𝑡, 𝑥); 𝑢, 𝑣]. 

Thus, the relationship between the Sumudu and Laplace Transform of the two-dimensional function, 

𝕊2[(𝑔 ∗∗ ℎ)(𝑡, 𝑥); 𝑢, 𝑣] =
1

𝑢𝑣
ℒ𝑡ℒ𝑥[𝑔 ∗∗ ℎ)(𝑡, 𝑥)] 

to solve PDEs using the Sumudu transformation, partial derivatives of this transformation are needed. Thus, by applying 
the two-dimensional Sumudu transformation to its second-order partial derivatives with respect to 𝑥 
 

𝕊2 [
𝜕2

𝜕𝑥2
𝑔(𝑡, 𝑥); 𝑢, 𝑣] =

1

𝑣2
𝐺(𝑢, 𝑣) −

1

𝑣2
𝐺(𝑢, 0) −

1

𝑣

𝜕

𝜕𝑥
𝐺(𝑢, 0) 

expression is obtained. Similarly, given in the second-order partial derivative with respect to 𝑡; 

𝕊2 [
𝜕2

𝜕𝑡2
𝑔(𝑡, 𝑥); 𝑢, 𝑣] =

1

𝑢2
𝐺(𝑢, 𝑣) −

1

𝑢2
𝐺(0, 𝑣) −

1

𝑢

𝜕

𝜕𝑡
𝐺(0, 𝑣). 

 

Numerical Examples 
 
Sumudu transformation method (STM) is used in this 

section to solve random complex partial differential 
equations. Examples of variances, confidence intervals, 
and estimated values for various probability distributions 
of these solutions are also provided. Complex differential 
equations with random effect terms and various 
probability distributions are included in each case. Mean-
square computation has been used in the past to solve a 
few first-order random differential models and equations 
[18–23]. A stochastic differential equation (SDE) is a 
differential equation in which one or more elements are  

 

stochastic processes[24], and the solution is also 
stochastic. SDEs have numerous applications in pure 
mathematics, including modeling the behaviors of 
stochastic models such as stock markets [25], random 
growth models [26], and physical systems exposed to 
thermal fluctuations. 

SDEs have a random differential, which in the most 
basic example is random white noise computed as the 
derivative of a Brownian motion, or more broadly, a 
semimartingale. Other sorts of random behavior are 
possible, such as hopping processes like Lévy 
processes[27] or hopping semimartingales. Random 
differential equations are equivalent to stochastic 
differential equations. Stochastic differential equations 
can also be expanded to differential manifolds[28-30]. 
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Example 3.1.  

𝜕𝑤

𝜕𝑧
−

𝜕𝑤

𝜕𝑧̅
− 5𝑤 = 0, 𝑤(𝑥, 0) = 𝐵𝑒3𝑥                                                                                                                                   (15) 

obtain the probability characteristics by solving the approximate analytical solution of the given partial differential 
equation 𝐵~𝑁(𝜇, 𝜎2), independent random variables with a normal distribution, using the Sumudu method. 
In equation (15) 
 
𝜕𝑤

𝜕𝑧
=

1

2
(

𝜕𝑤

𝜕𝑥
− 𝑖

𝜕𝑤

𝜕𝑦
) 

𝜕𝑤

𝜕𝑧̅
=

1

2
(

𝜕𝑤

𝜕𝑥
+ 𝑖

𝜕𝑤

𝜕𝑦
) 

 
if their equality is written instead 
 
1

2
(

𝜕𝑤

𝜕𝑥
− 𝑖

𝜕𝑤

𝜕𝑦
) −

1

2
(

𝜕𝑤

𝜕𝑥
+ 𝑖

𝜕𝑤

𝜕𝑦
) − 5𝑤 = 0                                      

 
are obtained. If 𝑤 = 𝑢 + 𝑖𝑣 is written in the given equation, 
1

2
[
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
− 𝑖 (

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
)] −

1

2
[
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
+ 𝑖 (

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
)] − 5(𝑢 + 𝑖𝑣) = 0  

𝜕𝑣

𝜕𝑦
− 5𝑢 = 0                                                                            

−
𝜕𝑢

𝜕𝑦
− 5𝑣 = 0                                                                          

if Sumudu transformation is applied to its equations, 𝑆[𝑢(𝑥, 𝑦)] = 𝑅1(𝑥, 𝑠) 
𝑆[𝑣(𝑥, 𝑦)] = 𝑅2(𝑥, 𝑠) 
when, 
 
1

𝑠
[𝑅2(𝑥, 𝑠) − 𝑣(𝑥, 0)] − 5𝑅1(𝑥, 𝑠) = 0                                                        

−
1

𝑠
[𝑅1(𝑥, 𝑠) − 𝑢(𝑥, 0)] − 5𝑅2(𝑥, 𝑠) = 0                                                          

 
if the Cramer rule applies to the resulting Sumudu transformations, 

−5𝑅1(𝑥, 𝑠) +
1

𝑠
𝑅2(𝑥, 𝑠) =

𝑣(𝑥, 0)

𝑠
                                                   

−
1

𝑠
𝑅1(𝑥, 𝑠) − 5𝑅2(𝑥, 𝑠) = −

𝑢(𝑥, 0)

𝑠
.                                                      

|
−5  

1

𝑠
−1

𝑠
−5

| = 25 +
1

𝑠2
= ∆ 

𝑅1(𝑥, 𝑦) =

|

𝑣(𝑥, 0)
𝑠

 
1
𝑠

−
𝑢(𝑥, 0)

𝑠
−5

|

∆
=

𝐵𝑒3𝑥

1 + (5𝑠)2
                                                                     

𝑅2(𝑥, 𝑦) =

|
−5

𝑣(𝑥, 0)
𝑠

−1
𝑠

−
𝑢(𝑥, 0)

𝑠

|

∆
 =

𝐵𝑒3𝑥5𝑠

(5𝑠)2 + 1
                                                                  

 
taking the inverse Sumudu transformation into his equations,𝑢(𝑥, 𝑦) = 𝑆−1[𝑅1(𝑥, 𝑠)] 

    

= 𝑆−1 [
𝐵𝑒3𝑥

1+(5𝑠)2] ,       {𝑆[𝑐𝑜𝑠(𝑎𝑦)] =
1

1+(𝑎𝑠)2 , 𝑆−1 [
1

1+(𝑎𝑠)2] = 𝑐𝑜𝑠(𝑎𝑦)  }         

= 𝐵𝑒3𝑥 cos(5𝑦) 
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𝑣(𝑥, 𝑦) = 𝑆−1[𝑅2(𝑥, 𝑦)] 

               = 𝑆−1 [
𝐵𝑒3𝑥5𝑠

(5𝑠)2+1
 ]  , {𝑆[𝑠𝑖𝑛(𝑎𝑦)] =

𝑎𝑠

1+(𝑎𝑠)2 , 𝑆−1 [
𝑎𝑠

1+(𝑎𝑠)2] = 𝑠𝑖𝑛(𝑎𝑦)  } 

               = 𝐵𝑒3𝑥sin (5𝑦) 
 
are obtained. Then 
 
𝑤(𝑧) = 𝐵𝑒3𝑥[𝑐𝑜𝑠(5𝑦) + 𝑖𝑠𝑖𝑛(5𝑦)] 
          = 𝐵𝑒4𝑧−�̅� 
can be found. Let's try to find the probability 
characteristics of the solution we found. A random 
variable 𝑋 is normally distributed (𝑋 ∼ 𝑁(𝜇, 𝜎2)) if its 
probability distribution function is 𝑓(𝑥) =

1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
(

𝑥−𝜇

𝜎
)

2

). 

Let 𝐵~𝑁(𝜇, 𝜎2) be a random variable with a Normal 
distribution[32]. Moment generating function of Normal 
distribution, 

𝑀𝑥(𝑡) = 𝐸[𝑒𝑡𝑥 ] = 𝑒𝜇𝑡+
1
2

𝜎2 𝑡2 . 

Expected value and variance of the first, second moments 
of the random variable 𝑥~𝑁(𝜇, 𝜎2)   

𝐸[𝑥] = 𝜇 , 𝐸[𝑥2] = 𝜇2 + 𝜎2    𝑣𝑒 𝑉𝑎𝑟[𝑥] = 𝜎2. 
Using these moments and if 𝑥 and 𝑦 are random 
arguments 𝐸[𝑥𝑦] = 𝐸[𝑥]𝐸[𝑦] since, approximate 
formulas of expected value and variance 

𝐸[𝑤(𝑘, ℎ)] = ∑ ∑ 𝐸[𝑤(𝑘, ℎ)]𝑥𝑘𝑦ℎ

𝑛

ℎ=0

𝑛

𝑘=0

 

The expected value and variance of the solution we found 
above are, respectively, 

𝐸[𝑤(𝑧)] = 𝐸[𝐵]𝑒4𝑧−�̅� 
                 = 𝜇𝑒4𝑧−�̅�. 
Variance 

𝑉𝑎𝑟[𝑤(𝑧)] = 𝑉𝑎𝑟[𝐵]𝑒8𝑧−2�̅� 
                      = 𝜎2𝑒8𝑧−2�̅�. 
Specifically, the expected value if 𝜇 = 2, 𝜎2 = 1 is 
selected, 
𝐸[𝑤(𝑧)] = 2𝑒4𝑧−�̅� 
 

 

Figure 1 Expected value of equation (15) for values 𝜇 =
2, 𝜎2 = 1 

The expectations can be given in a single graph for a 
comparison with the deterministic results of equation (1) 
as above (Figure 1). Maximum and minimum values of 
expected values of the random variables are obtained as 
follows: 𝑤(𝑧) takes its maximum value 806,8576  and its 
minimum value 0,0050. 
Variance 

𝑉𝑎𝑟[𝑤(𝑧)] = 𝑒8𝑧−2�̅�. 
If the variance found for the selected parameter values 

is plotted with MATLAB (2013a), the graph in Figure 2. is 
obtained. 

 

Figure 2 Variance of equation (13) for values 𝜇 =
2, 𝜎2 = 1 

 
These are the results for the confidence intervals for 

the expectations (Figure 3). The dashed line indicates the 
upper end of the confidence range while the dashed-dot 
lines show the lower ends of the interval in this case. 
Three standard deviations were utilized to produce the 
confidence intervals. 

The variance of 𝑤(𝑧) is given above (Figure 2). 
Extremum values of the variances of the random variables 
are obtained as follows: 𝑚𝑖𝑛[𝑉𝑎𝑟(𝑤(𝑧))] =

6.1442𝑥10−6 and  𝑚𝑎𝑥[𝑉𝑎𝑟(𝑤(𝑧))] = 1.6275𝑥105  . 
Confidence intervals for expected values of random 

variables, 
(𝐸[𝑤(𝑧)] − 𝐾. 𝑠𝑡𝑑(𝑤(𝑧)), 𝐸(𝑤(𝑧)) + 𝐾. 𝑠𝑡𝑑(𝑤(𝑧)) 

is equal to and this can be obtained through standard 
deviations. For 𝐾 = 3, this formula gives approximately 
99% confidence interval for the approximate expected 
value of the normally distributed random variable [21]. If 
the 99% confidence interval is plotted with MATLAB 
(2013a), the graph in Figure 3. is obtained. Known as the 
three-sigma rule, this popular rule indicates that about 
 99.73% of values for a normally distributed variable are 
within about three standard deviations of the mean. 
Therefore, using appropriate parameters, 
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we will compare the variations of the results for two 
continuous distributions with limited and unlimited 
support, respectively. Appropriate parameters will ensure 
that almost all possible values for random effects are 
drawn from the same range for both distributions. 

 

Figure 3. Confidence interval(%99) of equation (15) for 
values μ = 2, σ2 = 1 

The confidence intervals of 𝑤(𝑧) are given in Figure 3. The 
extremum values of the confidence intervals are as 

follows: 𝑚𝑖𝑛(𝐸(𝑤(𝑧)) − 3𝑠𝑡𝑑(𝑤(𝑧))) =0.0025 and 

𝑚𝑎𝑥(𝐸(𝑤(𝑧)) + 3𝑠𝑡𝑑(𝑤(𝑧)))  = 2017.1 . Here, 𝐾 =
3 gives an approximate 99% confidence interval. 
Example 3.2. 

𝑤𝑧 − 𝑤�̅� = 𝐴 − 𝐵, 𝑤(𝑥, 0) = (𝐴 + 𝐵)𝑥                       (16)  

obtain the probability characteristics by solving the 
approximate analytical solution of the given partial 
differential equation with 𝐴, 𝐵~𝐺(𝛼, 𝛽) gamma 
distribution, independent random variables with Sumudu 
method. In equation (16). 

𝜕𝑤

𝜕𝑧
= 𝑤𝑧 =

1

2
[𝑤𝑥 − 𝑖𝑤𝑦]  

𝜕𝑤

𝜕�̅�
= 𝑤�̅� =

1

2
[𝑤𝑥 + 𝑖𝑤𝑦]  

if 𝑤 = 𝑢 + 𝑖𝑣 is written instead of equations, 
 
1

2
[

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
− 𝑖 (

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
)] −

1

2
[

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
+ 𝑖 (

𝜕𝑢

𝜕𝑦
+

𝑖
𝜕𝑣

𝜕𝑦
)] = 𝐴 − 𝐵   

 
are obtained. After the necessary procedures are carried 
out, 
𝜕𝑣

𝜕𝑦
= 𝐴 − 𝐵  

−
𝜕𝑢

𝜕𝑦
𝑖 = 0                                                                           

if Sumudu transformation is applied to its equations, 

𝑆[𝑢(𝑥, 𝑦)] = 𝑅1(𝑥, 𝑠)  
𝑆[𝑣(𝑥, 𝑦)] = 𝑅2(𝑥, 𝑠)  
when, 
1

𝑠
[𝑅2(𝑥, 𝑠) − 𝑣(𝑥, 0)] = 𝐴 − 𝐵  

−
1

𝑠
[𝑅1(𝑥, 𝑠) − 𝑢(𝑥, 0)] = 0.                                             

if the Cramer rule applies to the resulting Sumudu 
transformations, 
𝑅1(𝑥, 𝑠) = 𝑢(𝑥, 0) = (𝐴 + 𝐵)𝑥,  
𝑅2(𝑥, 𝑠) = 𝑣(𝑥, 0) + 𝑠(𝐴 − 𝐵) = 𝑠(𝐴 − 𝐵)  
taking the inverse Sumudu transformation into his 
equations, 
𝑢(𝑥, 𝑦) = 𝑆−1[(𝐴 + 𝐵)𝑥]  
               = (𝐴 + 𝐵)𝑥  
𝑣(𝑥, 𝑦) = 𝑆−1[𝑠(𝐴 − 𝐵)]  
               = (𝐴 − 𝐵)𝑦  
are obtained. Then 
𝑤(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = (𝐴 + 𝐵)𝑥 + 𝑖(𝐴 − 𝐵)𝑦 =
𝐴𝑧 + 𝐵𝑧 ̅ can be found. A random variable 𝑋 is gamma 
distributed (𝑋 ∼ 𝐺(𝛼, 𝛽)) if its probability distribution 

function is 𝑓(𝑥; 𝛼, 𝛽) =
𝑥𝛼−1𝑒−𝛽𝑥𝛽𝛼

Γ(𝛼)
. When  𝑧~𝐺(𝛼, 𝛽), 

the expected value and its variance are given below, 
respectively [32]. 
𝐸[𝑧] = 𝛼𝛽 , 𝐸[𝑧2] = (𝛼 + 𝛼2)𝛽2 , 𝑉𝑎𝑟[𝑧] = 𝛼𝛽2, 
The expected value and variance of the solution we found 
above are, respectively, 
     𝐸[𝑤(𝑧)] = 𝐸[𝐴𝑧 + 𝐵𝑧̅]                 

               = 𝐸[𝐴]𝑧 + 𝐸[𝐵]𝑧 ̅ 
     = 𝛼𝛽(𝑧 + 𝑧̅).  

𝑉𝑎𝑟[𝑤(𝑧)] = 𝑉𝑎𝑟[𝐴𝑧 + 𝐵𝑧]̅                
                     = 𝑉𝑎𝑟[𝐴]𝑧2 + 𝑉𝑎𝑟[𝐵]𝑧̅2  

     = 𝛼𝛽2(𝑧2 + 𝑧̅2).  
 
Expected value if 𝛼 = 1 , 𝛽 = 2 are selected specifically, 
𝐸[𝑤(𝑧)] = 2(𝑧 + 𝑧̅)  

. 

 

Figure 4. The expected value of equation (16) for values 
𝛼 = 1 , 𝛽 = 2 

 
The expectations can be given in a single graph for a 

comparison with the deterministic results of equation (1) 
as above (Figure 4). Maximum and minimum values of 
expected values of the random variables are obtained as 
follows: 𝑤(𝑧) takes its maximum value 8  and its minimum 
value 0. Variance, 

𝑉𝑎𝑟[𝑤(𝑧)] = 4(𝑧2 + 𝑧̅2) 
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Figure 5. Variance of equation (16) for values 𝛼 = 1 , 
𝛽 = 2 

 
The variance of 𝑤(𝑧) is given above (Figure 5). 

Extremum values of the variances of the random variables 
are obtained as follows: 𝑚𝑖𝑛[𝑉𝑎𝑟(𝑤(𝑧))] = 0 and  
𝑚𝑎𝑥[𝑉𝑎𝑟(𝑤(𝑧))] = 32   

 

 

Figure 6. Confidence interval(%99) of equation (14) for 
values 𝛼 = 1 , 𝛽 = 2 

 
The confidence intervals of 𝑤(𝑧) are given in Figure 3. 

The extremum values of the confidence intervals are as 

follows: 𝑚𝑖𝑛(𝐸(𝑤(𝑧)) − 3𝑠𝑡𝑑(𝑤(𝑧))) =0 and 

𝑚𝑎𝑥(𝐸(𝑤(𝑧)) + 3𝑠𝑡𝑑(𝑤(𝑧)))  = 24.9706.  Here, 𝐾 =
3 gives an approximate 99% confidence interval. 
 

Conclusion 
 

With the aid of random variables chosen from the 
initial conditions, a random complex differential equation 
was used in this work. With the aid of transformations, a 
system of random partial differential equations was 
created from a normal and gamma distribution. The two-
dimensional Sumudu and inverse Sumudu 
transformations have been used to analytically solve the 
resulting system of equations. Several examples 
demonstrate approximations to the solution stochastic 
process's mean and standard deviation functions. 

Calculated and graphically displayed are the found 
solution's probability characteristics. 
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