The Pentagon Theorem in Miquelian Möbius Planes

Lorenz Halbeisen, Norbert Hungerbühler* and Vanessa Loureiro

(Communicated by Cihan Özgür)

Abstract

We give an algebraic proof of the Pentagon Theorem. The proof works in all Miquelian Möbius planes obtained from a separable quadratic field extension. In particular, the theorem holds in every finite Miquelian plane. The arguments also reveal that the five concyclic points in the Pentagon Theorem are either pairwise distinct or identical to one single point. We also identify five additional quintuples of points in the pentagon configuration which are concyclic.

Keywords: Pentagon theorem, Möbius planes, Miquel planes.
AMS Subject Classification (2020): Primary: 51B10; Secondary: 05B25; 51E30.

Dedicated to the memory of Prof. Dr. Krishan Lal Duggal.

1. Introduction

The classical version of Miquel's Pentagon Theorem on the Riemann sphere can be formulated as follows:
Theorem 1. Let h_{1}, \ldots, h_{5} be five different Möbius circles which intersect each other at a point I and such that any three of them only meet in I. Then, for $i \in\{1, \ldots, 5\}, h_{i-1}$ and h_{i+1} meet in I and a second point Q_{i}, and h_{i-2} and h_{i+2} meet in I and a second point S_{i} (indices read cyclically). Let k_{i} be the Möbius circle through S_{i}, Q_{i-1}, Q_{i+1}. Then, for $i \in\{1, \ldots, 5\}, k_{i-1}$ and k_{i+1} meet in Q_{i} and a second point P_{i}. Then the points P_{1}, \ldots, P_{5} all lie on one common Möbius circle c.

The situation is shown in Figure 1. Miquel's original proof can be found in [7, Théorème III]. It is based on classical angle theorems. An algebraic proof was believed to be remarkably difficult. So far, only one computer assisted algebraic proof, based on null bracket algebra, has been published in [6]. In the present article we want to present a simple algebraic proof which is based on the cross ratio. This proof works not only for the classical Möbius plane, but for all Miquelian Möbius planes obtained from a separable quadratic field extension for which arguments with angles are not available.
The assumption that the circles h_{i} intersect (not touch) each other in I implies that the points Q_{i} and S_{i} are different from I. In addition, since we assume that any three of the circles h_{i} only meet in I, we have that the 10 points Q_{i}, S_{i} are pairwise distinct. The fact that $P_{i} \neq Q_{i}$ will follow below from Lemma 3. The assumptions can be relaxed if one is interested in degenerate cases of the configuration.

[^0]The article is organized as follows: In Section 2 we briefly present the theory of Miquelian Möbius planes. Section 3 contains the actual algebraic proof of the Pentagon Theorem in Miquelian Möbius planes obtained from a separable quadratic field extension. The reader who is only interested in the classical case can skip Section 2 and directly read Section 3 by simply ignoring the general framework. The proof will also reveal that the points $Q_{i}, P_{i-2}, P_{i+2}, S_{i-2}, S_{i+2}$ lie on a Möbius circle c_{i} for all $i \in\{1, \ldots, 5\}$. In Section 4 we show how the approach can be used to compute the points S_{i} and P_{i} in terms of the points Q_{i}, which culminates in a second algebraic proof of the Pentagon Theorem. In addition, we will see that the points P_{i} are either pairwise distinct or all identical.

Figure 1. The classical Pentagon Theorem.

2. Miquelian Möbius planes

We first briefly summarize the necessary general concepts and terminology. A Möbius plane is an incidence structure consisting of a set of points \mathbb{P} and a set of blocks \mathbb{B} which satisfies the following axioms (see, e.g., [3, Chapter 6] or [1]):
(M1) For any three points $P, Q, R, P \neq Q, P \neq R$ and $Q \neq R$, there exists a unique block C which is incident with P, Q and R.
(M2) For any block C, and points P, Q with P incident with C and Q not incident with C, there exists a unique block D which is incident with P and Q but such that P is the only point incident with both, C and D.
(M3) There are four points $P_{1}, P_{2}, P_{3}, P_{4}$ which are not all incident with one block C. Moreover, every block C is incident with at least one point.

The "blocks" generalize the lines and circles of the classical Möbius plane. Blocks which have only one point in common are called parallel. In this case we also say that the blocks touch each other.
A Möbius plane is called Miquelian if in addition the Six Circles Theorem of Miquel [7, Théorème I] holds:
Theorem 2 (Miquel). If one can assign 8 points P_{1}, \ldots, P_{8} to the corners of a cube in such a way that the points assigned to five of its faces each lie on a circle, then this is also the case for the points assigned to the 6th face (see Figure 2).

Figure 2. The Six Circles Theorem of Miquel.

Möbius planes can be classified in terms of their groups of automorphisms (see [4] and [5]). It is a famous result by Chen [2] that a Miquelian Möbius plane is isomorphic to a Möbius plane $\mathfrak{M}(K, q)$ over a field K where $q(z)=z^{2}+a_{0} z+b_{0}$ is an irreducible polynomial with $a_{0}, b_{0} \in K$. Here, the set of points in $\mathfrak{M}(K, q)$ is

$$
\mathbb{P}:=K^{2} \cup\{\infty\}
$$

where $\infty \notin K$, and the set of blocks \mathbb{B} consists of

- lines, i.e., the sets of solutions $\left(x_{1}, x_{2}\right)$ of the equations $u x_{1}+v x_{2}+w=0$ for $u, v, w \in K,(u, v) \neq(0,0)$, and the element ∞, and
- circles, i.e., the sets of solutions $\left(x_{1}, x_{2}\right)$ of the equations $x_{1}^{2}+a_{0} x_{1} x_{2}+b_{0} x_{2}^{2}+u x_{1}+v x_{2}+w=0$ for $u, v, w \in K$, if this set of solutions consists of more than one point.

A point is called incident with a block, if it is an element of the block. Let E be the splitting field of q. Hence, there are $\alpha_{1}, \alpha_{2} \in E$ such that $q(z)=\left(z+\alpha_{1}\right)\left(z+\alpha_{2}\right)$, and E is a two dimensional vector space over K with basis $\left\{1, \alpha_{1}\right\}$ or $\left\{1, \alpha_{2}\right\}$. Since every point $\left(x_{1}, x_{2}\right) \in K^{2}$ can be represented by $z=x_{1}+\alpha_{1} x_{2}$ or $z=x_{1}+\alpha_{2} x_{2}$, we can identify K^{2} with E. If q is separable, i.e., $\alpha_{1} \neq \alpha_{2}$, then the mapping

$$
{ }^{-}: E \rightarrow E, \quad z=x_{1}+\alpha_{1} x_{2} \mapsto \bar{z}=x_{1}+\alpha_{2} x_{2}=x_{1}+a_{0} x_{2}-\alpha_{1} x_{2}
$$

is an involutorial automorphism of E (observe that $\alpha_{1}+\alpha_{2}=a_{0}$). Hence we have

$$
x_{1}=\frac{\alpha_{1} \bar{z}-\alpha_{2} z}{\alpha_{1}-\alpha_{2}}, \quad x_{2}=\frac{z-\bar{z}}{\alpha_{1}-\alpha_{2}},
$$

and the equation of a line $u x_{1}+v x_{2}+w=0$ can be written in the form

$$
\begin{equation*}
\bar{c} z+c \bar{z}=r \text { with } c \in E \backslash\{0\} \text { and } r \in K . \tag{1}
\end{equation*}
$$

Similarly, the equation of a circle $x_{1}^{2}+a_{0} x_{1} x_{2}+b_{0} x_{2}^{2}+u x_{1}+v x_{2}+w=0$ can be written as a quadratic equation of the form

$$
\begin{equation*}
(z-c)(\bar{z}-\bar{c})=r \text { for } r \in K \backslash\{0\} \text { and } c \in E \tag{2}
\end{equation*}
$$

(use $x_{1}^{2}+a_{0} x_{1} x_{2}+b_{0} x_{2}^{2}=z \bar{z}$ for $z=x_{1}+\alpha_{1} x_{2}$). For $K=\mathbb{R}$ and $q(z)=z^{2}+1$ we have $E=\mathbb{C}$ and we are in the situation of the classical model of the Möbius plane. Another example is the Galois field $K=G F(t)$ for an odd prime power $t=p^{n}$, and $q(z)=z^{2}-\alpha$ for a non-square $\alpha \in G F(t)$. Then, $G F(t)(\alpha) \cong G F\left(t^{2}\right)$ and the conjugation is given by the Frobenius automorphism $z \mapsto \bar{z}=z^{t}$. Notice also, that every finite extension of a finite field is separable. Hence, our proof shows that Theorem 1 is valid in each Miquelian Möbius plane $\mathfrak{M}(K, q)$ if q is separable, and in particular in every finite Miquelian Möbius plane.

3. A simple algebraic proof of Miquel's Pentagon Theorem

The reader who skipped Section 2 should consider the points P, Q, \ldots in this section as elements of the complex plane, and z is a complex variable. In this case, \bar{z} means complex conjugation, and take $E=\mathbb{C}$ and $K=\mathbb{R}$.

The equation of a line through two different points P, Q is given by

$$
(P-z)(\bar{Q}-\bar{z})=(\bar{P}-\bar{z})(Q-z) .
$$

Indeed, $z=P$ and $z=Q$ are solutions of this equation and expanded it has the required form (1) of a line. Hence, three different points P, Q, z lie on a line if and only if

$$
\frac{P-z}{Q-z} \in K \backslash\{0,1\} .
$$

Similarly, a circle through three different points P, Q, R (which do not lie on a line) is given by

$$
(P-Q)(R-z)(\bar{P}-\bar{z})(\bar{R}-\bar{Q})=(\bar{P}-\bar{Q})(\bar{R}-\bar{z})(P-z)(R-Q)
$$

since $z=P, z=Q, z=R$ are solutions of this equation and expanded it has the form (2) of a circle. Thus, the fact that four different points P, Q, R, z lie on a circle can be expressed by the cross ratio

$$
\frac{P-Q}{R-Q} \cdot \frac{R-z}{P-z} \in K \backslash\{0,1\}
$$

and this is still true, if P, Q, R, z lie on a line.
Observe that the group of Möbius transformations

$$
z \mapsto \frac{a z+b}{c z+d}, \quad \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq 0, \quad a, b, c, d \in E
$$

(with the usual convention $1 / 0=\infty, 1 / \infty=0$) is sharply 3-transitive on the set of points and maps blocks (i.e., the set of circles and lines) to blocks.
The following result will be useful below (see Figure 3).
Lemma 3. Let c_{1}, c_{2} be circles which touch each other in a point P. Let h_{1}, h_{2} be two lines through P. Then the line through the second intersections of c_{1} with h_{1} and h_{2} is parallel to the line through the second intersections of c_{2} with h_{1} and h_{2}.

Proof. By a suitable linear Möbius transformation we may assume that c_{1} is given by the equation $(z-1)(\bar{z}-$ $1)=1$ and $P=0$. Then the equation of c_{2} has the form $(z-u)(\bar{z}-\bar{u})=u \bar{u}$ for some $u=\bar{u} \in K$, and h_{i} is given by $\bar{a}_{i} z+a_{i} \bar{z}=0$ for some $a_{i} \in E$. The second intersection of c_{1} with h_{i} is $P_{i}=1-\frac{a_{i}}{\bar{a}_{i}}$, and the second intersection of c_{2} with h_{i} is $Q_{i}=u\left(1-\frac{a_{i}}{\bar{a}_{i}}\right.$. So indeed, the line through P_{1}, P_{2} and the line through Q_{1}, Q_{2} are parallel.

Figure 3. Illustration of Lemma 3. The dashed lines are parallel.

We are now ready to give the new, simple algebraic proof of Miquel's Pentagon Theorem. As a side result, we identify five additional quintuples of points in the pentagon configuration which are concyclic (see also Miquel's original proof in [7, Théorème III]).
The Möbius transformation $z \mapsto 1 /(z-I)$ maps the point I to the point ∞. Hence we may assume without loss of generality that I is the point ∞. We use the cross ratio in the following way, where we assume for the moment that all numerators and denominators are different from 0 :

$$
\begin{aligned}
& P_{3}, Q_{1}, Q_{3}, S_{2} \in k_{2} \Longrightarrow \mu_{1}:=\frac{S_{2}-Q_{1}}{Q_{3}-Q_{1}} \cdot \frac{Q_{3}-P_{3}}{S_{2}-P_{3}} \in K \\
& P_{3}, Q_{3}, Q_{5}, S_{4} \in k_{4} \Longrightarrow \mu_{2}:=\frac{Q_{3}-S_{4}}{Q_{5}-S_{4}} \cdot \frac{Q_{5}-P_{3}}{Q_{3}-P_{3}} \in K \\
& Q_{5}, S_{3}, S_{4} \in h_{1} \Longrightarrow \mu_{3}:=\frac{S_{4}-Q_{5}}{S_{3}-Q_{5}} \in K \\
& Q_{1}, Q_{3}, S_{4} \in h_{2} \Longrightarrow \mu_{4}:=\frac{Q_{1}-Q_{3}}{S_{4}-Q_{3}} \in K \\
& Q_{1}, S_{2}, S_{3} \in h_{5} \Longrightarrow \mu_{5}:=\frac{S_{3}-S_{2}}{Q_{1}-S_{2}} \in K
\end{aligned}
$$

The product of the values μ_{i} is

$$
\alpha:=\mu_{1} \mu_{2} \mu_{3} \mu_{4} \mu_{5}=\frac{Q_{5}-P_{3}}{S_{2}-P_{3}} \cdot \frac{S_{2}-S_{3}}{Q_{5}-S_{3}} .
$$

Similarly, by mirroring the indices $1 \leftrightarrow 4,2 \leftrightarrow 3$ we have

$$
\begin{aligned}
P_{2}, Q_{4}, Q_{2}, S_{3} \in k_{3} \Longrightarrow \nu_{1} & :=\frac{S_{3}-Q_{4}}{Q_{2}-Q_{4}} \cdot \frac{Q_{2}-P_{2}}{S_{3}-P_{2}} \in K \\
P_{2}, Q_{2}, Q_{5}, S_{1} \in k_{1} \Longrightarrow \nu_{2} & :=\frac{Q_{2}-S_{1}}{Q_{5}-S_{1}} \cdot \frac{Q_{5}-P_{2}}{Q_{2}-P_{2}} \in K \\
Q_{5}, S_{2}, S_{1} \in h_{4} \Longrightarrow \nu_{3} & :=\frac{S_{1}-Q_{5}}{S_{2}-Q_{5}} \in K \\
Q_{4}, Q_{2}, S_{1} \in h_{3} & \Longrightarrow \nu_{4}
\end{aligned}:=\frac{Q_{4}-Q_{2}}{S_{1}-Q_{2}} \in K ~=\nu_{5}:=\frac{S_{2}-S_{3}}{Q_{4}-S_{3}} \in K
$$

The product of the values ν_{i} is

$$
\beta:=\nu_{1} \nu_{2} \nu_{3} \nu_{4} \nu_{5}=\frac{Q_{5}-P_{2}}{S_{3}-P_{2}} \cdot \frac{S_{3}-S_{2}}{Q_{5}-S_{2}} .
$$

Since $\alpha, \beta \in K$, it follows that also

$$
\gamma:=\frac{S_{3}-P_{2}}{P_{3}-P_{2}} \cdot \frac{P_{3}-S_{2}}{S_{3}-S_{2}} \in K
$$

Finally, we have

$$
\begin{aligned}
& Q_{1}, P_{1}, P_{3}, S_{2} \in k_{2} \Longrightarrow \xi_{1}:=\frac{P_{3}-P_{1}}{Q_{1}-P_{1}} \cdot \frac{Q_{1}-S_{2}}{P_{3}-S_{2}} \in K \\
& Q_{4}, P_{2}, P_{4}, S_{3} \in k_{3} \Longrightarrow \xi_{2}:=\frac{S_{3}-Q_{4}}{P_{4}-Q_{4}} \cdot \frac{P_{4}-P_{2}}{S_{3}-P_{2}} \in K \\
& Q_{1}, Q_{4}, P_{1}, P_{4}, \in k_{5} \Longrightarrow \xi_{3}:=\frac{P_{4}-Q_{4}}{Q_{1}-Q_{4}} \cdot \frac{Q_{1}-P_{1}}{P_{4}-P_{1}} \in K \\
& Q_{1}, Q_{4}, S_{2}, S_{3} \in h_{5} \Longrightarrow \xi_{5}:=\frac{Q_{1}-Q_{4}}{S_{3}-Q_{4}} \cdot \frac{S_{3}-S_{2}}{Q_{1}-S_{2}} \in K
\end{aligned}
$$

Observe that we get the product

$$
\xi_{1} \xi_{2} \xi_{3} \xi_{4} \gamma=\frac{P_{4}-P_{2}}{P_{3}-P_{2}} \cdot \frac{P_{3}-P_{1}}{P_{4}-P_{1}}
$$

which is again an element of K. We conclude that $P_{1}, P_{2}, P_{3}, P_{4}$ lie on a common circle c_{1}. By shifting the index by one we also have that $P_{2}, P_{3}, P_{4}, P_{5}$ lie on a circle c_{2}. However, c_{1} and c_{2} have the three points P_{2}, P_{3}, P_{4} in common and must therefore agree, which completes the proof of Theorem 1 if all numerators and denominators of the cross rations we used are different from 0 . This is what we now check.

Recall first that the points Q_{i}, S_{i}, I are pairwise distinct. Notice also that the assertion of the theorem is trivially satisfied if three of the points P_{i} coincide or if two pairs of the points P_{i} coincide. In particular, we may assume that among the five pairs P_{i}, P_{i+2} at most one pair collapses, say $P_{3}=P_{5}$. From Lemma 3 it follows that $P_{i}=Q_{i}$ is excluded since this would imply that to h_{i-2} and h_{i+2} are parallel. We can also exclude the case $S_{2}=P_{3}$: Indeed, if we assume $S_{2}=P_{3}$ we have that Q_{3}, Q_{5}, P_{3} lie on the line h_{4}. But at the same time, these points define the block k_{4} and hence $h_{4}=k_{4}$. This would lead to $S_{4}=I$ or $S_{4}=Q_{3}$, which is not possible. Similarly, we have $S_{3} \neq P_{2}$. Next, assume that $P_{3}=Q_{5}$. Now, h_{4} intersects k_{2} in the points Q_{3} and S_{2}. But if $Q_{5}=P_{3}$, k_{2} passes also through Q_{5} which is a point of h_{4}. It follows that $S_{2}=Q_{5}$ which is not possible. Similarly, we have $P_{2} \neq Q_{5}$. Finally, suppose $P_{2}=P_{3}$. Since k_{1} and k_{4} are both determined by $P_{2}=P_{3}, P_{5}, Q_{5}$ it follows that $k_{1}=k_{4}$ (unless $P_{5}=P_{2}$, but in that case the assertion of the theorem is trivial). But this leads to $S_{4}=Q_{5}$ or $S_{4}=Q_{2}$ which is impossible. Therefore indeed, all numerators and denominators in the cross rations we used are different from 0 .

Notice that $\alpha, \beta \in K$ implies that that the points $Q_{5}, P_{2}, P_{3}, S_{2}, S_{2}$ lie on a circle. By shifting the indices cyclically, we obtain the following result.

Proposition 4. The points $Q_{i}, P_{i-2}, P_{i+2}, S_{i-2}, S_{i+2}$ lie on a common Möbius circle c_{i} for all $i \in\{1, \ldots, 5\}$.

In Figure 1 the circle c_{4} is drawn.

4. Computation of the points

It is instructive and useful for practical purposes to actually compute the points S_{i} and P_{i}. We continue to assume that $I=\infty$. Then, the blocks h_{1}, \ldots, h_{5} are lines of the form

$$
h_{i}:\left(Q_{i-1}-z\right)\left(\bar{Q}_{i+1}-\bar{z}\right)=\left(\bar{Q}_{i-1}-\bar{z}\right)\left(Q_{i+1}-z\right)
$$

The point S_{i} is the intersection of the lines h_{i-2} and h_{i+2}. Solving the corresponding linear system of the two equations yields

$$
S_{i}=\frac{\left(Q_{i-2}-Q_{i+1}\right)\left(Q_{i+2} \bar{Q}_{i-1}-Q_{i-1} \bar{Q}_{i+2}\right)-\left(Q_{i-1}-Q_{i+2}\right)\left(Q_{i+1} \bar{Q}_{i-2}-Q_{i-2} \bar{Q}_{i+1}\right)}{\left(Q_{i+2}-Q_{i-1}\right)\left(\bar{Q}_{i-2}-\bar{Q}_{i+1}\right)-\left(Q_{i-2}-Q_{i+1}\right)\left(\bar{Q}_{i+2}-\bar{Q}_{i-1}\right)} .
$$

By assumption, the blocks h_{i} intersect each other at $I=\infty$ (meaning they do not touch) so that the second intersection S_{i} of h_{i-2} and h_{i+2} is different from I. In particular, the denominator of S_{i} is different from 0 . The equation of the block k_{i} through the points S_{i}, Q_{i-1}, Q_{i+1} is then given by

$$
\left(S_{i}-Q_{i+1}\right)\left(Q_{i-1}-z\right)\left(\bar{S}_{i}-\bar{z}\right)\left(\bar{Q}_{i-1}-\bar{Q}_{i+1}\right)=\left(\bar{S}_{i}-\bar{Q}_{i+1}\right)\left(\bar{Q}_{i-1}-\bar{z}\right)\left(S_{i}-z\right)\left(Q_{i-1}-Q_{i+1}\right)
$$

The blocks k_{i-1} and k_{i+1} meet in Q_{i} and P_{i}. Solving the equation of the circle k_{i-1} for the variable \bar{z}, yields

$$
\bar{z}=\frac{\bar{Q}_{i-2}\left(Q_{i-2}-Q_{i}\right)\left(\bar{Q}_{i}-\bar{S}_{i-1}\right)\left(z-S_{i-1}\right)-\bar{S}_{i-1}\left(\bar{Q}_{i-2}-\bar{Q}_{i}\right)\left(Q_{i}-S_{i-1}\right)\left(z-Q_{i-2}\right)}{\left(Q_{i-2}-Q_{i}\right)\left(\bar{Q}_{i}-\bar{S}_{i-1}\right)\left(z-S_{i-1}\right)-\left(\bar{Q}_{i-2}-\bar{Q}_{i}\right)\left(Q_{i}-S_{i-1}\right)\left(z-Q_{i-2}\right)} .
$$

Similarly, solving the equation of the circle k_{i+1} for the variable \bar{z}, gives

$$
\bar{z}=\frac{\bar{Q}_{i}\left(Q_{i}-Q_{i+2}\right)\left(\bar{Q}_{i+2}-\bar{S}_{i+1}\right)\left(z-S_{i+1}\right)-\bar{S}_{i+1}\left(\bar{Q}_{i}-\bar{Q}_{i+2}\right)\left(Q_{i+2}-S_{i+1}\right)\left(z-Q_{i}\right)}{\left(Q_{i}-Q_{i+2}\right)\left(\bar{Q}_{i+2}-\bar{S}_{i+1}\right)\left(z-S_{i+1}\right)-\left(\bar{Q}_{i}-\bar{Q}_{i+2}\right)\left(Q_{i+2}-S_{i+1}\right)\left(z-Q_{i}\right)}
$$

Equating the resulting expressions yields a quadratic equation in z. However, since $z=Q_{i}$ is a solution, the equation reduces to a linear one for the second solution $z=P_{i}$. One finds

$$
\begin{aligned}
P_{i}= & {\left[\left(Q_{i+2}-Q_{i-1}\right)\left(\left(Q_{i+2}-Q_{i}\right) Q_{i-2} \bar{Q}_{i+1}-\left(Q_{i-2} Q_{i+2}-Q_{i} Q_{i+1}\right) \bar{Q}_{i-2}\right)\right.} \\
& \left.+\left(Q_{i-2}-Q_{i+1}\right)\left(\left(Q_{i}-Q_{i-2}\right) Q_{i+2} \bar{Q}_{i-1}+\left(Q_{i-2} Q_{i+2}-Q_{i-1} Q_{i}\right) \bar{Q}_{i+2}\right)\right] \\
& /\left[\left(Q_{i+2}-Q_{i-1}\right)\left(\left(Q_{i+2}-Q_{i}\right) \bar{Q}_{i+1}-\left(Q_{i-2}-Q_{i}-Q_{i+1}+Q_{i+2}\right) \bar{Q}_{i-2}\right)\right. \\
& \left.+\left(Q_{i-2}-Q_{i+1}\right)\left(\left(Q_{i}-Q_{i-2}\right) \bar{Q}_{i-1}+\left(Q_{i-2}-Q_{i-1}-Q_{i}+Q_{i+2}\right) \bar{Q}_{i+2}\right)\right] .
\end{aligned}
$$

We now obtain a second proof of Theorem 1: Indeed, the cross ratio $\delta=\frac{P_{1}-P_{3}}{P_{2}-P_{3}} \cdot \frac{P_{2}-P_{4}}{P_{1}-P_{4}}$ simplifies to

$$
\frac{\left(Q_{5}\left(\bar{Q}_{2}-\bar{Q}_{4}\right)+Q_{2}\left(\bar{Q}_{4}-\bar{Q}_{5}\right)+Q_{4}\left(\bar{Q}_{5}-\bar{Q}_{2}\right)\right)\left(Q_{5}\left(\bar{Q}_{3}-\bar{Q}_{1}\right)+Q_{3}\left(\bar{Q}_{1}-\bar{Q}_{5}\right)+Q_{1}\left(\bar{Q}_{5}-\bar{Q}_{3}\right)\right)}{\left(Q_{5}\left(\bar{Q}_{1}-\bar{Q}_{4}\right)+Q_{1}\left(\bar{Q}_{4}-\bar{Q}_{5}\right)+Q_{4}\left(\bar{Q}_{5}-\bar{Q}_{1}\right)\right)\left(Q_{5}\left(\bar{Q}_{3}-\bar{Q}_{2}\right)+Q_{3}\left(\bar{Q}_{2}-\bar{Q}_{5}\right)+Q_{2}\left(\bar{Q}_{5}-\bar{Q}_{3}\right)\right)} .
$$

The first factor of the denominator can be written as

$$
Q_{5}\left(\bar{Q}_{2}-\bar{Q}_{4}\right)+Q_{2}\left(\bar{Q}_{4}-\bar{Q}_{5}\right)+Q_{4}\left(\bar{Q}_{5}-\bar{Q}_{2}\right)=\left(\bar{Q}_{2} Q_{4}+Q_{2} \bar{Q}_{5}+\bar{Q}_{4} Q_{5}\right)-\overline{\left(\bar{Q}_{2} Q_{4}+Q_{2} \bar{Q}_{5}+\bar{Q}_{4} Q_{5}\right)}
$$

In fact all factors of the numerator and of the denominator are of the form $u-\bar{u}$, and hence $\delta \in K$, which implies that $P_{1}, P_{2}, P_{3}, P_{4}$ lie on a circle. By shifting the index by one, we again find that all points P_{1}, \ldots, P_{5} lie on a common circle.
We conclude by the following observation. We have already seen in Section 3 that $P_{i} \neq P_{i \pm 1}$. Now, the equation $P_{i-1}=P_{i+1}$ simplifies to

$$
\begin{aligned}
& \left(Q_{i-1}-Q_{i+1}\right)\left(Q_{i-1}-Q_{i+2}\right)\left(Q_{i+1}-Q_{i-2}\right)\left(Q_{i-2}\left(\bar{Q}_{i+2}-\bar{Q}_{i}\right)+Q_{i+2}\left(\bar{Q}_{i}-\bar{Q}_{i-2}\right)+Q_{i}\left(\bar{Q}_{i-2}-\bar{Q}_{i+2}\right)\right) . \\
& \cdot\left(Q_{i}\left(\bar{Q}_{i+1}-\bar{Q}_{i-1}\right)+Q_{i-2}\left(\bar{Q}_{i-1}-\bar{Q}_{i+2}\right)+Q_{i+1}\left(\bar{Q}_{i+2}-\bar{Q}_{i}\right)+Q_{i-1}\left(\bar{Q}_{i}-\bar{Q}_{i-2}\right)+Q_{i+2}\left(\bar{Q}_{i-2}-\bar{Q}_{i+1}\right)\right)=0 .
\end{aligned}
$$

The first three factors are clearly different from 0 . The next factor is 0 if and only if Q_{i}, Q_{i-2}, Q_{i+2} lie on a line, which would mean $h_{i-1}=h_{i+1}$ which is excluded. The last factor is cyclically symmetric in i, hence $P_{i-1}=P_{i+1}$ for some i implies $P_{i-1}=P_{i+1}$ for all i. This leads to the following result.

Proposition 5. Either the points P_{i} are pairwise distinct or the points P_{i} collapse to one single point.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Benz, W.: Über Möbiusebenen. Jahresbericht der Deutschen Mathematiker-Vereinigung. 63 (Abt. 1), 1-27 (1960).
[2] Chen, Y.: Der Satz von Miquel in der Möbiusebene. Mathematische Annalen. 186, 81-100 (1970).
[3] Dembowski, P.: Finite geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin-New York (1968).
[4] Hering, C.: Eine Klassifikation der Möbius-Ebenen. Mathematische Zeitschrift. 87, 252-262 (1965).
[5] Krier, N.: The Hering classification of Möbius planes. In: Proceedings of the International Conference on Projective Planes, Washington State Univerity, Pullman, Wash., 1973. Washington State University Press, Pullman. 157-163 (1973).
[6] Li, H., Xu, R., Zhang, N.: On Miquel's five-circle theorem. In: Hongbo Li, Peter J. Olver, and Gerald Sommer (eds). Computer Algebra and Geometric Algebra with Applications. Springer, Berlin Heidelberg. 217-228 (2005).
[7] Miquel, A.: Théorèmes de géométrie. Journal de Mathématiques Pures et Appliquées. 3, 485-487 (1838).

Affiliations

Lorenz Halbeisen
Address: ETH Zürich, Department of Mathematics, 8092 Zürich, Switzerland.
E-MAIL: lorenz.halbeisen@math.ethz.ch
ORCID ID: 0000-0001-6078-7237

Norbert Hungerbühler
Address: ETH Zürich, Department of Mathematics, 8092 Zürich, Switzerland.
E-MAIL: norbert.hungerbuehler@math.ethz.ch
ORCID ID: 0000-0001-6191-0022

Vanessa Loureiro
AdDress: Realgymnasium Rämibühl Zürich, Rämistrasse 56, 8001 Zürich, Switzerland.
E-MAIL: vanessa.loureiro@rgzh.ch
ORCID ID: 0009-0002-1999-5696

[^0]: Received: 23-02-2023, Accepted :17-09-2023

 * Corresponding author

