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In this paper, we consider the inverse nodal problem for the conformable fractional diffusion operator with
parameter-dependent Bitsadze—Samarskii type nonlocal boundary condition. We obtain the asymptotics for the
eigenvalues, the eigenfunctions, and the zeros of the eigenfunctions (called nodal points or nodes) of the
considered operator, and provide a constructive procedure for solving the inverse nodal problem, i.e., we

reconstruct the potential functions p(x) and g(x) by using a dense subset of the nodal points.
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Introduction

Inverse nodal problem consists in reconstructing
operators from given a dense set of zeros of
eigenfunctions called nodal points or nodes. Inverse nodal
problems for different differential operators have been
studied for years. In 1988, McLaughlin gave a solution to
inverse nodal problem for the Sturm—Liouville operator
and sought to recover the potential function q(x) by using
the zeros of the eigenfunctions (see [1]). In 1989, Hald and
McLaughlin showed that it is sufficient to know the nodal
points to uniquely determine the potential function of the
Sturm—Liouville problem (see [2]). In 1997, Yang gave an
algorithm to recover the potential function and boundary
condition from any dense subset of the nodal points (see
[3]). Inverse nodal problems have been investigated by
several researchers for the Sturm—Liouville operators and
the diffusion operators with the usual derivative (see [4]-
[17] and references therein).

As known, there are two types of nonlocal boundary
conditions, Bitsadze—Samarskii type conditions and
integral type conditions. These conditions appear when
data cannot be measured directly at the boundary and
have many applications (see [18]-[19] and references
therein). In 1969, firstly Bitsadze and Samarskii applied
nonlocal boundary conditions to elliptic equations (see
[20]). Some studies on inverse nodal problems for various
types of operators with nonlocal boundary conditions can
be seen in [21]-[27].

In 2014, Khalil et al. introduced new definition of
fractional derivative called conformable fractional
derivative of order a€(0,1] (see [28]). In 2015, the basic
properties and main results of this derivative were given
by Abdeljawad and Atangana et al. ([29]-[30]). In recent
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years, the direct and inverse problems for the various
operators which include conformable fractional
derivatives have been studied (see [31]-[36] and
references therein).

In current literature, there are any results on the
inverse nodal problems for a diffusion operator with
parameter-dependent Bitsadze—Samarskii-type nonlocal
boundary condition, which include conformable fractional
derivative.

Preliminaries

We give known some concepts of the conformable
fractional calculus that more detail knowledge can be
seen in [28]-[30] and [37].

Definition 2.1 Let f:[0,00) = R be a given function.
Then, the conformable fractional derivative of f of order
a with respect to x is defined by

TG0 = }li%f (x + hxl};“) i (x)‘

T,f(0) = xlirgl+T“f(x)' forallx > 0, a € (0,1].

If f is differentiable that is f'(x) = }lm[l]w

then, T, f(x) = x17%f"(x).
Theorem 2.2 Let f, g be a —differentiable at x, x > 0.
) Ta(erf +629) = aiTof +6Tag, Yoy, 0 ER,
i) T,(x") =rx""% VreR,
iii) T,(c) = 0, (c — const.)
V) To(f9) = Ta(H)g + fTa(9),
T, (5) _ Ta(f)gg—ZfTa(g)’ (g % 0).
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Definition 2.3 The conformable fractional integral is defined by

Lf(x) = fxf(t)dat = fxt“‘lf(t)dt, for all x > 0.

Theorem 2.4 (@ —chain rule) Let f, g: [0,) — R be a —differentiable functions. Then, f(g(x)) is @ —differentiable
function and forall x, x # 0, g(x) # 0

(T.(F @) () = TP (9)) Tug) @) g ().

Definition 2.5 (o —integration by parts) Let f, g: [a, b] = R be a —differentiable functions. Then,

b b
| FeTeg@der = Fg@l - | gTef @)dex.

Lemma 2.6 (a —Leibniz rule) Let f(x, t) be a function such that t*~1f (x, t) and t*~1f,(x, t) are continuous in t and x
in some regions of the (x, t)-plane, including a(x) <t < b(x), xo < x < x;. If a(x) and b(x) are a —differentiable
functions for xq < x < x4, then,

b(x) - - b(x)
T, (fa(;‘) fx, t)dat) = Tub () f (x, b)) (%) = Toa(f (%, a(0))a® (1) + [ Taf (x, O)dqt.

Definition 2.7 Let 1 < p < o, a > 0. The space Ly, ,(0, a) consists of all functions f: [0, a] — R satisfying the
condition

(1 @)IPdgx)"” < .

Lemma 2.8 The space Lp,a(O, a) associated with the norm function

1fllpa: = ([ 1 GO Pdgx) "

is a Banach space. Moreover if p = 2 then L, ,(0, a) associated with the inner product for f, g € L, ,(0, a)

f, g):= fo FIE dyx

is a Hilbert space.
Definition 2.9 Let 1 < p < o.The Sobolev space Wplla[O, a] consists of all functions on [0, a] such that f(x) is absolutely

continuous and T, f (x) € L, (0, ).

Asymptotics of the Eigenvalues and Eigenfunctions

In this section, we consider a diffusion operator with parameter-dependent Bitsadze-Samarskii-type nonlocal
boundary condition which includes conformable fractional derivatives of order « instead of the ordinary derivatives in
a traditional diffusion operator. The operator L, = L,(p(x),q(x),[) is called a conformable fractional diffusion
operator (CFDO) and is the form

Loy:i= T, T,y + [2Ap(x) + q(x)]y = 2y, 0<x<1 (1)
Us(y):=y(0)=0 (2)
V.():=y(1) —y(B) =0 (3)

where 1 is the spectral parameter, a € (0,1], q(x) € W3,[0,1], p(x) € W£,[0,1] are real-valued functions, p(x) #
const., B € (0,1),and fory = §, 1

J§ p(x)dax = 0. (4)
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From [35], the general solution of equation (1)

y(x,A; @) = cycos (i Q(x)) + ¢,sin (/1 Q(x))

xsin(26@-t9 -0 +e®) Tap(t) i
+h 0 @@ +p*(y (6,4 @) + 32 5 Tay (6,4 @) | dat, (5)
where,
Q):= [y p(t)dqt. (6)

Let the functions C = C(x, A; @) and S = S(x, 4; @) be solutions of equation (1) under the initial conditions

C0,4a)=1,T,C(0,;@) =0and S(0,4;a) =0, T,S(0,4,a) =1 (7)

respectively.
Thus, from (5), following solutions

C(x,A; @) = cos (gx“ — Q(x))

i 1x“— —Q(x)+
4+ 7 2ol o Q“”((q(t) +PHOICE A @) + 12T 0 (8,2 a)) ®)
and
A
sm( (X))
S, L, a) = 1= p(0)
in( A%t %) -0 ()4
o e -erats) ((q@ + 2S5 0) + TELT,S (2, a))d t (©)

are obtained.

From [14], [35] and [38], for the asymptotic representations of the functions C(x, 1; ) and S(x, 4; a), the following
lemma can be given.
Lemma 3.1 For |1| — oo and each fixed «, the following asymptotic formulae is valid:

C(x,4; @) = cos (Ax - Q(x)) +0 ( exp (llm/'ll )) (10)
and
S(x, A4 a) = 1sm (i - (x))

+o2 {0 + pODsin (527~ 0)) ~ e rcos (57 — ()
[ @ + o005 - 269 - 000 + 200 ot
+ 5 Tap@)sin (2 - 26) — Q@) + 20(1)) dt} (11)
sl - o) - ccoes (e -0
+0 (% exp (|1mA| %))
where,
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e (@) = [y (q(®) + pA(D)dat, c;(x) = [ (q(t) + p*()p(D)dat,
2(p(x) + p(0))'* — 22**p'**(0) + (p(x) — p(0))'**

C3(X) = 4p2(0) + 1+a

1/ (* ?
—5( [ @@+,

c(x) = f (q(®) + p* ) (p(x) + p(0) + 2p(t))dyt = (p(x) + p(0))c; (%) + 2¢,(x).
0

The eigenvalues of the problem L, coincide with the zeros of its characteristic function given by

Ua(C)  Uq(S)

O AR

= AS(1, 4 @) — S(B, 4; ). (12)

Thus, using the formulae (4), (11), and (12), we obtain the following asymptotic formula for A, (1)

A, (1) = si A ! 1 0))si A 1 A 2si A @
«@) = sin=+ —{(1) + p(O)sin - &, (Dcos— = 2sin>

+ [ (q(t) + p2(©)cos (5 (1 — 26%) + 2Q(8) ) dyt

+ Iy Tap@)sin (1= 269 +20()) det} (13)
+${C3(1)Sin§ - C4(1)COS§ —2(p(B) + p(O))singﬁ“ + 2C1(ﬁ)cos§ﬁ“}
+0 (A%explhyl),l/ll - oo,

By the method in [10], using (13) and Rouche theorem and taking A, (4,,) = 0 we can prove that the eigenvalues 4,
have the form
c1(1)-AR+2(-1)"sinnf%n
2nm
n P +p0)ci(W+2c;(MD+2(=D)"™(p(B)+p(0))sinnf¥m—-2(=1)"c1 (B)cosnf*n (14)

anZam?

A, =nam +

1
+o (ﬁ)' |Tl| — 0,

where, forn € Z\{0}, x2 = 0,x" =1, j € Z,

Al = f ™ (@O + p(6))cos@nt® — 20(6))dyt — f " (Tp(6)sin(2nt® — 20(6))dat.
0 0

Inverse Nodal Problem

In this section, under condition (7) we obtain the asymptotics for the zeros of the function ¢ (x, 1,,; @) called the
nodal points of the operator L, and develop a constructive procedure for solving the inverse nodal problem.

It is clear from (14) that for sufficiently large |n|, there is exactly one eigenvalue A, in the domain

[, = {A4: |A —nar| < 8}, § > 0 and since the functions p(x) and q(x) are real-valued, 4, are real. Thus, the
functions ¢ (x, A,; @) are real-valued and

P, Ag; @) = Uy (C (o, An; ))S (X, Ays @) — Ug (S(x, An; ))C (x, A @) = S(2x, A @) (15)
are the eigenfunctions corresponding to the eigenvalues 4,, for sufficiently large |n|.
Thus, substituting (14) in (11), we get

@ (x, An; @) = sin(nmx® — Q(x))
1

2nam

+(P(x) + p(0))sin(nmrx® — Q(x))

+ {[(c;(1) = AT + 2(=1D)"sinnB%m)x* — ¢; (x)]cos(nmx® — Q(x))
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+ [ (q(®) + p?(D)cos(nm(x® — 2t%) — Q(x) + 2Q(£))dt
+[ (Tp(®))sin(nm(x® — 2t%) — Q(x) + 2Q(t))dyt}

+—{[(p(1) +p(0))cr (Dx* + 2¢,(Dx” (16)

+2(=D™*(p(B) + p(0)x*sinnf%m — 2(—1)"c,(B)x*cosnf*n

+(p(x) + p(0))(c; (1) + 2(=1)"*sinnB*m)x* — c,(x)]cos(nmx®* — Q(x))
+[c; () (¢, (1) + 2(—1)"*sinnB%m)x*

—(c1 (1) + 2(—=D)"sinnBm)?x%% + c5(x)]sin(nmrx® — Q(x))

+0 (=), Inl > o,

uniformly in x € [0,1].
We can see from (16) that for sufficiently large |n| and each fixed «, the eigenfunctions ¢ (x, 4,;; @) has exactly |n| —
1 nodal points x,{,j € Zin (0,1) as
0<xi<x?i<..<xl'<1forn>0
and
0<xpl<xp?<..<x*1<1 forn<0.

Lemma 4.1 The numbers x,]; satisfy the following asymptotic formula for sufficiently large |n| and each fixed a:

(x ) Q(xn)
ananz [cl(xn) — o (D (xhHe - (A,]1 — A7 (x,{)“) - 2(—1)”(x,{)"‘sinn,8"‘n]
+ o €2 () = (e (1) + EEEERAD) () 17)

+(=D"®(B) + p(0))(x})*sinnfm — (—1)"c; () (x])*cosnf x|
+o(i5),

uniformly with respect toj.
Proof. From (15) and taking ¢(x,’1,ln; a) =0, we get

sin (nn(xn) - Q(xn)) ! {[(01(1) AT + 2(=1)"sinnBm) (x})% — ¢, (x}))]cos (nn(xn) - Q(xn))

+(p(x,{) + p(O))sin (nn(x,{)a - Q(x,{)) + foxfl (q(t) + p?(t))cos (nn ((x,]l)a - Zt“) - Q(x,{) + ZQ(t)) d,t

+ f(fd‘ (Tap(t))sin (nn ((x,]l)a - Zt"‘) - Q(x,];) + ZQ(t) dat} {[(p(l) + p(O))cl(l)(xn) + 202(1)(xn)

4-n20127r2

+2(—1)"(p(,8) + p(O))(x,{)asinnﬁ“n - 2(—1)"¢, (ﬁ)(x,};)acosnﬂ“n
+ (p(x,]l) + p(O)) (c,(1) + 2(—1)”sinnﬁ"‘n)(x,{)a - C4(x,{)] cos (nn(x,};)a - Q(x,]l))
+ [cl(x,{)(cl(l) + 2(—1)"sinn,8"‘n)(x,];)a —(c, (D) + 2(—1)"sinnﬁ"‘n)2(x,];)2a

+c3 (x,i)]sin (nn(x,};)a - Q(x,]l))} +o (niz) =0, |n| - oo.

a .
If last equality is divided by cos (nn(x,]l) - Q(x,]l)) and necessary arrangements are made, for |n| - oo, we obtain
that
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tan (nn(x,};)a - Q(x,i)) = { me [p(xn) + p(O) +B ] 4n2a — [C1 (xn) (1 (1) + 2(—=1)"sinnf*m) (xn)

—(c, (D) + 2(—1)”sinnﬁan)2(xn) —c3 (x,jq)]} {— — [(cl(l) — A + 2(—1)"sinnf%*m) (xn)“ - (xn) +
- [(p(l) +p(0)e; (D (x))” + 26,(D(x))” + 2(=1)"(P(B) + p(0))(x]) “sinnpm —

2(-D"¢y (ﬁ)(xn) cosnf%*m +(p(xn) + ;0(0))(61 O+ 2(—1)”smnﬁ“rt)(xn) - C4(xn)] +o (n_Z)}’

where,

B} = fo"{l (q(t) + p2(t))sin(2nmt® — 2Q(t))d4t + fo"’jl (T,p(t))cos(2nmt® — 2Q(t))dt.

. , . . . . 1
Hence, if Taylor’s expansion formula is taken into account for the function Taasu~ 0 then,

tan (nn(x,};)a - Q(x,]l)) =3 10“_[ [cl(x,i) - (1) (x,};)“ - (Af1 - A’,}(x,{)“) - 2(—1)”(x,{)“sinn,8“7r]
s [ ) = () + EREREE) () 1" () +
p(O))(xn) sinnB%mr—(— 1)"01(,8)(xn) cosnﬁ“n] +o ( ) |n| - oo

and if Taylor’s expansion formula for Arctangent is taken into account then,

nn(x,{)a - Q(x,i) =jm+ ﬁ [cl(x,{) — (D) (e - (Af1 - A’fl(x,{)“) - 2(—1)”(x,{)“sinn,8“7r] +
s [ea()) = (e (1) + EREDAD) (N (—1)"(p(B) + p(0)) (1) “sinnpm —

(- 1)"01(3)(xn) cosnﬁ"‘n] + 0( ) |n| = oo

is obtained. From the last equality, we arrive at (17).

Corollary 4.2 From (17) it is obvious that for each fixed «, the set X of all nodal points is dense in the interval [0,1].

Let X be the set of nodal points and 8% = % , k,€ € Z. For each fixed x € [0,1] and « € (0,1], we can choose a

sequence {j,,} € X so that |l}m x,{” = x. Clearly the subsequence {x,{i’"} converges also to x for m = 2n#. Then, there
n|—oo

exist finite limits and corresponding equalities hold:

7 lim (m(x’m) —]m) = Q(x),

|m|-o0

2am lim m [n (m(x,j;lm)a —jm> - Q(x,j;lm)] = f(x),

|m|—>00
anlnllilr_riom {Zamn [n (m(xf;lm)a —jm> - Q(x,j;lm)]
—F G + Al — Az ()" + 2= D™ G sinmpen ) = g(x)
and

f(x) =c;(x) — ¢, (DxE,

9() = () = (e, (1) + EEERAL x — ¢, (B)x.

2

Therefore, we can prove the following theorem for the solution of the inverse nodal problem.

(18)
(19)

(20)

(21)

(22)

Theorem 4.3 Given any dense subset of nodal points X, € X uniquely determines the functions p(x) and g(x) a.e. on

[0,1]. Moreover, these functions can be found by the following procedure.
Step-1. Denote m = 2n¥ and for each fixed x and a, choose a sequence {x’m} C X, such that lim xjm = x,

|m|-o

Step-2. Find the function Q(x) from (18) and taking into account (6) calculate

p(x) = T,Q(x),

Step-3. Find the function f(x) from (19) and determine

(23)
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q(0) — a [} q(O)dat:=r(x) = Tof (x) — p*(x) + a f, p*(O)dat,

2

fo 104t = 506 — (D) + p(O)x"

+x% [ (r(0) + p2()dat]

Step-5. Calculate the function q(x) via the formula

q(x) =r(x) +a [ q(t)d,t.

Proof. From (6), it is obvious that formula (23) is provided.

a-differentiating (21), we get

1
Tof (x) = q(x) + p*(x) — af (q(0) + p*())dqt.

(24)
Step-4. 2aQ(x) — (p(1) + p(0))x* — 2%x* # 0 and for each fixed x, a, find g(x) from (20) and calculate
T [g(x) - | e+ r@wo
+2 [} (r(®) + p*O)p ()t + LEEO (4 (1 (6) 4+ p?(6))dyt (25)
(26)

If denote r(x):=q(x) — a fol q(t)d,t, then we obtain (24). If we substitute q(x) = r(x) + afol q(t)d,t in (22)
and take (4) into account, we get formula (25).

Finally, from (24) and (25), we arrive at (26).
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