Fundamentals of Contemporary Mathematical Sciences

F C M S mll doi:10.54974 /fcmathsci. 1240849
(2024) 5(1) 1 - 14

‘ Research Article ‘

D-Homothetic Deformations and Almost Paracontact Metric Manifolds

Sirin Aktay © *
Eskigehir Technical University, Faculty of Science, Department of Mathematics
Eskigehir, Tirkiye

Received: 23 January 2023 Accepted: 04 December 2023

Abstract: In this study, we determine some of the classes of almost paracontact metric structures
which are invariant under D-homothetic deformations. We write the Riemannian curvature tensor, the
Ricci tensor and the scalar curvature when the characteristic vector field is Killing. In addition, we give

examples.
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1. Introduction

Differentiable manifolds having almost paracontact structures were introduced by [5] and after
[11] many authors have made contribution, see [7, 9, 11-13] and references therein. Manifolds
with almost paracontact metric structure were classified according to the Levi-Civita covariant
derivative of the fundamental tensor. There are 2'2 classes of almost paracontact metric manifolds.
The defining relations and projections onto each subspace are given in [7, 13].

D-homothetic deformations of almost contact metric manifolds is extensively studied, see
[1, 3] and references therein. For D-homothetic deformations of almost contact metric structures
with B-metric, refer to [2]. D-homothetic deformations of almost paracontact metric structures
were introduced in [11]. In [10], almost paracontact metric manifolds whose characteristic vector
field is parallel are considered and their D-homothetic deformations are studied. Our aim is to
investigate D-homothetic deformations of almost paracontact metric manifolds having arbitrary

characteristic vector fields.

2. Preliminaries

Assume that M?"*! is a smooth manifold having odd dimension. An ordered triple (i, &,n) of an

endomorphism, a vector field, a 1-form, respectively, with the properties below is called an almost
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paracontact structure on M

?’=I-no¢ =1, @& =0,

there is a distribution D:p e M — D, = Kern. M together with the almost paracontact structure
is said to be an almost paracontact manifold. In addition, if M carries a semi-Riemannian metric
g satisfying

9(e(@), ¢(y)) = —g(x, y) + n(z)n(y),
where X(M) is the set of smooth vector fields on M and z,y € X(M), then M is called an almost
paracontact metric manifold. The fundamental 2-form of the almost paracontact metric structure
is given as

®(z,y) = g(pz,y).

We denote the vector fields and tangent vectors by letters x,y, z.

Consider the tensor F' defined by

F(z,y,2) = 9((Va)(y), 2), (1)

for all ,y,z € T, M, where T,,M is the tangent space at p, V is the Levi-Civita covariant derivative

of g. Then F satisfies

F($,yaz):—F($aZ7y)7 (2)
F(l‘, ®Y, (pZ) = F(iL’,y, Z) + ﬂ(y)F(% Zag) - U(Z)F(x,%f) (3)
The forms below are defined for any almost paracontact metric structure.

0(z) = g" F(ei,ej,x), 0%(x)=g"F(ei, pej, 1), w(x)=F(£¢E ),

where uw e T,M, {e;,&} is a basis for T,M and the inverse of the matrix g;; is g¥.

Let F be the set of (0,3) tensors over T, M having properties (2), (3). F is the direct sum

of four subspaces W;, i=1,...,4, where projections F"i we use are
FV (2,y,2) = F(¢*2, 9y, ¢%2), (4)
F"(2,y,2) = =n(y) F(¢"x,0%2,€) +1(2) F(p*z, 0%y, €). (5)

In addition, Wy is a direct sum of four subspaces G;, i=1,...,4, Wo =G5®...d Gy, and
denote W3 and Wy by Gi; and Gis, respectively. A manifold with almost paracontact metric
structure is said to be in the class G; ® G;, etc. if I belongs to G; ® G; over T,M for all pe M.
The defining relations of G; and projections F* onto each G; are given in [7, 13]. We only write

the classes and projections we use:
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Gs s Fla,2) = 2 (g(gm, 02)n(y) - glom, oy)n(2)) ©)
Gs: F(xayvz) = —ﬁ(y)F(vaaf) +77(Z)F(.’E,y,f), (7)
F(Z‘,y,f) = F(y,$7§)I—F(g@$,(py,f)7 HF(E)ZO

Go: F(z,y,2) = -n(y)F(z,z8) +n(2)F(z,y,),
F(x7y7£) = _F(y7$7§) :F(<p:v,<py,§) (8)

GlO: F(Jf,y,Z) = _n(y)F(‘x’Z7§)+77(Z)F(xvy7§)7
F(x,y,§) = F(y,2,8) = F(pzx,py,§) (9)
Gll : F(IE,y,Z) :n(l‘)F(fa@vaz) (10)
Grz: F(z,y,2) =n(z){n(y)F(& & 2) —n(2)F (€ y)} (11)

Some of the projections F' onto each subspace G; are

F(2,y,2) = —in(y) {F(@?x,0*2,8) + F(px,02,) (12)

~F(p%2,0°2,£) - Fpz,o1,6) } + in(z) {F(o*z, 0%y,&)

+F(pz,0y,£) - F(9*y, 0°2,€) - F(py, ox,€)}

Fny2) = = gn(y) {F(&*,0%2,6) + Flor, 92,6) (13

+F(¢%2,0°2,€) + F(pz, 01,€) } + in(«Z) {F(¢%z, 0%y, )

+F(px,0y,£) + F(9*y, 92, 8) + F(py, ¢,£) },

Fll(‘rayaz) = n(I)F(§7¢2ya¢22)v (14)

F2(z,y,2) = () {n(y)F(§,€,¢%2) ~n(2) F (€& ¢°y) }- (15)

Note that ¢ is Killing in any direct sum of G, Gs,Gs, G4, G5, Gg, Gg, G1; and £ is parallel

in Gy, Go, Gs, G4, G1; and also in any direct sum of these classes [10].
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For any almost paracontact metric sructure (¢,€,7,9) on a manifold M, consider the
quadruple (@,&,7,§) where
1
t

P=p, E==€ di=tn, g=-tg+tt+1)nen (16)

for a positive constant ¢ [11]. The structure (QZJ,E ,7,9) is called a D-homothetic deformation of

(¢,€,m,9) . In [10], the Levi-Civita covariant derivative V of metric § is obtained as

(t+1)2
2t

9(Vay,z) = g(Vay,2) + n(2) {-n(2)g(Ves,y) (17)
-n()g(Ve&, ) + g(Val,y) + g(Vy€, x)}
D ) (9(9,6,2) - o(9-60)

1(y) (9(Vat, 2) - 9(V:£, 7))

+1(2) (9(Va&,y) +9(Vy&, )} -

Also it is proved that the classes with parallel characteristic vector field does not change after
D-homothetic deformations. Our aim is to study the invariance of remaining basic classes G5, Gg,
G7, Gg, Gg, Gyg, G12. We also write the curvature tensors of the deformed metric when ¢ is

Killing and we give examples.

3. Classes of Deformed Structures
Consider a D-homothetic deformation given by (16).

First let £ be Killing. In this case (17) simplifies into

9(Vay,2) = g(Vay,2) = (t+1) {n(x)g(V &, 2) (18)

+0(y)9(Vaé; 2)}
since g is non-degenerate, (18) gives
Vay = Vay = (¢ +1) {n(2) V& + n(y) Val} . (19)
The Proposition 3.1 yields from (19).
Proposition 3.1 Let £ be g-Killing. Then 5 is g-Killing.

Now we write the curvature tensors of the deformed metric g for an almost paracontact metric

structure with Killing characteristic vector field. If {e1,...,en,we1,...,pen, £} is a g-orthonormal
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frame, then {fi,..., fons1} = {%(pel, cey %(pen, %el, e %en, %f} is g-orthonormal [10] and
G% = g . We use this basis in calculations.
If ¢ is Killing, the Riemannian, the Ricci and the scalar curvatures of the deformed metric

g are evaluated by direct calculation.

R(z,y)z = R(z,y)z-(t+1)n(z)R(z,y)¢ (20)
—(t+Dn(2)Vy, =&+ (E+ n(y)Vy, =€
+(t+1)*n(x)n(2)Vy,e€ ~ (t+1)*n(y)n(2)Vy,e€
+(t+1)g(Vy€,2)Val = (E+1)g(Val, 2)Vié
=2(t+1)g(Va€,y) V26 = (E+ 1)n(y) Ve V=€

+(t+ Dn(2)Vy V£,

Ric(z,y) = Ric(z,y) - (t+1)n(y)Ric(z,)

H(t+ D) Y10(Vo. 6 ) - 9(Te,. 46 pe0))

i=1

+(t+1)*n(2)n(y) i{—g(vvﬁgé, i) + 9(Vy,.,e& pei)}

—(t+ Dn(a)div(vy€) +2(t + 1)g(VaE, Vy€)

and
§ = s ) D (T Toed) 9T & T O
i=1

Now let & be any vector field which is not necessarily Killing. We write the tensor F of the

deformed structure in terms of F' defined by (1). Since

(Ve@)(y) = Va(py) - ©(Vay) (21)

and

F($>yaz) = g((ﬁw(ﬁ)(y)vz)
= _tg((ﬁzv@)(y)az)

+t(t+ 1)n((Va$) (y))n(2), (22)
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replacing (21) in (22) and using (17) and the identity ¢(V.&,y) = —F(z, ¢y, ) yields
F(Iaya Z) = —tF(l’,y, Z) (23)

D (0(a) (-l 2, + Fo12:8)

—F(y,z,{) + F((pz?@y7€)}
+n(2) {F(z,y,§) - Fpy, oz, £)}

+77(y) {—F(I,Z,f) + F(Sﬁza@%ﬁ)}}-

Now we study the invariance of classes W;, i =1,...,4 under a D-homothetic deformation.

First note that for any almost paracontact metric structure in a direct sum of Wy & W3 =
G180 Gs @ G3 ® Gy @Gy, since £ is parallel [10], the equation (23) implies F = —tF and thus a
D-homothetic deformation of any direct sum of W7 @ W3 is also in this class.

If ¢ is any vector field, not necessarily parallel, from (4) and (23), we have

F"(2,y,2) = F(¢%2,¢%y, 0°2) = —tF(¢°2, 0%y, 9*2) = tF"V' (2,9, 2). (24)

Thus FW! is zero if and only if " is zero, that is, a deformed structure contains summands

from the class Wj if and only if the first structure has a summand from Wi .

By (5) and (23), we get

"2 - @sz(x,y,z) (25)

+@ (W) F(pz,ox,8) —n(z)F(ey, ez, &)}

Define S as
Sty2) = D () oz 0m,€) () o, m,€0). (26)

Then it can be easily seen that S"2 = S and thus S € Wy. In addition, we have W2 (px, ¢y, 2) =

n(2)F(pz,0y,€). So FW2 =0 if and only if S = 0. Thus a deformed structure has summands

from the class Ws if and only if the first structure has.

Consider the projection F"Ws = F'1. From (14) and (23), we have

- t(t+1
Flayz) = —tF M (ay,2)+ D)

n(x) {-F(py, vz, &) + F(pz,py,§)

+F (92, 0%y,€) - F(9°y, 9°2,€) } . (27)
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Define
T2 = WD) (R oy 020+ Floe.6)
+F(9%2,0%y,€) - F(%y, 9°2,€) } . (28)

It can be checked that T satisfies the defining relation (10) of Gqy, that is, 7' = T'. Thus if
F =0, or equivalently, if the first almost paracontact structure does not contain a summand

from Gi1, and if T # 0, then the deformed structure contains a summand from G since T € Gy .

For the projection FW+ = F''2 by using (23) and (15), we get
F2(a,y,2) = £F%(a,y,2). (29)

Thus the deformed structure belongs to a direct sum containing Gio if and only if the first almost
paracontact structure has summands from this class.
It is known that almost paracontact metric structures which belong to Gy, Go, G, Gy, G131

or one of their direct sums are invariant under D-homothetic deformations. These are structures

with parallel characteristic vector fields [10]. We investigate the invariance of remaining basic

classes G5, Gg, G7, Gs, Gg, Gio, Gi2.

Theorem 3.2 The classes G;, where i = 5,6,7,8,10,12 are invariant under a D-homothetic
deformation, Gg is not invariant.
Proof Assume that {e1,...,en,pe1,...,0e,,£} is a g-orthonormal frame. Then

{fla . '7f27l+1} = {%(pelw ) ﬁ@em ﬁela ey %67“ %5}

is g-orthonormal and §¥ = g% .

Let (%faﬂag) €Gs. By (23), for i = 1,...,n,

F(fi, f:.€)

1 .~
tEF(@eia@eiag)
t-1 t+1
= Q—tF(wei7cpei7§)—%F(ei,eiaﬁ)

and for i=n+1,...,2n,

F(flaflag) = t%F(eiyeiag)

t-1
= TF(%%@

t+1

2 F(@eiﬂpelﬁg)'
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Thus

0:(6) = GIF(fi fi,€)
n 1 1 noo_ 1 1 _
- ; (\/#P@z,\/isﬁ@uﬁ Z:F(ﬁe“\/iei’g)
= —0r(8).

From (6) and (23), we get that F' satisfies the defining relation (6).
Similarly, the class Gg is invariant.
Let (¢,€,71,9) € Gg. Then the defining conditions (7) hold. First we evaluate 64 (€). If
{e1,...,en,pe1,...,0e,,&} is a g-orthonormal frame, then
{f17 s 7f2n+1} = {%@61, B} %Qpeﬂm %617 B \/’ena tg} is g -orthonormal and g” = g

From (7) and (23), we have

F(@ebwei?g) _tF(@€i7@€i7§)

1
+@{F(§061’,§061‘,€) _F(§026i7§02eia€)}
= —tF(tpei,goei,E) +t(t+ 1)F(§Deu§oem€)

t2F(SDe7,'7 e, 5)

and

F(ei7ei,§) = t2F(€i,€i,f),

thus

0:(€) = GF(fi fi,€)

n 1 n
- ; 7%67,\/_3061,5) Z: e“\/_e“g)
= 12{Zt2 @ei,apei,g)—itQF(ei,ei7§)}
= —0r(§)
= 0.
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In addition, from (7) and (23)

F(xvyvz) = —tF({E,y,Z)

t(t

Do ey () 27,2, ()

+

= —tF(z,y,z)+t(t+1)F(z,y,2)

= t*F(x,y,2)
and
=i(y) F(x,2,&) + () F(2,y,€)
= t*F(x,y,2)
= F(z,y,2).
Also,

F(x7 y7 g) = t2F(x’ y7 g) = t2F(y7 x? g) = F(y’ x, é)?

F(x,y,€) = °F(2,y,€) = 1 F(py, o, €) = ~F(3y, ¢, ).

Thus the new structure satisfies (7).

A similar proof can be done for the class G7. In this case, é} (€) = 205:.().

Let (¢,€,1,9) € Gig. Then the defining relations (9) hold. From (23), F = —tF and (13)
implies F'0 = —tF = —tF'0 = F.

Let (¢,&,1,9) € Gio. By using the defining relation (11) and (23), F = t*F and from (15),
F12=2F12 - 2F = F_ Since F = FlQ, the deformed structure is in Gqs.

Now we show that the class Gg is not invariant.

For an arbitrary structure, using (23), we have

Flor2.6) = oD (m(or 2.0y + LD (22 o2, 00) (30)
and
F(px,¢%2,€) = % {F(p*2,90°2,8)} - t(t; D {F(pz,01,8)}. (31)

By using equations (12), (30) and (31), we get F = t2F°.

Let (0,€,1,9) € Gg. From (8), F® = t2F° = > F and also from (8) and (23),

F(z,y,2) = t*F(z,y,2) - 2t(t + Dn(2)F(y, 2,€).
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The structure is invariant if and only if F' = F?, that is
F(2,y,2) = *F (2,y,2) = 2t(t + D)n(x) F(y, 2, )

holds. This implies F(y,z,£) = 0. Then the defining relation (8) of Gy implies F = 0. Thus a

nontrivial structure in Gg is not in the same class after deformation. O

In addition, we determine the class of the deformed structure if the first structure is in Gg.

Proposition 3.3 Assume that the first almost paracontact metric structure belongs to the class

Gg. Then the deformed structure is in Gg & Gy .

Proof Since M € Gg, we have FW1 = FWs = 11 = FWa = 12 = 0 and F"2 = FY. From (24)
and (29), we get FW1 = FW1 = F'12 = (. By using the defining relation (8), it can be seen that the

tensor S defined in (26) also satisfies the defining relation of Gg. Thus the equation (25) implies

that F"W2 = @FE’ + 59, that is, the deformed structure contains a summand from Gg and no

other summand from Ws. In addition, by using (8), the tensor 7' given in (28) is

T(x,y,z) =2t(t + \n(x){-F(py, p2,§)},

which is nonzero for a nontrivial structure in Gg, otherwise (8) implies F = 0. From (27),

FU'=T%0.
To sum up, the deformed structure is in Gg ® G . ]

Proposition 3.4 Normal almost paracontact manifolds are invariant under D-homothetic defor-

mations.

Proof Let the first almost paracontact metric structure be normal. Then

F(z,y,2) + F(pz,y,2) +n(2) F(z,py,2) = 0. (32)

(32) implies
F(‘T7(py7€) = —F(cp:c,y,f), (33)

see [13]. Then by (23), (32) and (33), we get

F(z,y,¢2) + F(w,y,2) +ii(2) F(x, 3y, ) = 0.

As a result, the deformed structure is also normal. m]

Example 3.5 Let L be Lie algebra having basis {e1,ea,e3} whose only nonzero bracket is

[613 62] = Qesg,

10
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together with the semi-Riemannian metric satisfying g(ei,e1) = —g(ea,es) = g(es,e3z) = 1 and
g(ei,ej) =0 for i+ j. Let p(e1) =e2, p(e2) =er, p(es) =0, e3 =& and n=e*, where €3 is the
metric dual of e3. It is known that (L,p,€,1m,9) is an almost paraconact metric manifold of class

Gs. The nonzero covariant derivatives are
@ « Q@
Ve, €2 = —Vey €1 = 563, Ve, €3 = Veger = 5627 Ve,€3 = Vege2 = 561-
The Ricci tensor is

Ric(z,y) = sg(x,y) — 2sn(x)n(y),

where s is the scalar curvature given by s = a?/2, that is, L is an n-Einstein manifold, see [13].

Then from (20),
Ric(x,y) = Ric(w,y) - (t+1)n(y)Ric(z, e3)
o2
=2+ 1) {21y = waye — tn(@)n(y)},

where x = x1e1 + Toey + x3e3 and y = yi1€1 + yaeo + yses. It can be checked that

2
~, o - - -
Ric(z,y) = = §(x,y) = @*i(2)i(y),
that is the deformed manifold is also n-FEinstein.

Example 3.6 Consider the nilpotent Lie algebra g1 given in [}] with basis {e1,...,e5}, whose
nonzero brackets are

[61762] = €5, [63,64] = €s5.

Assume that g is the metric such that {ey,...,e5} is orthonormal and €; = g(e;,e;) = 1. The

nonzero covariant derivatives are evaluated in [8] by Kozsul’s formula:

1 1
Ve, €2 = 5657 Ve, €5 = —56265627

1 1
Ve,€1 = —5657 Vey€5 = 56165617

Ves€4 = 5657 Ves€s = —56465647

1 1
Ve,€3 = —5657 Ves€s = 5636563,

1 1
Ves€1 = —5626562, Ves€2 = 56165617 Ves€3 = —56465647 Ves€4 = 563656&

11



Sirin Aktay / FCMS

Consider now the structure (p,€,1n,9) defined by g(ei,e1) = glea,e2) = —g(es,e3) = —g(eq,eq) =

gles,es) =1, E=e5, n=2¢>, whose endomorphism is given via basis elements as follows.

wler) =e3, plea) =eq, pleg) =e1, ples) = ez, p(es) =0. Nonzero structure constants of

F are

F(€1,€4,€5) = _F(61765764) = _F(62763765) = F(62765763) = 1/27

—F(es,e5,e2) = F(es, e2,e5) = —F(eq,e1,e5) = F(eq,e5,e1) =1/2,

~F(es,e1,e4) = F(es,e4,€1) = F(es,e2,e3) = —F(es,e3,e2) = 1.

Note that & = e5 is Killing [8] and this structure is in the class Go ® G11 [6]. We determine the

class of the deformed structure after a D-homothetic deformation. Proposition 3.1 implies that 5
is Killing, so FS = FT = F10 = F'2 2. Also since F"'* = —tFW' and F"' vanishes, FV' also

vanishes. It can be checked that this structure satisfies

F(py, 0z,€) = -F(pz,0y,€) = F(9*y, 9°2,€)

and thus

- t(t+1
ey = A (ay2) D

n(x) {-F(py, vz, &) + F(pz,0y,§)

+F(9%2,0%y,€) - F(9%y,¢%2,€) }
= =2t(t+ Dn(x) F(py, ¢z,8)

= t(t+1)as{yezs —ysze + yaz1 — Y124} # 0.

In addition, by direct calculation

F(z,y,2) = n(y)F(pz,z,8) - n(z)F(py,ez,§)

—52/5 {33124 — X223 +T3z2 — £C421}

1
+§Zs {x1y4 — X2Y3 + XT3Y2 — x4y1}

12
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and

~ t(t-1
e WD gy 2

L

D aw)F oz 0. ) - () F oy, 6))

- Py,

1
—§y5 {30124 — X223+ T3z2 — 55421}

+

t(t;rl){

1
+§Z5 {x1y4 — X2Y3 + X3Y2 — x4y1}

= t*F%(z,y,2) £ 0

As a result the deformed structure is also in Gg & G11. So we obtain infinitely many
examples of structures of type Gg ® G11 by D-homothetic deformation. Note that although an
almost paracontact structure of class Gg is not invariant, a direct sum containing the class Gg

may be invariant.
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