D-Homothetic Deformations and Almost Paracontact Metric Manifolds

Sirin Aktay
Eskişehir Technical University, Faculty of Science, Department of Mathematics
Eskişehir, Türkiye

Received: 23 January 2023

Accepted: 04 December 2023

Abstract

In this study, we determine some of the classes of almost paracontact metric structures which are invariant under D-homothetic deformations. We write the Riemannian curvature tensor, the Ricci tensor and the scalar curvature when the characteristic vector field is Killing. In addition, we give examples.

Keywords: Almost paracontact metric structure, D-homothetic deformation, Killing vector field.

1. Introduction

Differentiable manifolds having almost paracontact structures were introduced by [5] and after [11] many authors have made contribution, see [7, 9, 11-13] and references therein. Manifolds with almost paracontact metric structure were classified according to the Levi-Civita covariant derivative of the fundamental tensor. There are 2^{12} classes of almost paracontact metric manifolds. The defining relations and projections onto each subspace are given in [7, 13].

D-homothetic deformations of almost contact metric manifolds is extensively studied, see $[1,3]$ and references therein. For D-homothetic deformations of almost contact metric structures with B-metric, refer to [2]. D-homothetic deformations of almost paracontact metric structures were introduced in [11]. In [10], almost paracontact metric manifolds whose characteristic vector field is parallel are considered and their D-homothetic deformations are studied. Our aim is to investigate D-homothetic deformations of almost paracontact metric manifolds having arbitrary characteristic vector fields.

2. Preliminaries

Assume that $M^{2 n+1}$ is a smooth manifold having odd dimension. An ordered triple (φ, ξ, η) of an endomorphism, a vector field, a 1-form, respectively, with the properties below is called an almost

[^0]This Research Article is licensed under a Creative Commons Attribution 4.0 International License. Also, it has been published considering the Research and Publication Ethics.
paracontact structure on M

$$
\varphi^{2}=I-\eta \otimes \xi, \quad \eta(\xi)=1, \quad \varphi(\xi)=0
$$

there is a distribution $\mathbb{D}: p \in M \longrightarrow \mathbb{D}_{p}=$ Ker η. M together with the almost paracontact structure is said to be an almost paracontact manifold. In addition, if M carries a semi-Riemannian metric g satisfying

$$
g(\varphi(x), \varphi(y))=-g(x, y)+\eta(x) \eta(y)
$$

where $\mathfrak{X}(M)$ is the set of smooth vector fields on M and $x, y \in \mathfrak{X}(M)$, then M is called an almost paracontact metric manifold. The fundamental 2-form of the almost paracontact metric structure is given as

$$
\Phi(x, y)=g(\varphi x, y)
$$

We denote the vector fields and tangent vectors by letters x, y, z.
Consider the tensor F defined by

$$
\begin{equation*}
F(x, y, z)=g\left(\left(\nabla_{x} \varphi\right)(y), z\right) \tag{1}
\end{equation*}
$$

for all $x, y, z \in T_{p} M$, where $T_{p} M$ is the tangent space at p, ∇ is the Levi-Civita covariant derivative of g. Then F satisfies

$$
\begin{gather*}
F(x, y, z)=-F(x, z, y), \tag{2}\\
F(x, \varphi y, \varphi z)=F(x, y, z)+\eta(y) F(x, z, \xi)-\eta(z) F(x, y, \xi) . \tag{3}
\end{gather*}
$$

The forms below are defined for any almost paracontact metric structure.

$$
\theta(x)=g^{i j} F\left(e_{i}, e_{j}, x\right), \quad \theta^{*}(x)=g^{i j} F\left(e_{i}, \varphi e_{j}, x\right), \quad \omega(x)=F(\xi, \xi, x)
$$

where $u \in T_{p} M,\left\{e_{i}, \xi\right\}$ is a basis for $T_{p} M$ and the inverse of the matrix $g_{i j}$ is $g^{i j}$.
Let \mathcal{F} be the set of $(0,3)$ tensors over $T_{p} M$ having properties (2), (3). \mathcal{F} is the direct sum of four subspaces $W_{i}, i=1, \ldots, 4$, where projections $F^{W_{i}}$ we use are

$$
\begin{gather*}
F^{W_{1}}(x, y, z)=F\left(\varphi^{2} x, \varphi^{2} y, \varphi^{2} z\right) \tag{4}\\
F^{W_{2}}(x, y, z)=-\eta(y) F\left(\varphi^{2} x, \varphi^{2} z, \xi\right)+\eta(z) F\left(\varphi^{2} x, \varphi^{2} y, \xi\right) \tag{5}
\end{gather*}
$$

In addition, W_{1} is a direct sum of four subspaces $\mathbb{G}_{i}, i=1, \ldots, 4, W_{2}=\mathbb{G}_{5} \oplus \ldots \oplus \mathbb{G}_{10}$, and denote W_{3} and W_{4} by \mathbb{G}_{11} and \mathbb{G}_{12}, respectively. A manifold with almost paracontact metric structure is said to be in the class $\mathbb{G}_{i} \oplus \mathbb{G}_{j}$, etc. if F belongs to $\mathbb{G}_{i} \oplus \mathbb{G}_{j}$ over $T_{p} M$ for all $p \in M$. The defining relations of \mathbb{G}_{i} and projections F^{i} onto each \mathbb{G}_{i} are given in [7, 13]. We only write the classes and projections we use:

$$
\begin{array}{rl}
\mathbb{G}_{5}: F(x, y, z) & =\frac{\theta_{F}(\xi)}{2 n}\{g(\varphi x, \varphi z) \eta(y)-g(\varphi x, \varphi y) \eta(z)\} \\
\mathbb{G}_{8}: F(x, y, z) & =-\eta(y) F(x, z, \xi)+\eta(z) F(x, y, \xi), \\
F(x, y, \xi)= & F(y, x, \xi)=-F(\varphi x, \varphi y, \xi), \theta_{F}(\xi)=0 \\
\mathbb{G}_{9}: F(x, y, z) & =-\eta(y) F(x, z, \xi)+\eta(z) F(x, y, \xi), \\
F(x, y, \xi) & =-F(y, x, \xi)=F(\varphi x, \varphi y, \xi) \\
\mathbb{G}_{10}: F(x, y, z) & =-\eta(y) F(x, z, \xi)+\eta(z) F(x, y, \xi) \\
F(x, y, \xi) & =F(y, x, \xi)=F(\varphi x, \varphi y, \xi) \\
\mathbb{G} 11 & F(x, y, z)=\eta(x) F(\xi, \varphi y, \varphi z) \\
\mathbb{G}_{12}: F(x, y, z) & =\eta(x)\{\eta(y) F(\xi, \xi, z)-\eta(z) F(\xi, \xi, y)\} \tag{11}
\end{array}
$$

Some of the projections F^{i} onto each subspace \mathbb{G}_{i} are

$$
\begin{align*}
& F^{9}(x, y, z)=-\frac{1}{4} \eta(y)\left\{F\left(\varphi^{2} x, \varphi^{2} z, \xi\right)+F(\varphi x, \varphi z, \xi)\right. \tag{12}\\
&\left.-F\left(\varphi^{2} z, \varphi^{2} x, \xi\right)-F(\varphi z, \varphi x, \xi)\right\}+\frac{1}{4} \eta(z)\left\{F\left(\varphi^{2} x, \varphi^{2} y, \xi\right)\right. \\
&\left.+F(\varphi x, \varphi y, \xi)-F\left(\varphi^{2} y, \varphi^{2} x, \xi\right)-F(\varphi y, \varphi x, \xi)\right\} \\
& F^{10}(x, y, z)=-\frac{1}{4} \eta(y)\left\{F\left(\varphi^{2} x, \varphi^{2} z, \xi\right)+F(\varphi x, \varphi z, \xi)\right. \tag{13}\\
&\left.+F\left(\varphi^{2} z, \varphi^{2} x, \xi\right)+F(\varphi z, \varphi x, \xi)\right\}+\frac{1}{4} \eta(z)\left\{F\left(\varphi^{2} x, \varphi^{2} y, \xi\right)\right. \\
&\left.+F(\varphi x, \varphi y, \xi)+F\left(\varphi^{2} y, \varphi^{2} x, \xi\right)+F(\varphi y, \varphi x, \xi)\right\} \\
& F^{11}(x, y, z)=\eta(x) F\left(\xi, \varphi^{2} y, \varphi^{2} z\right) \tag{14}\\
& F^{12}(x, y, z)=\eta(x)\left\{\eta(y) F\left(\xi, \xi, \varphi^{2} z\right)-\eta(z) F\left(\xi, \xi, \varphi^{2} y\right)\right\} \tag{15}
\end{align*}
$$

Note that ξ is Killing in any direct sum of $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}, \mathbb{G}_{4}, \mathbb{G}_{5}, \mathbb{G}_{8}, \mathbb{G}_{9}, \mathbb{G}_{11}$ and ξ is parallel in $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}, \mathbb{G}_{4}, \mathbb{G}_{11}$ and also in any direct sum of these classes [10].

For any almost paracontact metric sructure (φ, ξ, η, g) on a manifold M, consider the quadruple $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ where

$$
\begin{equation*}
\tilde{\varphi}=\varphi, \quad \tilde{\xi}=\frac{1}{t} \xi, \quad \tilde{\eta}=t \eta, \quad \tilde{g}=-t g+t(t+1) \eta \otimes \eta \tag{16}
\end{equation*}
$$

for a positive constant t [11]. The structure $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is called a D-homothetic deformation of (φ, ξ, η, g). In [10], the Levi-Civita covariant derivative $\tilde{\nabla}$ of metric \tilde{g} is obtained as

$$
\begin{align*}
g\left(\tilde{\nabla}_{x} y, z\right)= & g\left(\nabla_{x} y, z\right)+\frac{(t+1)^{2}}{2 t} \eta(z)\left\{-\eta(x) g\left(\nabla_{\xi} \xi, y\right)\right. \tag{17}\\
& \left.-\eta(y) g\left(\nabla_{\xi} \xi, x\right)+g\left(\nabla_{x} \xi, y\right)+g\left(\nabla_{y} \xi, x\right)\right\} \\
& -\frac{(t+1)}{2}\left\{\eta(x)\left(g\left(\nabla_{y} \xi, z\right)-g\left(\nabla_{z} \xi, y\right)\right)\right. \\
& +\eta(y)\left(g\left(\nabla_{x} \xi, z\right)-g\left(\nabla_{z} \xi, x\right)\right) \\
& \left.+\eta(z)\left(g\left(\nabla_{x} \xi, y\right)+g\left(\nabla_{y} \xi, x\right)\right)\right\} .
\end{align*}
$$

Also it is proved that the classes with parallel characteristic vector field does not change after D-homothetic deformations. Our aim is to study the invariance of remaining basic classes $\mathbb{G}_{5}, \mathbb{G}_{6}$, $\mathbb{G}_{7}, \mathbb{G}_{8}, \mathbb{G}_{9}, \mathbb{G}_{10}, \mathbb{G}_{12}$. We also write the curvature tensors of the deformed metric when ξ is Killing and we give examples.

3. Classes of Deformed Structures

Consider a D-homothetic deformation given by (16).
First let ξ be Killing. In this case (17) simplifies into

$$
\begin{align*}
g\left(\tilde{\nabla}_{x} y, z\right)= & g\left(\nabla_{x} y, z\right)-(t+1)\left\{\eta(x) g\left(\nabla_{y} \xi, z\right)\right. \tag{18}\\
& \left.+\eta(y) g\left(\nabla_{x} \xi, z\right)\right\}
\end{align*}
$$

since g is non-degenerate, (18) gives

$$
\begin{equation*}
\tilde{\nabla}_{x} y=\nabla_{x} y-(t+1)\left\{\eta(x) \nabla_{y} \xi+\eta(y) \nabla_{x} \xi\right\} \tag{19}
\end{equation*}
$$

The Proposition 3.1 yields from (19).

Proposition 3.1 Let ξ be g-Killing. Then $\tilde{\xi}$ is \tilde{g}-Killing.

Now we write the curvature tensors of the deformed metric \tilde{g} for an almost paracontact metric structure with Killing characteristic vector field. If $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi\right\}$ is a g-orthonormal
frame, then $\left\{f_{1}, \ldots, f_{2 n+1}\right\}=\left\{\frac{1}{\sqrt{t}} \varphi e_{1}, \ldots, \frac{1}{\sqrt{t}} \varphi e_{n}, \frac{1}{\sqrt{t}} e_{1}, \ldots, \frac{1}{\sqrt{t}} e_{n}, \frac{1}{t} \xi\right\}$ is \tilde{g}-orthonormal [10] and $\tilde{g}^{i j}=g^{i j}$. We use this basis in calculations.

If ξ is Killing, the Riemannian, the Ricci and the scalar curvatures of the deformed metric \tilde{g} are evaluated by direct calculation.

$$
\begin{align*}
\tilde{R}(x, y) z= & R(x, y) z-(t+1) \eta(z) R(x, y) \xi \tag{20}\\
& -(t+1) \eta(x) \nabla_{\nabla_{y} z} \xi+(t+1) \eta(y) \nabla_{\nabla_{x} z} \xi \\
& +(t+1)^{2} \eta(x) \eta(z) \nabla_{\nabla_{y} \xi} \xi-(t+1)^{2} \eta(y) \eta(z) \nabla_{\nabla_{x} \xi} \xi \\
& +(t+1) g\left(\nabla_{y} \xi, z\right) \nabla_{x} \xi-(t+1) g\left(\nabla_{x} \xi, z\right) \nabla_{y} \xi \\
& -2(t+1) g\left(\nabla_{x} \xi, y\right) \nabla_{z} \xi-(t+1) \eta(y) \nabla_{x} \nabla_{z} \xi \\
& +(t+1) \eta(x) \nabla_{y} \nabla_{z} \xi, \\
\tilde{\operatorname{Ric}(x, y)=} & \operatorname{Ric}(x, y)-(t+1) \eta(y) R i c(x, \xi) \\
+ & (t+1) \eta(x) \sum_{i=1}^{n}\left\{g\left(\nabla_{\nabla_{e_{i}} y} \xi, e_{i}\right)-g\left(\nabla_{\nabla_{\varphi e_{i}} y} \xi, \varphi e_{i}\right)\right\} \\
+ & (t+1)^{2} \eta(x) \eta(y) \sum_{i=1}^{n}\left\{-g\left(\nabla_{\nabla_{e_{i}} \xi} \xi, e_{i}\right)+g\left(\nabla_{\nabla_{\varphi e_{i}} \xi} \xi, \varphi e_{i}\right)\right\} \\
- & (t+1) \eta(x) \operatorname{div}\left(\nabla_{y} \xi\right)+2(t+1) g\left(\nabla_{x} \xi, \nabla_{y} \xi\right)
\end{align*}
$$

and

$$
\tilde{s}=\frac{1}{t}\left\{-s+(t+1) \sum_{i=1}^{n}\left\{g\left(\nabla_{\varphi e_{i}} \xi, \nabla_{\varphi e_{i}} \xi\right)-g\left(\nabla_{e_{i}} \xi, \nabla_{e_{i}} \xi\right)\right\}\right\} .
$$

Now let ξ be any vector field which is not necessarily Killing. We write the tensor \tilde{F} of the deformed structure in terms of F defined by (1). Since

$$
\begin{equation*}
\left(\tilde{\nabla}_{x} \tilde{\varphi}\right)(y)=\tilde{\nabla}_{x}(\varphi y)-\varphi\left(\tilde{\nabla}_{x} y\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
\tilde{F}(x, y, z)= & \tilde{g}\left(\left(\tilde{\nabla}_{x} \tilde{\varphi}\right)(y), z\right) \\
= & -t g\left(\left(\tilde{\nabla}_{x} \tilde{\varphi}\right)(y), z\right) \\
& +t(t+1) \eta\left(\left(\tilde{\nabla}_{x} \tilde{\varphi}\right)(y)\right) \eta(z) \tag{22}
\end{align*}
$$

replacing (21) in (22) and using (17) and the identity $g\left(\nabla_{x} \xi, y\right)=-F(x, \varphi y, \xi)$ yields

$$
\begin{align*}
\tilde{F}(x, y, z)= & -t F(x, y, z) \tag{23}\\
& +\frac{t(t+1)}{2}\{\eta(x)\{-F(\varphi y, \varphi z, \xi)+F(z, y, \xi) \\
& -F(y, z, \xi)+F(\varphi z, \varphi y, \xi)\} \\
& +\eta(z)\{F(x, y, \xi)-F(\varphi y, \varphi x, \xi)\} \\
& +\eta(y)\{-F(x, z, \xi)+F(\varphi z, \varphi x, \xi)\}\}
\end{align*}
$$

Now we study the invariance of classes $W_{i}, i=1, \ldots, 4$ under a D-homothetic deformation. First note that for any almost paracontact metric structure in a direct sum of $W_{1} \oplus W_{3}=$ $\mathbb{G}_{1} \oplus \mathbb{G}_{2} \oplus \mathbb{G}_{3} \oplus \mathbb{G}_{4} \oplus \mathbb{G}_{11}$, since ξ is parallel [10], the equation (23) implies $\tilde{F}=-t F$ and thus a D-homothetic deformation of any direct sum of $W_{1} \oplus W_{3}$ is also in this class.

If ξ is any vector field, not necessarily parallel, from (4) and (23), we have

$$
\begin{equation*}
\tilde{F}^{W_{1}}(x, y, z)=\tilde{F}\left(\varphi^{2} x, \varphi^{2} y, \varphi^{2} z\right)=-t F\left(\varphi^{2} x, \varphi^{2} y, \varphi^{2} z\right)=-t F^{W_{1}}(x, y, z) \tag{24}
\end{equation*}
$$

Thus $\tilde{F}^{W_{1}}$ is zero if and only if $F^{W_{1}}$ is zero, that is, a deformed structure contains summands from the class W_{1} if and only if the first structure has a summand from W_{1}.

By (5) and (23), we get

$$
\begin{align*}
\tilde{F}^{W_{2}}= & \frac{t(t-1)}{2} F^{W_{2}}(x, y, z) \tag{25}\\
& +\frac{t(t+1)}{2}\{\eta(y) F(\varphi z, \varphi x, \xi)-\eta(z) F(\varphi y, \varphi x, \xi)\}
\end{align*}
$$

Define S as

$$
\begin{equation*}
S(x, y, z)=\frac{t(t+1)}{2}\{\eta(y) F(\varphi z, \varphi x, \xi)-\eta(z) F(\varphi y, \varphi x, \xi)\} \tag{26}
\end{equation*}
$$

Then it can be easily seen that $S^{W_{2}}=S$ and thus $S \in W_{2}$. In addition, we have $F^{W_{2}}(\varphi x, \varphi y, z)=$ $\eta(z) F(\varphi x, \varphi y, \xi)$. So $F^{W_{2}}=0$ if and only if $S=0$. Thus a deformed structure has summands from the class W_{2} if and only if the first structure has.

Consider the projection $F^{W_{3}}=F^{11}$. From (14) and (23), we have

$$
\begin{align*}
\tilde{F}^{11}(x, y, z)= & -t F^{11}(x, y, z)+\frac{t(t+1)}{2} \eta(x)\{-F(\varphi y, \varphi z, \xi)+F(\varphi z, \varphi y, \xi) \\
& \left.+F\left(\varphi^{2} z, \varphi^{2} y, \xi\right)-F\left(\varphi^{2} y, \varphi^{2} z, \xi\right)\right\} \tag{27}
\end{align*}
$$

Define

$$
\begin{align*}
T(x, y, z)= & \frac{t(t+1)}{2} \eta(x)\{-F(\varphi y, \varphi z, \xi)+F(\varphi z, \varphi y, \xi) \\
& \left.+F\left(\varphi^{2} z, \varphi^{2} y, \xi\right)-F\left(\varphi^{2} y, \varphi^{2} z, \xi\right)\right\} \tag{28}
\end{align*}
$$

It can be checked that T satisfies the defining relation (10) of \mathbb{G}_{11}, that is, $T^{11}=T$. Thus if $F^{11}=0$, or equivalently, if the first almost paracontact structure does not contain a summand from \mathbb{G}_{11}, and if $T \neq 0$, then the deformed structure contains a summand from \mathbb{G}_{11} since $T \in \mathbb{G}_{11}$.

For the projection $F^{W_{4}}=F^{12}$, by using (23) and (15), we get

$$
\begin{equation*}
\tilde{F}^{12}(x, y, z)=t^{2} F^{12}(x, y, z) \tag{29}
\end{equation*}
$$

Thus the deformed structure belongs to a direct sum containing \mathbb{G}_{12} if and only if the first almost paracontact structure has summands from this class.

It is known that almost paracontact metric structures which belong to $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{3}, \mathbb{G}_{4}, \mathbb{G}_{11}$ or one of their direct sums are invariant under D-homothetic deformations. These are structures with parallel characteristic vector fields [10]. We investigate the invariance of remaining basic classes $\mathbb{G}_{5}, \mathbb{G}_{6}, \mathbb{G}_{7}, \mathbb{G}_{8}, \mathbb{G}_{9}, \mathbb{G}_{10}, \mathbb{G}_{12}$.

Theorem 3.2 The classes \mathbb{G}_{i}, where $i=5,6,7,8,10,12$ are invariant under a D-homothetic deformation, \mathbb{G}_{9} is not invariant.

Proof Assume that $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi\right\}$ is a g-orthonormal frame. Then

$$
\left\{f_{1}, \ldots, f_{2 n+1}\right\}=\left\{\frac{1}{\sqrt{t}} \varphi e_{1}, \ldots, \frac{1}{\sqrt{t}} \varphi e_{n}, \frac{1}{\sqrt{t}} e_{1}, \ldots, \frac{1}{\sqrt{t}} e_{n}, \frac{1}{t} \xi\right\}
$$

is \tilde{g}-orthonormal and $\tilde{g}^{i j}=g^{i j}$.
Let $(\varphi, \xi, \eta, g) \in \mathbb{G}_{5}$. By (23), for $i=1, \ldots, n$,

$$
\begin{aligned}
\tilde{F}\left(f_{i}, f_{i}, \tilde{\xi}\right) & =\frac{1}{t^{2}} \tilde{F}\left(\varphi e_{i}, \varphi e_{i}, \xi\right) \\
& =\frac{t-1}{2 t} F\left(\varphi e_{i}, \varphi e_{i}, \xi\right)-\frac{t+1}{2} F\left(e_{i}, e_{i}, \xi\right)
\end{aligned}
$$

and for $i=n+1, \ldots, 2 n$,

$$
\begin{aligned}
\tilde{F}\left(f_{i}, f_{i}, \tilde{\xi}\right) & =\frac{1}{t^{2}} \tilde{F}\left(e_{i}, e_{i}, \xi\right) \\
& =\frac{t-1}{2 t} F\left(e_{i}, e_{i}, \xi\right)-\frac{t+1}{2} F\left(\varphi e_{i}, \varphi e_{i}, \xi\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\tilde{\theta}_{\tilde{F}}(\tilde{\xi}) & =\tilde{g}^{i j} F\left(f_{i}, f_{i}, \tilde{\xi}\right) \\
& =\sum_{i=1}^{n} \tilde{F}\left(\frac{1}{\sqrt{t}} \varphi e_{i}, \frac{1}{\sqrt{t}} \varphi e_{i}, \tilde{\xi}\right)-\sum_{i=1}^{n} \tilde{F}\left(\frac{1}{\sqrt{t}} e_{i}, \frac{1}{\sqrt{t}} e_{i}, \tilde{\xi}\right) \\
& =-\theta_{F}(\xi) .
\end{aligned}
$$

From (6) and (23), we get that \tilde{F} satisfies the defining relation (6).
Similarly, the class \mathbb{G}_{6} is invariant.
Let $(\varphi, \xi, \eta, g) \in \mathbb{G}_{8}$. Then the defining conditions (7) hold. First we evaluate $\tilde{\theta}_{\tilde{F}}(\tilde{\xi})$. If $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi\right\}$ is a g-orthonormal frame, then

$$
\left\{f_{1}, \ldots, f_{2 n+1}\right\}=\left\{\frac{1}{\sqrt{t}} \varphi e_{1}, \ldots, \frac{1}{\sqrt{t}} \varphi e_{n}, \frac{1}{\sqrt{t}} e_{1}, \ldots, \frac{1}{\sqrt{t}} e_{n}, \frac{1}{t} \xi\right\} \text { is } \tilde{g} \text {-orthonormal and } \tilde{g}^{i j}=g^{i j}
$$

From (7) and (23), we have

$$
\begin{aligned}
\tilde{F}\left(\varphi e_{i}, \varphi e_{i}, \xi\right)= & -t F\left(\varphi e_{i}, \varphi e_{i}, \xi\right) \\
& +\frac{t(t+1)}{2}\left\{F\left(\varphi e_{i}, \varphi e_{i}, \xi\right)-F\left(\varphi^{2} e_{i}, \varphi^{2} e_{i}, \xi\right)\right\} \\
= & -t F\left(\varphi e_{i}, \varphi e_{i}, \xi\right)+t(t+1) F\left(\varphi e_{i}, \varphi e_{i}, \xi\right) \\
= & t^{2} F\left(\varphi e_{i}, \varphi e_{i}, \xi\right)
\end{aligned}
$$

and

$$
\tilde{F}\left(e_{i}, e_{i}, \xi\right)=t^{2} F\left(e_{i}, e_{i}, \xi\right)
$$

thus

$$
\begin{aligned}
\tilde{\theta}_{\tilde{F}}(\tilde{\xi}) & =\tilde{g}^{i j} F\left(f_{i}, f_{i}, \tilde{\xi}\right) \\
& =\sum_{i=1}^{n} \tilde{F}\left(\frac{1}{\sqrt{t}} \varphi e_{i}, \frac{1}{\sqrt{t}} \varphi e_{i}, \tilde{\xi}\right)-\sum_{i=1}^{n} \tilde{F}\left(\frac{1}{\sqrt{t}} e_{i}, \frac{1}{\sqrt{t}} e_{i}, \tilde{\xi}\right) \\
& =\frac{1}{t^{2}}\left\{\sum_{i=1}^{n} t^{2} F\left(\varphi e_{i}, \varphi e_{i}, \xi\right)-\sum_{i=1}^{n} t^{2} F\left(e_{i}, e_{i}, \xi\right)\right\} \\
& =-\theta_{F}(\xi) \\
& =0 .
\end{aligned}
$$

In addition, from (7) and (23)

$$
\begin{aligned}
\tilde{F}(x, y, z)= & -t F(x, y, z) \\
& +\frac{t(t+1)}{2}\{2 F(x, y, \xi) \eta(z)-2 F(x, z, \xi) \eta(y)\} \\
= & -t F(x, y, z)+t(t+1) F(x, y, z) \\
= & t^{2} F(x, y, z)
\end{aligned}
$$

and

$$
\begin{aligned}
& -\tilde{\eta}(y) \tilde{F}(x, z, \tilde{\xi})+\tilde{\eta}(z) \tilde{F}(x, y, \tilde{\xi}) \\
= & t^{2} F(x, y, z) \\
= & \tilde{F}(x, y, z) .
\end{aligned}
$$

Also,

$$
\begin{gathered}
\tilde{F}(x, y, \tilde{\xi})=t^{2} F(x, y, \tilde{\xi})=t^{2} F(y, x, \tilde{\xi})=\tilde{F}(y, x, \tilde{\xi}) \\
\tilde{F}(x, y, \tilde{\xi})=t^{2} F(x, y, \tilde{\xi})=-t^{2} F(\varphi y, \varphi x, \tilde{\xi})=-\tilde{F}(\tilde{\varphi} y, \tilde{\varphi} x, \tilde{\xi})
\end{gathered}
$$

Thus the new structure satisfies (7).
A similar proof can be done for the class \mathbb{G}_{7}. In this case, $\tilde{\theta}_{\tilde{F}}^{*}(\tilde{\xi})=\frac{1}{t} \theta_{F}^{*}(\xi)$.
Let $(\varphi, \xi, \eta, g) \in \mathbb{G}_{10}$. Then the defining relations (9) hold. From (23), $\tilde{F}=-t F$ and (13) implies $\tilde{F}^{10}=-t F=-t F^{10}=\tilde{F}$.

Let $(\varphi, \xi, \eta, g) \in \mathbb{G}_{12}$. By using the defining relation (11) and (23), $\tilde{F}=t^{2} F$ and from (15), $\tilde{F}^{12}=t^{2} F^{12}=t^{2} F=\tilde{F}$. Since $\tilde{F}=\tilde{F}^{12}$, the deformed structure is in \mathbb{G}_{12}.

Now we show that the class \mathbb{G}_{9} is not invariant.
For an arbitrary structure, using (23), we have

$$
\begin{equation*}
\tilde{F}(\varphi x, \varphi z, \xi)=\frac{t(t-1)}{2}\{F(\varphi x, \varphi z, \xi)\}+\frac{t(t+1)}{2}\left\{F\left(\varphi^{2} z, \varphi^{2} x, \xi\right)\right\} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{F}\left(\varphi^{2} x, \varphi^{2} z, \xi\right)=\frac{t(t-1)}{2}\left\{F\left(\varphi^{2} x, \varphi^{2} z, \xi\right)\right\}-\frac{t(t+1)}{2}\{F(\varphi z, \varphi x, \xi)\} \tag{31}
\end{equation*}
$$

By using equations (12), (30) and (31), we get $\tilde{F}^{9}=t^{2} F^{9}$.
Let $(\varphi, \xi, \eta, g) \in \mathbb{G}_{9}$. From (8), $\tilde{F}^{9}=t^{2} F^{9}=t^{2} F$ and also from (8) and (23),

$$
\tilde{F}(x, y, z)=t^{2} F(x, y, z)-2 t(t+1) \eta(x) F(y, z, \xi) .
$$

The structure is invariant if and only if $\tilde{F}=\tilde{F}^{9}$, that is

$$
t^{2} F(x, y, z)=t^{2} F(x, y, z)-2 t(t+1) \eta(x) F(y, z, \xi)
$$

holds. This implies $F(y, z, \xi)=0$. Then the defining relation (8) of \mathbb{G}_{9} implies $F=0$. Thus a nontrivial structure in \mathbb{G}_{9} is not in the same class after deformation.

In addition, we determine the class of the deformed structure if the first structure is in \mathbb{G}_{9}.

Proposition 3.3 Assume that the first almost paracontact metric structure belongs to the class \mathbb{G}_{9}. Then the deformed structure is in $\mathbb{G}_{9} \oplus \mathbb{G}_{11}$.

Proof Since $M \in \mathbb{G}_{9}$, we have $F^{W_{1}}=F^{W_{3}}=F^{11}=F^{W_{4}}=F^{12}=0$ and $F^{W_{2}}=F^{9}$. From (24) and (29), we get $\tilde{F}^{W_{1}}=\tilde{F}^{W_{4}}=\tilde{F}^{12}=0$. By using the defining relation (8), it can be seen that the tensor S defined in (26) also satisfies the defining relation of \mathbb{G}_{9}. Thus the equation (25) implies that $\tilde{F}^{W_{2}}=\frac{t(t-1)}{2} F^{9}+S^{9}$, that is, the deformed structure contains a summand from \mathbb{G}_{9} and no other summand from W_{2}. In addition, by using (8), the tensor T given in (28) is

$$
T(x, y, z)=2 t(t+1) \eta(x)\{-F(\varphi y, \varphi z, \xi)\}
$$

which is nonzero for a nontrivial structure in \mathbb{G}_{9}, otherwise (8) implies $F=0$. From (27), $\tilde{F}^{11}=T \neq 0$.

To sum up, the deformed structure is in $\mathbb{G}_{9} \oplus \mathbb{G}_{11}$.

Proposition 3.4 Normal almost paracontact manifolds are invariant under D-homothetic deformations.

Proof Let the first almost paracontact metric structure be normal. Then

$$
\begin{equation*}
F(x, y, \varphi z)+F(\varphi x, y, z)+\eta(z) F(x, \varphi y, z)=0 \tag{32}
\end{equation*}
$$

(32) implies

$$
\begin{equation*}
F(x, \varphi y, \xi)=-F(\varphi x, y, \xi) \tag{33}
\end{equation*}
$$

see [13]. Then by (23), (32) and (33), we get

$$
\tilde{F}(x, y, \tilde{\varphi} z)+\tilde{F}(\tilde{\varphi} x, y, z)+\tilde{\eta}(z) \tilde{F}(x, \tilde{\varphi} y, z)=0
$$

As a result, the deformed structure is also normal.

Example 3.5 Let L be Lie algebra having basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ whose only nonzero bracket is

$$
\left[e_{1}, e_{2}\right]=\alpha e_{3}
$$

together with the semi-Riemannian metric satisfying $g\left(e_{1}, e_{1}\right)=-g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1$ and $g\left(e_{i}, e_{j}\right)=0$ for $i \neq j$. Let $\varphi\left(e_{1}\right)=e_{2}, \varphi\left(e_{2}\right)=e_{1}, \varphi\left(e_{3}\right)=0, e_{3}=\xi$ and $\eta=e^{3}$, where e^{3} is the metric dual of e_{3}. It is known that $(L, \varphi, \xi, \eta, g)$ is an almost paraconact metric manifold of class \mathbb{G}_{5}. The nonzero covariant derivatives are

$$
\nabla_{e_{1}} e_{2}=-\nabla_{e_{2}} e_{1}=\frac{\alpha}{2} e_{3}, \quad \nabla_{e_{1}} e_{3}=\nabla_{e_{3}} e_{1}=\frac{\alpha}{2} e_{2}, \quad \nabla_{e_{2}} e_{3}=\nabla_{e_{3}} e_{2}=\frac{\alpha}{2} e_{1} .
$$

The Ricci tensor is

$$
\operatorname{Ric}(x, y)=s g(x, y)-2 s \eta(x) \eta(y)
$$

where s is the scalar curvature given by $s=\alpha^{2} / 2$, that is, L is an η-Einstein manifold, see [13]. Then from (20),

$$
\begin{aligned}
\tilde{\operatorname{Ric}}(x, y)= & \operatorname{Ric}(x, y)-(t+1) \eta(y) \operatorname{Ric}\left(x, e_{3}\right) \\
& -2(t+1) \frac{\alpha^{2}}{4}\left\{x_{1} y_{1}-x_{2} y_{2}-t \eta(x) \eta(y)\right\}
\end{aligned}
$$

where $x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$ and $y=y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}$. It can be checked that

$$
\tilde{\operatorname{Ric}}(x, y)=\frac{\alpha^{2}}{2} \tilde{g}(x, y)-\alpha^{2} \tilde{\eta}(x) \tilde{\eta}(y)
$$

that is the deformed manifold is also η-Einstein.

Example 3.6 Consider the nilpotent Lie algebra \mathfrak{g}_{1} given in [4] with basis $\left\{e_{1}, \ldots, e_{5}\right\}$, whose nonzero brackets are

$$
\left[e_{1}, e_{2}\right]=e_{5},\left[e_{3}, e_{4}\right]=e_{5}
$$

Assume that g is the metric such that $\left\{e_{1}, \ldots, e_{5}\right\}$ is orthonormal and $\epsilon_{i}=g\left(e_{i}, e_{i}\right)= \pm 1$. The nonzero covariant derivatives are evaluated in [8] by Kozsul's formula:

$$
\begin{gathered}
\nabla_{e_{1}} e_{2}=\frac{1}{2} e_{5}, \quad \nabla_{e_{1}} e_{5}=-\frac{1}{2} \epsilon_{2} \epsilon_{5} e_{2}, \\
\nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{5}, \quad \nabla_{e_{2}} e_{5}=\frac{1}{2} \epsilon_{1} \epsilon_{5} e_{1}, \\
\nabla_{e_{3}} e_{4}=\frac{1}{2} e_{5}, \quad \nabla_{e_{3}} e_{5}=-\frac{1}{2} \epsilon_{4} \epsilon_{5} e_{4}, \\
\nabla_{e_{4}} e_{3}=-\frac{1}{2} e_{5}, \quad \nabla_{e_{4}} e_{5}=\frac{1}{2} \epsilon_{3} \epsilon_{5} e_{3}, \\
\nabla_{e_{5}} e_{1}=-\frac{1}{2} \epsilon_{2} \epsilon_{5} e_{2}, \quad \nabla_{e_{5}} e_{2}=\frac{1}{2} \epsilon_{1} \epsilon_{5} e_{1}, \quad \nabla_{e_{5}} e_{3}=-\frac{1}{2} \epsilon_{4} \epsilon_{5} e_{4}, \quad \nabla_{e_{5}} e_{4}=\frac{1}{2} \epsilon_{3} \epsilon_{5} e_{3} .
\end{gathered}
$$

Consider now the structure (φ, ξ, η, g) defined by $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=-g\left(e_{3}, e_{3}\right)=-g\left(e_{4}, e_{4}\right)=$ $g\left(e_{5}, e_{5}\right)=1, \xi=e_{5}, \eta=e^{5}$, whose endomorphism is given via basis elements as follows.

$$
\varphi\left(e_{1}\right)=e_{3}, \varphi\left(e_{2}\right)=e_{4}, \varphi\left(e_{3}\right)=e_{1}, \varphi\left(e_{4}\right)=e_{2}, \varphi\left(e_{5}\right)=0 . \text { Nonzero structure constants of }
$$ F are

$$
\begin{aligned}
& F\left(e_{1}, e_{4}, e_{5}\right)=-F\left(e_{1}, e_{5}, e_{4}\right)=-F\left(e_{2}, e_{3}, e_{5}\right)=F\left(e_{2}, e_{5}, e_{3}\right)=1 / 2 \\
& -F\left(e_{3}, e_{5}, e_{2}\right)=F\left(e_{3}, e_{2}, e_{5}\right)=-F\left(e_{4}, e_{1}, e_{5}\right)=F\left(e_{4}, e_{5}, e_{1}\right)=1 / 2 \\
& -F\left(e_{5}, e_{1}, e_{4}\right)=F\left(e_{5}, e_{4}, e_{1}\right)=F\left(e_{5}, e_{2}, e_{3}\right)=-F\left(e_{5}, e_{3}, e_{2}\right)=1
\end{aligned}
$$

Note that $\xi=e_{5}$ is Killing [8] and this structure is in the class $\mathbb{G}_{9} \oplus \mathbb{G}_{11}$ [6]. We determine the class of the deformed structure after a D-homothetic deformation. Proposition 3.1 implies that $\tilde{\xi}$ is Killing, so $\tilde{F}^{6}=\tilde{F}^{7}=\tilde{F}^{10}=\tilde{F}^{12}=0$. Also since $\tilde{F}^{W_{1}}=-t F^{W_{1}}$ and $F^{W_{1}}$ vanishes, $\tilde{F}^{W_{1}}$ also vanishes. It can be checked that this structure satisfies

$$
F(\varphi y, \varphi z, \xi)=-F(\varphi z, \varphi y, \xi)=F\left(\varphi^{2} y, \varphi^{2} z, \xi\right)
$$

and thus

$$
\begin{aligned}
\tilde{F}^{11}(x, y, z)= & -t F^{11}(x, y, z)+\frac{t(t+1)}{2} \eta(x)\{-F(\varphi y, \varphi z, \xi)+F(\varphi z, \varphi y, \xi) \\
& \left.+F\left(\varphi^{2} z, \varphi^{2} y, \xi\right)-F\left(\varphi^{2} y, \varphi^{2} z, \xi\right)\right\} \\
= & -2 t(t+1) \eta(x) F(\varphi y, \varphi z, \xi) \\
= & t(t+1) x_{5}\left\{y_{2} z_{3}-y_{3} z_{2}+y_{4} z_{1}-y_{1} z_{4}\right\} \neq 0 .
\end{aligned}
$$

In addition, by direct calculation

$$
\begin{aligned}
F^{9}(x, y, z)= & \eta(y) F(\varphi z, \varphi x, \xi)-\eta(z) F(\varphi y, \varphi x, \xi) \\
= & -\frac{1}{2} y_{5}\left\{x_{1} z_{4}-x_{2} z_{3}+x_{3} z_{2}-x_{4} z_{1}\right\} \\
& +\frac{1}{2} z_{5}\left\{x_{1} y_{4}-x_{2} y_{3}+x_{3} y_{2}-x_{4} y_{1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{F}^{W_{2}}= & \frac{t(t-1)}{2} F^{W_{2}}(x, y, z) \\
& +\frac{t(t+1)}{2}\{\eta(y) F(\varphi z, \varphi x, \xi)-\eta(z) F(\varphi y, \varphi x, \xi)\} \\
= & \frac{t(t-1)}{2} F^{9}(x, y, z) \\
& +\frac{t(t+1)}{2}\left\{-\frac{1}{2} y_{5}\left\{x_{1} z_{4}-x_{2} z_{3}+x_{3} z_{2}-x_{4} z_{1}\right\}\right. \\
& \left.+\frac{1}{2} z_{5}\left\{x_{1} y_{4}-x_{2} y_{3}+x_{3} y_{2}-x_{4} y_{1}\right\}\right\} \\
= & t^{2} F^{9}(x, y, z) \neq 0
\end{aligned}
$$

As a result the deformed structure is also in $\mathbb{G}_{9} \oplus \mathbb{G}_{11}$. So we obtain infinitely many examples of structures of type $\mathbb{G}_{9} \oplus \mathbb{G}_{11}$ by D-homothetic deformation. Note that although an almost paracontact structure of class \mathbb{G}_{9} is not invariant, a direct sum containing the class \mathbb{G}_{9} may be invariant.

4. Acknowledgements

This study was supported by Eskişehir Technical University Scientific Research Projects Commission under the Grant No: 22 ADP 011.

Declaration of Ethical Standards

The author declares that the materials and methods used in her study do not require ethical committee and/or legal special permission.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] Blair D.E., D-homothetic warping, Publications de l'Institut Mathematique, 94(108), 47-54, 2013.
[2] Bulut Ş., D-homothetic deformation on almost contact B-metric manifolds, Journal of Geometry, 110(2), 1-12, 2019.
[3] De U.C., Ghosh S., D-homothetic deformation of normal almost contact metric manifolds, Ukrains'kyi Matematychnyi Zhurnal, 64(10), 1330-1329, 2012.
[4] Dixmier J., Sur les représentations unitaires des groupes de Lie nilpotentes III, Canadian Journal of Mathematics, 10, 321-348, 1958.
[5] Kaneyuki S., Williams F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal, 99, 173-187, 1985.
[6] Kocabaş Ü., Aktay Ş., Examples of almost para-contact metric structures on 5-dimensions, Fundamental Journal of Mathematics and Applications, 5(2), 89-97, 2022.
[7] Nakova G., Zamkovoy S., Almost paracontact manifolds, arXiv:0806.3859v2 [math.DG], 2009.
[8] Özdemir N., Solgun M., Aktay Ş., Almost paracontact metric structures on 5-dimensional nilpotent Lie algebras, Fundamental Journal of Mathematics and Applications, 3(2), 175-184, 2020.
[9] Özdemir N., Aktay Ş., Solgun M., Almost paracontact structures obtained from $G_{2(2)}^{*}$ structures, Turkish Journal of Mathematics, 42, 3025-3022, 2018.
[10] Solgun, M., Some results on D-homothetic deformation on almost paracontact metric manifolds, Fundamental Journal of Mathematics and Applications, 4(4), 264-270, 2021.
[11] Zamkovoy S., Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry, 36(37), 2009.
[12] Zamkovoy S., On para-Kenmotsu manifolds, Filomat, 32(14), 4971-4980, 2018.
[13] Zamkovoy S., Nakova G., The decomposition of almost paracontact metric manifolds in eleven classes revisited, Journal of Geometry, 109(1), 1-23, 2018.

[^0]: *Correspondence: sirins@eskisehir.edu.tr 2020 AMS Mathematics Subject Classification: 53C25, 53D15

