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study chaotic dynamic of the system through Neimark-Sacker bifurcation by using Lyapunov exponents 
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Introduction 

Interaction of tumor cells with other cells of the body, 
i.e. healthy host cells and immune system cells is very 
complex phenomenon because tumor cells have different 
dynamics such as unbounded growth, tumor dormancy, 
tumor recurrence and tumor remission. In order to 
understand the dynamic behavior of the disease, a variety 
of mathematical models have been developed in the 
literature [1-19]. Using the Lotka-Volterra equations in 
these models is one of the most common ideas. A very 
simple model based on the Lotka-Volterra predator-prey 
model has been presented by Costa and et al. [1]. Their 
model explains tumor aggressiveness, the diffusion of 
lymphocytes and the effect caused by cytokines on the 
tumor. Based on the Costa model, a family of Lotka-
Volterra models has been investigated by D’Onofrio [2]. 
Another familiar tumor growth model has been proposed 
by Kuznetsov and et al. [3] and they have explained two 
different stages of the tumor: the dormant tumor and the 
sneaking-through mechanism. In 1998, Kirschner and 
Panetta [4] described the dynamics among tumor cells, 
immune effector cells and Interleukin-2 by using the 
generalized Kuznetsov model. 

   Recent studies have shown that some tumor growth 
models which are based on Lotka-Volterra type systems 
exhibit chaotic dynamics. Itik and Banks [5] have analyzed 
the chaotic dynamics of a very simple tumor growth 
model 

⎩
⎪⎪
⎨

⎪⎪
⎧

dx
dt

= x(t)�1 − x(t)�– ax(t)y(t) − bx(t)z(t),

dy
dt

= cy(t)�1 − y(t)�– dx(t)y(t),

dz
dt

=
ex(t)z(t)
x(t) + f

− gx(t)z(t) − hz(t).

                (1)  

Calculating Lyapunov exponents and Lyapunov 
dimension show that a chaotic attractor occurs around 
the positive equilibrium point. Model (1.1) has also been 
studied by Galindo et al. [6]. They have observed that 
tumor cells, immune cells and healthy cells coexist 
through the Hopf bifurcation which causes a stable limit 
cycle. A more general form of this model with 
chemotherapy treatment has been studied in study [7].  

   In the early 1980s, Busenberg and Cooke [20], Cooke 
and Györi [21], Shah and Wiener [22] developed a new 
type of differential equation that is called differential 
equation with piecewise constant arguments [23]. Using 
the method of reduction to discrete equations, many 
authors have analyzed the existence and uniqueness of 
solutions; oscillations, stability and periodic solutions of 
these equations [23-27]. Besides the theoretical analysis, 
various types of biological models have been constructed 
using differential equations with piecewise constant 
arguments [20, 28-31]. The first biological model has been 
presented by Buseenberg and Cooke [20] to investigate 
vertically transmitted diseases. Following this work, 
Ozturk et al. [28],  Bozkurt et al. [29], Gurcan et al. [30], 
Kartal and Gurcan [31], have constructed a mathematical 
model with piecewise constant arguments for some 
biological phenomena such as bacteria population and 
tumor growth. 

In the present paper, our aim is a better understanding 
of how both discrete and continuous times affect the 
dynamic behavior of the tumor growth model (1). So we 
will reconsider the model as a system of differential 
equations with piecewise constant arguments such as; 
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⎩
⎪⎪
⎨

⎪⎪
⎧

dx
dt

= x(t)�1 − x(t)�– ax(t)y(⟦t⟧) − bx(t)z(⟦t⟧),

dy
dt

= cy(t)�1 − y(t)�– dx(⟦t⟧)y(t),

dz
dt

=
ex(⟦t⟧)z(t)
x(⟦t⟧) + f

− gx(⟦t⟧)z(t) − hz(t).

     (2)  

 
In this model, x(t), y(t) and z(t) represent the tumor 

cell, healthy host cell and effector immune cell population 
respectively. ⟦t⟧ denotes the integer part of 𝑡𝑡 ∈ [0,∞) 
and all these parameters are positive. In the first equation, 
the first term is logistic growth of tumor cells, the second 

and last terms represent the negative effect due to the 
interaction tumor-host cells and tumor-immune cells 
respectively. In the second equation, the healthy cells also 
grow logistically, with growth rate c and have loss of their 
population due to interaction with tumor cells that are 
represented in the second term. In the last equation, the 
first term is the stimulation of the immune system by 
tumor cells, the second term describes the loss of immune 
cells due to interaction with tumor cells and last term 
represents the natural death rate of the effector immune 
cells [5-6]. 

 
 
Local Stability Analysis 

System (2) can be written in the interval 𝑡𝑡 ∈ [𝑛𝑛,𝑛𝑛 + 1) as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧

dx
dt
− x(t)�1 − ay(n) − bz(n)� = −x2(t),

dy
dt
− y(t)(c − dx(n)) = −cy2(t),

dz
dt

= z(t) �
ex(n)

x(n) + f
− gx(n) − h� .

                                                                                                                                      (3)  

Solving system (3) in the interval 𝑡𝑡 ∈ [𝑛𝑛,𝑛𝑛 + 1)  and letting 𝑡𝑡 → 𝑛𝑛 + 1  gives system of difference equation 

⎩
⎪
⎨

⎪
⎧x(n + 1) =

x(n)[1 − ay(n) − bz(n)]
[1 − ay(n) − bz(n) − x(n)]e−[1−ay(n)−bz(n)] + x(n)

,

y(n + 1) =
y(n)[c − dx(n)]

[c − dx(n) − cy(n)]e−[c−dx(n)] + cy(n)
,

z(n + 1) = z(n)e
ex(n)
x(n)+f−gx(n)−h.

                                                                                           (4)  

System (4) reflects the rich dynamical characteristics and the asymptotic behavior of the system of differential equations 
with piecewise constant argument. Now, we need to obtain the equilibrium points to study the local behavior of the 
system. The positive equilibrium point of system (4) can be obtained as  E = (x�, y�, z�) where 

x� =
e − fg − h − q

2g
,    y� =

−de + 2cg + dfg + dh + dq
2cg

, z� =
−ad(−e + fg + h + q) + c(−e + 2g − 2ag + fg + h + q)

2bcg
 

and 

q = �e2 + (−fg + h)2 − 2e(fg + h). 

Let 

f�x(n), y(n), z(n)� =
x(n)[1 − ay(n) − bz(n)]

[1 − ay(n) − bz(n) − x(n)]e−[1−ay(n)−bz(n)] + x(n)
, 

g�x(n), y(n), z(n)� =
y(n)[c − dx(n)]

[c − dx(n) − cy(n)]e−[c−dx(n)] + cy(n)
 

and 

h�x(n), y(n), z(n)� = z(n)e
ex(n)
x(n)+f−gx(n)−h. 
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Then, the linearized system of (4) about (x�, y�, z�) is w(n + 1) = Aw(n) where the Jacobian matrix A can be calculated; 

A =

⎝

⎜
⎜
⎜
⎛

a11 =
∂f

∂x(n)
(x�, y�, z�) a12 =

∂f
∂y(n)

(x�, y�, z�) a13 =
∂f

∂z(n)
(x�, y�, z�)

a21 =
∂g

∂x(n)
(x�, y�, z�) a22 =

∂g
∂y(n)

(x�, y�, z�) a23 =
∂g

∂z(n)
(x�, y�, z�)

a31 =
∂h

∂x(n)
(x�, y�, z�) a32 =

∂h
∂y(n)

(x�, y�, z�) a33 =
∂h

∂z(n)
(x�, y�, z�)

⎠

⎟
⎟
⎟
⎞

.                                                                         (5) 

The elements of the A matrix are 

a11 = e
−e+fg+h+q

2g = e−x� ,  a12 = a �−1 + e
−e+fg+h+q

2g � = a(−1 + 𝑒𝑒−x�),  a13 = b �−1 + e
−e+fg+h+q

2g � = b(−1 + 𝑒𝑒−x�), 

a21 =
d�−1+e

−c−dq2g�

c
= d

c
(−1 + 𝑒𝑒−cy�), a22 = e−c−

d(−e+fg+h+q)
2g = 𝑒𝑒−cy�,  a23 = 0, 

a31 = z�
2g(−e2 + (fg − h)(−fg + h + q) + e(2fg + 2h + q))

(−e − fg + h + q)2
, a32 = 0, a33 = 1 

   Now, the characteristic equation of the matrix A can be obtained as 

p(λ) = λ3 + λ2(−e−x� − 𝑒𝑒−cy� − 1) 

            +λ �−
ad
c

(1 − 𝑒𝑒−x�)(1 − 𝑒𝑒−cy�) + b(1 − 𝑒𝑒−x�)a31 + e−x� + 𝑒𝑒−cy� + e−x�𝑒𝑒−cy�� 

            +
ad
c

(1 − 𝑒𝑒−x�)(1 − 𝑒𝑒−cy�) − b(1 − 𝑒𝑒−x�)a31𝑒𝑒−cy� − e−x�𝑒𝑒−cy� = 0                                                                                  (6) 

where 

p2 = −e−x� − e−cy� − 1, 

p1 = −ad
c

(1 − e−x�)(1 − e−cy�) + b(1 − e−x�)a31 + e−x� + e−cy� + e−x�e−cy�, 

and 

p0 =
ad
c

(1 − e−x�)(1 − e−cy�)−a31b(1 − e−x�)e−cy� − e−x�e−cy�. 

Theorem 1. Suppose that E = (x�, y�, z�) is the equilibrium point of the system (4) and the characteristic polynomial of 
the Jacobian matrix of the linearized system for the model (4)  is 

p(λ) = λ3 + p2λ2 + p1λ + p0 .                                                                                                                                                          (7) 

The equilibrium point of the system (4) is local asymptotically stable if and only if  

a)  p(1) = 1 + p2 + p1 + p0 > 0,  

b) (−1)p(−1) = 1 − p2 + p1 − p0 > 0, 

c) D2
+ = 1 + p1 − p02 − p0p2 > 0, 

d)  D2
− = 1 − p1 + p0p2 − p02 > 0. 
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The conditions of Theorem 1 can be easily obtained from the Schur-Cohn criteria [32]. Because analyzing the conditions 
of Theorem 1 is quite difficult, we will analyze these conditions numerically. For the parameter values c = 0.6, d = 1,
e = 3.5, f = 1.8,   g = 0.2, h = 0.5, b = 2, a = 0.5 and initial conditions x(1) = y(1) = z(1) = 0.5 which satisfy the 
conditions of Theorem 1, the positive equilibrium point (x�, y�, z�) = (0.3502,0.416333, 0.220817) is local asymptotically 
stable where blue, red and black graphs represent population density of tumor, healthy and immune cells respectively. 
(Figure 1). 

 
Figure 1. Graph of the iteration solution of x(n),y(n) and z(n) for the parameter values c=0.6,a=0.5,d=1,e=3.5,f=1.8,   

g=0.2,h=0.5,b=2 and initial conditions x(1)=y(1)=z(1)=0.5.   
 

Neimark Sacker bifurcation and Chaotic Dynamics 

In this section, we will prove that the system exhibits chaotic dynamics through Neimark-Sacker bifurcation which is 
a discrete version of Hopf bifurcation in continuous case. For this reason, we will calculate the Lyapunov exponent for 
the selected parameter sets.  

 
Neimark Sacker bifurcation analysis 
The following theorem gives necessary and sufficient algebraic conditions of Neimark-Sacker bifurcation. 

Lemma [33]: Consider the following n-dimensional system: 

𝑋𝑋𝑛𝑛+1 = 𝑓𝑓𝑞𝑞(𝑋𝑋𝑛𝑛)                                                                                                                                                                                      (8) 

where 𝑞𝑞 ∈ 𝑅𝑅  is considered as a bifurcation parameter. Suppose that characteristic polynomial of  𝐽𝐽|𝑋𝑋 about 𝑋𝑋 of n-
dimensional discrete dynamical system, which is depicted in system (8), is 

P(λ) = λn + p1λ𝑛𝑛−1 + p2λ𝑛𝑛−2 + ⋯+ pn                                                                                                                                     (9) 

Now considering the determinants: ∆0
±(q) = 1,∆1

±(q), … ,∆n±(q), which can be expressed as 

∆j
±(q) =

�

�

⎝

⎜
⎜
⎛

1 p1   p2 … pj−1
0      1        p1   … pj−2

 0        0         1    …  pj−3  
…       …     …     ….     … 

0        0         0     …           1
 ⎠

⎟
⎟
⎞
∓

⎝

⎜⎜
⎛

pn−j+1   pn−j+2     …   pn−1     pn
pn−j+2     pn−j+3    …   pn    0
…                  …      ….   …    …
pn−1               pn      …      0     0

pn              0       …      0     0
 ⎠

⎟⎟
⎞

�

�
                                                            (10) 

where  j=1,…n. Furthermore, Neimark-sacker bifurcation occurs at critical value  q = q0 if following parametric 
condition hold: 

0
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NS1) Eigenvalue assignment: Pq0(1) > 0, (−1)nPq0(−1) > 0, ∆n−1− (q0) = 0,   ∆n−1+ (q0) > 0, ∆j
±(q0) > 0 where j =

n − 3, n − 5, … ,1 (or 2), when n is even (or odd, respectively). 

NS2) Transversality condition:
d

dq
∆n−1− (q0) ≠ 0 

NS3) Nonresonance condition:
cos (2π)

l
≠ 1 − 0.5Pq(1)

∆n−3− (q0)
∆n−2− (q0)  or resonance  

condition 
cos (2π)

l
= 1 − 0.5Pq0(1)

∆n−3− (q0)
∆n−2− (q0)   where l = 3,4, … 

Theorem 2: Suppose that E = (x�, y�, z�) is the equilibrium point of the system (4). If  

1 + p2 + p1 + p0 > 0,                                                                                                                                                                        (11) 

1 − p2 + p1 − p0 > 0,                                                                                                                                                                        (12) 

1 − p1 + p0p2 − p02 = 0,                                                                                                                                                                (13) 

1 + p1 − p02 − p0p2 > 0,                                                                                                                                                                 (14) 

d
dq

�∆1−(q)�|𝑞𝑞=q0 =
d

dq
(1 − p1 + p0p2 − p02)|𝑞𝑞=q0 ≠ 0                                                                                                         (15) 

and 

cos (2π)
l

≠ 1 − 0.5Pq(1) = 1 −
1 + p2 + p1 + p0

2
=

1 − p2 − p1 − p0
2

 .                                                                          (16)  

Then the discrete dynamical system undergoes a Neimark-Sacker bifurcation about  E = (x�, y�, z�)   

Proof: 
The proof of the theorem can be easily seen from the conditions of Lemma for n=3. 
Since it is very difficult to prove the conditions of Theorem 2 analytically, we will consider these conditions numerically. 
For this purpose we choose the parameter a as a bifurcation parameter and fixed all other parameter values such as 
c = 0.6,   d = 1.5, e = 3.5, f = 1.8,   g = 0.2, h = 0.5, b = 0.2. For these values we hold 

p2 =  −2.58749, 

p1 =   2.20956 + 1.43128 (0.6 (0.25992 − 0.4 a) + 0.21012 a) − 0.0864656 a  

and 

 p0 = −0.622072 − 1.26373(0.6(0.25992 − 0.4a) + 0.21012a) + 0.086456a. 

From the solutions of equation (13), the critical Neimark-Sacker bifurcation is obtained as a� = 0.877595.  In addition 
from the equations (11), (12) and (14) we have 1 + p2 + p1 + p0 = 0.0217342 > 0,  1 − p2 + p1 − p0 = 6.61698 >
0 and 1 + p1 − p02 − p0p2 = 0.977606 > 0. In addition from the equations (15) and (16), one can obtain 
d
dq
�∆1−(q)�|𝑞𝑞=q0 =  −0.0157666 ≠ 0 and  cos (2π)

l
≠ 0.989132. Now all of the Neimark-Sacker bifurcation conditions 

are satisfied. For the critical value of a�, the eigenvalues are λ1 = 0.529395, λ2,3 = 0.977054 ± 0.21299i. Now, the 
conditions of Theorem 2 are satisfied and system (4) undergoes Neimark-Sacker bifurcation for the critical value a� =
0.877595 (Figure 2 and Figure 3). 
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Figure 2. Time series plot and phase diagram of the discrete system (4) for a� = 0.877595. Initial conditions and other 

parameters are taken from Figure 1.   
 

 
Figure 3. Bifurcation diagram of the discrete system (4) with respect to parameter a. Initial conditions and other 

parameters are the same as in Figure 1.   

In addition, if we determine the bifurcation parameter as e then the critical bifurcation point is e� = 4.47863. In this 
situation, we have p(1) = 0.0514048 > 0,  (−1)p(−1) = 6.25374 > 0 and D2

+ = 1.23655 > 0 for the parameter 
value e� = 4.47863 where the eigenvalues of the Jacobian matrix are λ1 = 0.617838, λ2,3 = 0.932745 ± 0.360538i 
(Figure 4 and Figure 5).  
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Figure 4. Time series plot and phase diagram of the discrete system (4) e� = 4.47863 (a) and e=6 (b) Initial conditions 

and other parameters are taken from Figure 1.   
 

 

 
Figure 5. Bifurcation diagram of the system (4) with respect to parameter e. Initial conditions and other parameters are 

the same as in Figure 1.   
 

The bifurcation point with respect to parameter f can be determined as  f ̅ = 1.32821, where p(1) = 0.0499731 > 0,  
(−1)p(−1) = 6.24281 > 0 and D2

+ = 1.24912 > 0 and eigenvalues of  the Jacobian matrix are λ1 = 0.61273, λ2,3 =
0.93548 ± 0.353379i (Figure 6 and Figure 7).  
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Figure 6. Time series plot and phase diagram of the discrete system (4) f ̅ = 1.32821. Initial conditions and other 

parameters are taken from Figure 1.   
 

 

 
Figure 7. Bifurcation diagram of the discrete system (4) with respect to parameter f. Initial conditions and other 

parameters are the same as in Figure 1.   
 
Chaotic Dynamics 
In continuous and discrete dynamical systems, Lyapunov exponents or Lyapunov characteristic exponents (LCEs) are 

a useful tools to determine whether or not the system exhibits chaotic motion. If a Lyapunov exponent is positive, one 
can say that the system is chaotic. For discrete dynamical system xk+1 = F(xk), k = 0,1, …, one can use a method 
presented in [34-35] to determine Lyapunov exponents. The method is based on computing the QR decomposition of 
the Jacobian matrix A and can be summarized as follows: 

Let Q0 be an orthogonal matrix such that Q0
T. Q0 = I. Now, it can be obtained the decomposition  Zk+1 =

Qk+1. Rk+1 by solving Zk+1 = Ak. Qk, k = 0,1, …,  where Qk+1 is an orthogonal matrix and Rk+1 is upper triangular 
matrix with positive diagonal elements [34]. Thus, the LCEs can be calculated as  

λi = lim
k→∞

1
k

ln (�Ri)jj�, j = 1, … , m .                                                                                                                                       (17) 
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Now, we can obtain the Lyapunov exponents of the system by using the formula (17). The calculated LCEs of the 
system according to Figure 3, Figure 5 and Figure 7 are plotted in Figure 8, Figure 9 and Figure 10 respectively. It is 
understood from these figures that the system exhibits chaotic behavior for a > a�, e > e� and f > f.̅  

Result and Discussion 

In this paper we analyze a discrete-continuous time model describing the interactions among healthy cells, tumor 
cells and immune system cells. The idea of the model comes from the paper M. Itik and Banks [5]. Some numerical 
results are obtained for the local behavior of the model. To test these numerical results, most of the parameters values 
are taken from the study [5-6] in terms of consistency with the biological facts. Figure 1 shows the stable dynamics at 
the positive equilibrium point under the condition a < 0.877595 where all of the populations are exist.   

For the bifurcation analysis, we select the parameters a, e, and f as bifurcation parameters. Neimark-Sacker 
bifurcation point is obtained as a� =0.877595 (Figure 2). Increasing values of the parameter a shows that both tumor cells 
and immune system cells populations are extinct and healthy cells tend to their carrying capacity after the chaotic 
dynamics (Figure 3). This result is also valid for the study [6]. Another bifurcation points are obtained as e� =4.47863 and 
f ̅ = 1.32821 (Figure 4, Figure 5, Figure 6, Figure 7). Moreover, calculating Lyapunov exponents show that chaotic 
dynamics occur, if the parameter values a, e, f exceed bifurcation points (Figure 8, Figure 9 and Figure 10). 

 

 
Figure 8. Converge plot of the Lyapunov spectrum for the system with respect to parameter a=1.5 (a), a =̅0.87759 (b), 

a=1 (c) and r_1=1.2 (d). 
 

 
Figure 9. Converge plot of the Lyapunov spectrum for the system with respect to parameter e=3.5 (a), e =̅4.47863 (b), 

e=4.9 (c) and e=5 (d). 
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Figure 10. Converge plot of the Lyapunov spectrum for the system with respect to parameter f=1.8 (a), f =̅1.32821 (b), 

f=0.9 (c) and f=0.8 (d). 
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