On Statistical Submanifolds in Manifolds of Quasi-Constant Curvature

Hülya Aytimur*

(Communicated by Ion Mihai)

Abstract

We mention some properties of statistical submanifolds in statistical manifolds of quasi-constant curvature. We obtain Chen first inequality and a Chen inequality for the $\delta(2,2)$-invariant for these manifolds.

Keywords: Statistical manifold of quasi-constant curvature, submanifold, Chen inequality.
AMS Subject Classification (2020): Primary: 53C05 ; Secondary:53C25; 53C40.

1. Introduction

An important topic submanifold theory is to find out relations between the sectional curvature tensor, the scalar curvature tensor and the mean curvature tensor of a submanifold. First relevant results in this field were obtained by B.-Y. Chen in 1993 [6]. He set up some inequalities between the extrinsic (the squared mean curvature) and intrinsic (the scalar curvature) invariants of a submanifold in a real space form, well-known as Chen first inequalities. Similar problems for submanifolds in Sasakian space form, Kenmotsu space form, Riemannian manifold of quasi-constant curvature etc., has been studied by many geometers, see [20], [7], [8], [13], [14], [15]. All of results related to Chen inequalities were given in [9] and its references.
A differential geometric approach for a statistical model of discrete probability distribution was introduced in [1] . Firstly, Amari was used the notion of a statistical manifold with applications in Information Geometry. The geometry of these manifolds involves deals with conjugate connections and, consequently, is closed related to affine differential geometry. A statistical manifold is a Riemannian manifold (\bar{N}, \bar{g}) endowed with a pair of torsion-free affine connections \bar{D} and \bar{D}^{*} satisfying

$$
\begin{equation*}
U \bar{g}(V, E)=\bar{g}\left(\bar{D}_{U} V, E\right)+\bar{g}\left(V, \bar{D}_{U}^{*} E\right), \tag{1.1}
\end{equation*}
$$

for any U, V and $E \in T \bar{N}$. The connections \bar{D} and \bar{D}^{*} are called conjugate (dual) connections (see [1] and [22]).
Any torsion-free affine connection \bar{D} always has a dual connection given by

$$
\begin{equation*}
\bar{D}+\bar{D}^{*}=2 \bar{D}^{0}, \tag{1.2}
\end{equation*}
$$

where \bar{D}^{0} is Levi-Civita connection of \bar{N} [1]. So, many geometers have been established inequalities for statistical submanifolds of various statistical manifolds, for more details [2], [16], [3], [10], [17], [4], [5].
Motivated by the studies of the above papers, we obtain improved Chen inequality and a Chen inequality for the invariant $\delta(2,2)$ for statistical submanifolds in statistical manifolds of quasi-constant curvature.

2. Preliminaries

In [3], authors give an example of a statistical manifold of quasi-constant curvature and studied the properties of statistical submanifolds of these manifolds.

[^0]The curvature tensor \bar{R} of \bar{D} is defined by

$$
\begin{align*}
\bar{R}(U, V) E= & a\{\bar{g}(V, E) U-\bar{g}(U, E) V\} \tag{2.1}\\
& +b[T(V) T(E) U-\bar{g}(U, E) T(V) P \\
& +\bar{g}(V, E) T(U) P-T(U) T(E) V],
\end{align*}
$$

where a, b are scalar functions, T is a 1 -form given by

$$
\begin{equation*}
\bar{g}(U, P)=T(U) \tag{2.2}
\end{equation*}
$$

and P is a unit vector field. The vector field P can be written

$$
P=P^{T}+P^{\perp}
$$

where P^{T} and P^{\perp} are the tangent and normal components of P, respectively. If a statistical manifold \bar{N} with its statistical structure (\bar{D}, \bar{g}) has the curvature tensor \bar{R} in the form (2.1), then it is called a statistical manifold of quasi-constant curvature [3]. If $b=0$, then the statistical manifold \bar{N} turns into a statistical manifold of constant curvature [2].

Let (\bar{N}, \bar{g}) be a statistical manifold given by torsion-free affine connections \bar{D} and \bar{D}^{*}. Denote by \bar{R} and \bar{R}^{*} the curvature tensor fields of \bar{D} and \bar{D}^{*}, respectively. Then \bar{R} and \bar{R}^{*} satisfy

$$
\begin{equation*}
\bar{g}\left(\bar{R}^{*}(U, V) E, F\right)=-\bar{g}(E, \bar{R}(U, V) F), \tag{2.3}
\end{equation*}
$$

(see [12]). From (2.3), if (\bar{D}, \bar{g}) is a statistical structure of quasi-constant curvature, then $\left(\bar{D}^{*}, \bar{g}\right)$ is also a statistical structure of quasi-constant curvature. So (2.1) is valid for $\left(\bar{D}^{*}, \bar{g}\right)$.
Let (N, g, D) and $(\bar{N}, \bar{g}, \bar{D})$ be two statistical manifolds. An immersion $\pi: N \longrightarrow \bar{N}$ is called a statistical immersion [12]. If there is a statistical immersion between two statistical manifolds (N, g, D, D^{*}) and $\left(\bar{N}, \bar{g}, \bar{D}, \bar{D}^{*}\right)$, then N is called a statistical submanifold of \bar{N}.
Let N be a statistical submanifold of a statistical manifold \bar{N}. Then, the Gauss formulas are given by

$$
\begin{aligned}
\bar{D}_{U} V & =D_{U} V+h(U, V), \\
\bar{D}_{U}^{*} V & =D_{U}^{*} V+h^{*}(U, V),
\end{aligned}
$$

where the normal valued tensor fields h and h^{*} are symmetric and bilinear the imbedding curvature tensors of N in \bar{N} for \bar{D} and \bar{D}^{*}. So, D and D^{*} are called the induced connections of these connections, respectively. We have the linear transformations A_{ξ} and A_{ξ}^{*} defined by

$$
\begin{equation*}
g\left(A_{\xi} U, V\right)=\bar{g}(h(U, V), \xi) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(A_{\xi}^{*} U, V\right)=\bar{g}\left(h^{*}(U, V), \xi\right) \tag{2.5}
\end{equation*}
$$

for any unit $\xi \in T^{\perp} N$ and $U, V \in T N$ [22].
Let R, R^{*} denote the curvature tensors of the submanifold (N, g, D, D^{*}) in $T N$. Then we have the following Propositions:
Proposition 2.1. [22] Let N be a statistical submanifold of \bar{N}. Then the Gauss equation with respect to the connection D is

$$
\begin{gather*}
\bar{g}(\bar{R}(U, V) E, F)=g(R(U, V) E, F) \tag{2.6}\\
+\bar{g}\left(h(U, E), h^{*}(V, F)\right)-\bar{g}\left(h^{*}(U, F), h(V, E)\right)
\end{gather*}
$$

respectively, where $U, V, E, F \in T N$.
Proposition 2.2. [22] Let N be a statistical submanifold of \bar{N}. Then the Gauss equation with respect to the connection D^{*} is

$$
\begin{aligned}
\bar{g}\left(\bar{R}^{*}(U, V) E, F\right) & =g\left(R^{*}(U, V) E, F\right) \\
+\bar{g}\left(h^{*}(U, E), h(V, F)\right) & -\bar{g}\left(h(U, F), h^{*}(V, E)\right)
\end{aligned}
$$

respectively, where $U, V, E, F \in T N$.

In [19], the \bar{K}-sectional curvature of the statistical manifold was introduced as follows:
Let π be a plane in $T \bar{N}$; for an orthonormal basis $\{U, V\}$ of π, the \bar{K}-sectional curvature is

$$
\begin{equation*}
\bar{K}(\pi)=\frac{1}{2}\left[\bar{R}(U, V)+\bar{R}^{*}(U, V)-2 \bar{R}^{0}(U, V)\right] \tag{2.7}
\end{equation*}
$$

where \bar{R}^{0} is the curvature tensor field of \bar{D}^{0} on $T \bar{N}$.
Example 2.1. [3] Let $\left(\bar{N}=I \times N^{n}(c), D, D^{*}\right)$ be a dualistic product (for more details see [21]), I onedimensional statistical manifold, $N^{n}(c)$ a statistical manifold of constant curvature c with its projection $\pi: \bar{N}=I \times N^{n}(c) \rightarrow N^{n}(c)$. Denote by $d t^{2}$ the metric on I. Thus we have

$$
\bar{g}=d t^{2}+g_{N}
$$

where g_{N} is a metric on $N^{n}(c)$. The vector field $U \in \chi(\bar{N})$ can be written as

$$
\begin{equation*}
U=\pi_{*}(U)+\bar{g}\left(U, \frac{\partial}{\partial t}\right) \frac{\partial}{\partial t} \tag{2.8}
\end{equation*}
$$

where $\frac{\partial}{\partial t} \in \chi(I)$.
For $U, V, E, F \in \chi(\bar{N})$, using (2.8), we obtain

$$
\begin{gathered}
\bar{g}(\bar{R}(U, V) E, F)=c[\bar{g}(V, E) \bar{g}(U, F)-\bar{g}(U, E) \bar{g}(V, F)] \\
+c\left[\bar{g}(U, E) \bar{g}\left(V, \frac{\partial}{\partial t}\right) \bar{g}\left(F, \frac{\partial}{\partial t}\right)-\bar{g}(U, F) \bar{g}\left(V, \frac{\partial}{\partial t}\right) \bar{g}\left(E, \frac{\partial}{\partial t}\right)\right. \\
\left.+\bar{g}(V, F) \bar{g}\left(U, \frac{\partial}{\partial t}\right) \bar{g}\left(E, \frac{\partial}{\partial t}\right)-\bar{g}(V, E) \bar{g}\left(U, \frac{\partial}{\partial t}\right) \bar{g}\left(F, \frac{\partial}{\partial t}\right)\right] .
\end{gathered}
$$

It is known that $\left(I, D, d t^{2}\right)$ and $\left(N^{n}(c), \widehat{D}, g_{N}\right)$ are statistical manifolds if and only if $\left(\bar{N}=I \times N^{n}(c), D, \bar{g}\right)$ is a statistical manifold [11]. So $\bar{N}=I \times N^{n}(c)$ is a statistical manifold of quasi-constant curvature with constant functions $a=b=c$.

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{u_{n+1}, \ldots u_{n+m}\right\}$ be orthonormal tangent and normal frames, respectively, on N. The mean curvature vector fields are given by

$$
H=\frac{1}{n} \sum_{i=1}^{n} h\left(u_{i}, u_{i}\right)=\frac{1}{n} \sum_{\alpha=1}^{m}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right) u_{n+\alpha} \quad, \quad h_{i j}^{\alpha}=\bar{g}\left(h\left(u_{i}, u_{j}\right), u_{n+\alpha}\right)
$$

and

$$
H^{*}=\frac{1}{n} \sum_{i=1}^{n} h^{*}\left(u_{i}, u_{i}\right)=\frac{1}{n} \sum_{\alpha=1}^{m}\left(\sum_{i=1}^{n} h_{i i}^{* \alpha}\right) u_{n+\alpha} \quad, \quad h_{i j}^{* \alpha}=\bar{g}\left(h^{*}\left(u_{i}, u_{j}\right), u_{n+\alpha}\right) .
$$

3. Chen first inequality

In this section, we prove an improved Chen inequality statistical submanifolds in statistical manifolds of quasi-constant curvature. So, we give the following algebraic lemma which will be used in the proof of the main theorem.

Lemma 3.1. [18] Let $m \geq 3$ be an integer and $\left\{b_{1}, \ldots, b_{m}\right\} m$ real numbers. Then we have

$$
\sum_{1 \leq i<j \leq m} b_{i} b_{j}-b_{1} b_{2} \leq \frac{m-2}{2(m-1)}\left(\sum_{i=1}^{m} b_{i}\right)^{2}
$$

The equality case of the above inequality holds if and only if $b_{1}+b_{2}=b_{3}=\ldots=b_{m}$.

Let \bar{N}^{n+m} be an $(n+m)$-dimensional statistical manifold of quasi-constant curvature, N^{n} an n-dimensional statistical submanifold of $\bar{N}, p \in N$ and π a plane section at p. We consider an orthonormal basis $\left\{u_{1}, u_{2}\right\}$ of π and $\left\{u_{1}, \ldots, u_{n}\right\},\left\{u_{n+1}, \ldots u_{n+m}\right\}$ orthonormal basis of $T_{p} N^{n}$ and $T_{p}^{\perp} N^{n}$, respectively.

Let K^{0} be the sectional curvature of the Levi-Civita connection D^{0} on N^{n}, h^{0} the second fundamental form of N^{n}. From (2.7), the sectional curvature $K(\pi)$ of the plane section π is

$$
\begin{gather*}
K(\pi)=\frac{1}{2}\left[g\left(R\left(u_{1}, u_{2}\right) u_{2}, u_{1}\right)+g\left(R^{*}\left(u_{1}, u_{2}\right) u_{2}, u_{1}\right)\right. \\
\left.-2 g\left(R^{0}\left(u_{1}, u_{2}\right) u_{2}, u_{1}\right)\right] . \tag{3.1}
\end{gather*}
$$

Using (2.1), (2.3) and (2.6), we obtain

$$
g\left(R\left(u_{1}, u_{2}\right) u_{2}, u_{1}\right)=a+b\left\{T\left(u_{2}\right)^{2}+T\left(u_{1}\right)^{2}\right\}+\sum_{\alpha=1}^{m}\left(h_{11}^{* \alpha} h_{22}^{\alpha}-h_{12}^{* \alpha} h_{12}^{\alpha}\right)
$$

and

$$
\begin{aligned}
g\left(R^{*}\left(u_{1}, u_{2}\right) u_{2}, u_{1}\right)= & -g\left(R\left(u_{1}, u_{2}\right) u_{1}, u_{2}\right)=a+b\left\{T\left(u_{2}\right)^{2}+T\left(u_{1}\right)^{2}\right\} \\
& +\sum_{\alpha=1}^{m}\left(h_{11}^{\alpha} h_{22}^{* \alpha}-h_{12}^{\alpha} h_{12}^{* \alpha}\right) .
\end{aligned}
$$

If the last equalities are used in (3.1) then

$$
K(\pi)=a+b\left\{T\left(u_{2}\right)^{2}+T\left(u_{1}\right)^{2}\right\}+\frac{1}{2} \sum_{\alpha=1}^{m}\left(h_{11}^{* \alpha} h_{22}^{\alpha}+h_{11}^{\alpha} h_{22}^{* \alpha}-2 h_{12}^{\alpha} h_{12}^{* \alpha}\right)-K_{0}(\pi) .
$$

The last equality can be written as

$$
\begin{aligned}
K(\pi)=a+b\left\{T\left(u_{2}\right)^{2}+\right. & \left.T\left(u_{1}\right)^{2}\right\}+2 \sum_{\alpha=1}^{m}\left[h_{11}^{0 \alpha} h_{22}^{0 \alpha}-\left(h_{12}^{0 \alpha}\right)^{2}\right]-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{* \alpha} h_{22}^{* \alpha}-\left(h_{12}^{* \alpha}\right)^{2}\right] \\
& -\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{\alpha} h_{22}^{\alpha}-\left(h_{12}^{\alpha}\right)^{2}\right]-K_{0}(\pi) .
\end{aligned}
$$

From the Gauss equation with respect to Levi-Civita connection, we obtain

$$
\begin{gather*}
K(\pi)=a+b\left\{T\left(u_{2}\right)^{2}+T\left(u_{1}\right)^{2}\right\}+K_{0}(\pi)-2 \bar{K}_{0}(\pi) \\
-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{* \alpha} h_{22}^{* \alpha}-\left(h_{12}^{* \alpha}\right)^{2}\right]-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{\alpha} h_{22}^{\alpha}-\left(h_{12}^{\alpha}\right)^{2}\right] \tag{3.2}
\end{gather*}
$$

where \bar{K}_{0} the sectional curvature of the Levi-Civita connection \bar{D}^{0} on \bar{N}^{n+m}.
Moreover, let τ be the scalar curvature of N^{n}. Then, using (2.7) and (2.3), we get

$$
\begin{gather*}
\tau=\frac{1}{2} \sum_{1 \leq i<j \leq n}\left[g\left(R\left(u_{i}, u_{j}\right) u_{j}, u_{i}\right)+g\left(R^{*}\left(u_{i}, u_{j}\right) u_{j}, u_{i}\right)-2 g\left(R^{0}\left(u_{i}, u_{j}\right) u_{j}, u_{i}\right)\right] \\
=\frac{1}{2} \sum_{1 \leq i<j \leq n}\left[g\left(R\left(u_{i}, u_{j}\right) u_{j}, u_{i}\right)-g\left(R\left(u_{i}, u_{j}\right) u_{i}, u_{j}\right)\right]-\tau_{0}, \tag{3.3}
\end{gather*}
$$

where τ_{0} is the scalar curvature of the Levi-Civita connection D^{0} on N^{n}. By the use of (2.6) and (2.1), we obtain

$$
\sum_{1 \leq i<j \leq n} g\left(R\left(u_{i}, u_{j}\right) u_{j}, u_{i}\right)=a\left(\frac{n^{2}-n}{2}\right)+b(n-1)\left\|P^{T}\right\|^{2}+\sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left(h_{i i}^{* \alpha} h_{j j}^{\alpha}-h_{i j}^{* \alpha} h_{i j}^{\alpha}\right) .
$$

By similar calculations, we get

$$
\sum_{1 \leq i<j \leq n} g\left(R\left(u_{i}, u_{j}\right) u_{i}, u_{j}\right)=-a\left(\frac{n^{2}-n}{2}\right)-b(n-1)\left\|P^{T}\right\|^{2}+\sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{* \alpha} h_{i j}^{\alpha}-h_{i i}^{\alpha} h_{j j}^{* \alpha}\right) .
$$

By using the last two equality in (3.3), we obtain

$$
\tau=a\left(\frac{n^{2}-n}{2}\right)+b(n-1)\left\|P^{T}\right\|^{2}+\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{* \alpha} h_{j j}^{\alpha}+h_{i i}^{\alpha} h_{j j}^{* \alpha}-2 h_{i j}^{* \alpha} h_{i j}^{\alpha}\right\}-\tau_{0}
$$

From the above equation, we find

$$
\begin{gathered}
\tau=a\left(\frac{n^{2}-n}{2}\right)+b(n-1)\left\|P^{T}\right\|^{2}+2 \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{0 \alpha} h_{j j}^{0 \alpha}-\left(h_{i j}^{0 \alpha}\right)^{2}\right\} \\
-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{* \alpha} h_{j j}^{* \alpha}-\left(h_{i j}^{* \alpha}\right)^{2}\right\}-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{\alpha} h_{j j}^{\alpha}-\left(h_{i j}^{\alpha}\right)^{2}\right\}-\tau_{0} .
\end{gathered}
$$

By the Gauss equation for the Levi-Civita connection, we get

$$
\begin{gather*}
\tau=a\left(\frac{n^{2}-n}{2}\right)+b(n-1)\left\|P^{T}\right\|^{2}+\tau_{0}-2 \bar{\tau}_{0} \\
-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{* \alpha} h_{j j}^{* \alpha}-\left(h_{i j}^{* \alpha}\right)^{2}\right\}-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{\alpha} h_{j j}^{\alpha}-\left(h_{i j}^{\alpha}\right)^{2}\right\} \tag{3.4}
\end{gather*}
$$

where $\bar{\tau}_{0}$ the scalar curvature of the Levi-Civita connection \bar{D}^{0} on \bar{N}^{n+m}.
By subtracting (3.2) from (3.4), we get

$$
\begin{gathered}
\left(\tau-\tau_{0}\right)-\left(K(\pi)-K_{0}(\pi)\right)=a\left(\frac{n^{2}-n-2}{2}\right)+b\left[(n-1)\left\|P^{T}\right\|^{2}-T\left(u_{2}\right)^{2}-T\left(u_{1}\right)^{2}\right] \\
-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{* \alpha} h_{j j}^{* \alpha}-\left(h_{i j}^{* \alpha}\right)^{2}\right\}-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{\alpha} h_{j j}^{\alpha}-\left(h_{i j}^{\alpha}\right)^{2}\right\}-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{* \alpha} h_{22}^{* \alpha}-\left(h_{12}^{* \alpha}\right)^{2}\right] \\
-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{\alpha} h_{22}^{\alpha}-\left(h_{12}^{\alpha}\right)^{2}\right]-2 \bar{\tau}_{0}+2 \bar{K}_{0}(\pi) .
\end{gathered}
$$

From the above equality, we obtain

$$
\begin{align*}
&\left(\tau-\tau_{0}\right)-\left(K(\pi)-K_{0}(\pi)\right) \geq a \frac{(n-2)(n+1)}{2}+b\left[(n-1)\left\|P^{T}\right\|^{2}-T\left(u_{2}\right)^{2}-T\left(u_{1}\right)^{2}\right] \\
&-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{* \alpha} h_{j j}^{* \alpha}-h_{11}^{* \alpha} h_{22}^{* \alpha}\right\} \\
&-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{h_{i i}^{\alpha} h_{j j}^{\alpha}-h_{11}^{\alpha} h_{22}^{\alpha}\right\}-2\left(\bar{\tau}_{0}-\bar{K}_{0}(\pi)\right) . \tag{3.5}
\end{align*}
$$

Applying now Lemma 3.1, we have

$$
\sum_{1 \leq i<j \leq n}\left\{h_{i i}^{\alpha} h_{j j}^{\alpha}-h_{11}^{\alpha} h_{22}^{\alpha}\right\} \leq \frac{(n-2)}{2(n-1)}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right)^{2}=\frac{n^{2}(n-2)}{2(n-1)}\left(H^{\alpha}\right)^{2}
$$

and

$$
\sum_{1 \leq i<j \leq n}\left\{h_{i i}^{* \alpha} h_{j j}^{* \alpha}-h_{11}^{* \alpha} h_{22}^{* \alpha}\right\} \leq \frac{(n-2)}{2(n-1)}\left(\sum_{i=1}^{n} h_{i i}^{* \alpha}\right)^{2}=\frac{n^{2}(n-2)}{2(n-1)}\left(H^{* \alpha}\right)^{2} .
$$

Then using the last two inequality in (3.5), we can state the following main theorem:

Theorem 3.1. Let \bar{N} be an $(n+m)$-dimensional statistical manifold of quasi-constant curvature and N an n dimensional statistical submanifold of \bar{N}. Then we have

$$
\begin{gathered}
\tau_{0}-K_{0}(\pi) \leq \tau-K(\pi)-a \frac{(n-2)(n+1)}{2}-b\left[(n-1)\left\|P^{T}\right\|^{2}-T\left(u_{2}\right)^{2}-T\left(u_{1}\right)^{2}\right] \\
+\frac{n^{2}(n-2)}{4(n-1)}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)+2\left(\bar{\tau}_{0}-\bar{K}_{0}(\pi)\right) .
\end{gathered}
$$

Moreover, the equality case holds in the above inequality if and only if for any $1 \leq \alpha \leq m$ we have

$$
\begin{gathered}
h_{11}^{\alpha}+h_{22}^{\alpha}=h_{33}^{\alpha}=\ldots=h_{n n}^{\alpha}, \\
h_{11}^{* \alpha}+h_{22}^{\alpha \alpha}=h_{33}^{* \alpha}=\ldots=h_{n n}^{\alpha \alpha}, \\
h_{i j}^{\alpha}=h_{i j}^{* \alpha}=0, i \neq j,(i, j) \notin\{(1,2),(2,1)\} .
\end{gathered}
$$

If we consider statistical submanifold in statistical manifold of constant curvature we have the following corollary:
Corollary 3.1. Let \bar{N} be an $(n+m)$-dimensional statistical manifold of constant curvature and N an n-dimensional statistical submanifold of \bar{N}. Then we have

$$
\tau_{0}-K_{0}(\pi) \leq \tau-K(\pi)-a \frac{(n-2)(n+1)}{2}+\frac{n^{2}(n-2)}{4(n-1)}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)+2\left(\bar{\tau}_{0}-\bar{K}_{0}(\pi)\right) .
$$

Moreover, one of the equality holds in the all cases if and only if for any $1 \leq \alpha \leq m$ we have

$$
\begin{gathered}
\sigma_{11}^{\alpha}+\sigma_{22}^{\alpha}=\sigma_{33}^{\alpha}=\ldots=\sigma_{n n}^{\alpha}, \\
\sigma_{11}^{* \alpha}+\sigma_{22}^{* \alpha}=\sigma_{33}^{* \alpha}=\ldots=\sigma_{n n}^{*}, \\
\sigma_{i j}^{\alpha}=\sigma_{i j}^{* \alpha}=0, i \neq j,(i, j) \notin\{(1,2),(2,1)\} .
\end{gathered}
$$

4. A Chen $\delta(2,2)$ inequality

In this section, we establish Chen inequality for the invariant $\delta(2,2)$ for submanifolds in statistical manifolds of quasi-constant curvature. The following lemma has a major role in the proof of the our main result.
Lemma 4.1. [18] Let $m \geq 4$ be an integer and $\left\{b_{1}, \ldots, b_{m}\right\} m$ real numbers. Then we have

$$
\sum_{1 \leq i<j \leq m} b_{i} b_{j}-b_{1} b_{2}-b_{3} b_{4} \leq \frac{m-3}{2(m-2)}\left(\sum_{i=1}^{m} b_{i}\right)^{2} .
$$

Equality holds if and only if $b_{1}+b_{2}=b_{3}+b_{4}=b_{5}=\ldots=b_{m}$.
Let $p \in N, \pi_{1}, \pi_{2} \subset T_{p} N$, mutually orthogonal, spanned respectively by $s p\left\{u_{1}, u_{2}\right\}=\pi_{1}$, sp $\left\{u_{3}, u_{4}\right\}=\pi_{2}$. Consider $\left\{u_{1}, \ldots, u_{n}\right\} \subset T_{p} N,\left\{u_{n+1}, \ldots, u_{n+m}\right\} \subset T_{p}^{\perp} N$. Then from (3.2), for the planes π_{1} and π_{2} we have

$$
\begin{gather*}
K\left(\pi_{1}\right)=a+b\left\{T\left(u_{2}\right)^{2}+T\left(u_{1}\right)^{2}\right\}+K_{0}\left(\pi_{1}\right)-2 \bar{K}_{0}\left(\pi_{1}\right) \\
-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{* \alpha} h_{22}^{* \alpha}-\left(h_{12}^{* \alpha}\right)^{2}\right]-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{11}^{\alpha} h_{22}^{\alpha}-\left(h_{12}^{\alpha}\right)^{2}\right] \tag{4.1}
\end{gather*}
$$

and

$$
\begin{gather*}
K\left(\pi_{2}\right)=a+b\left\{T\left(u_{4}\right)^{2}+T\left(u_{3}\right)^{2}\right\}+K_{0}\left(\pi_{2}\right)-2 \bar{K}_{0}\left(\pi_{2}\right) \\
-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{33}^{* \alpha} h_{44}^{* \alpha}-\left(h_{34}^{* \alpha}\right)^{2}\right]-\frac{1}{2} \sum_{\alpha=1}^{m}\left[h_{33}^{\alpha} h_{44}^{\alpha}-\left(h_{34}^{\alpha}\right)^{2}\right] . \tag{4.2}
\end{gather*}
$$

From (3.4), (4.1) and (4.2),

$$
\left(\tau-\tau_{0}\right)-\left(K\left(\pi_{1}\right)-K_{0}\left(\pi_{1}\right)\right)-\left(K\left(\pi_{2}\right)-K_{0}\left(\pi_{2}\right)\right) \geq a \frac{\left(n^{2}-n-4\right)}{2}
$$

$$
\begin{gathered}
+b\left\{(n-1)\left\|P^{T}\right\|^{2}-T\left(u_{2}\right)^{2}-T\left(u_{1}\right)^{2}-T\left(u_{4}\right)^{2}-T\left(u_{3}\right)^{2}\right\} \\
-\frac{1}{2} \sum_{\alpha=1}^{m} \sum_{1 \leq i<j \leq n}\left\{\left[h_{i i}^{\alpha} h_{j j}^{\alpha}-h_{11}^{\alpha} h_{22}^{\alpha}-h_{33}^{\alpha} h_{44}^{\alpha}\right]+\left[h_{i i}^{* \alpha} h_{j j}^{* \alpha}-h_{11}^{* \alpha} h_{22}^{* \alpha}-h_{33}^{* \alpha} h_{44}^{* \alpha}\right]\right\} \\
-2\left(\bar{\tau}_{0}-\bar{K}_{0}\left(\pi_{1}\right)-\bar{K}_{0}\left(\pi_{2}\right)\right)
\end{gathered}
$$

From Lemma 4.1,

$$
\begin{gathered}
\sum_{1 \leq i<j \leq n}\left[h_{i i}^{\alpha} h_{j j}^{\alpha}-h_{11}^{\alpha} h_{22}^{\alpha}-h_{33}^{\alpha} h_{44}^{\alpha}\right] \\
\leq \frac{n-3}{2(n-2)}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right)^{2}=\frac{n^{2}(n-3)}{2(n-2)}\left(H^{\alpha}\right)^{2},
\end{gathered}
$$

and similarly

$$
\begin{gathered}
\sum_{1 \leq i<j \leq n}\left[h_{i i}^{* \alpha} h_{j j}^{* \alpha}-h_{11}^{* \alpha} h_{22}^{* \alpha}-h_{33}^{* \alpha} h_{44}^{* \alpha}\right] \\
\leq \frac{n-3}{2(n-2)}\left(\sum_{i=1}^{n} h_{i i}^{* \alpha}\right)^{2}=\frac{n^{2}(n-3)}{2(n-2)}\left(H^{* \alpha}\right)^{2} .
\end{gathered}
$$

Using the last two inequlities, we obtain the following inequality:

$$
\begin{aligned}
(\tau- & \left.\tau_{0}\right)-\left(K\left(\pi_{1}\right)-K_{0}\left(\pi_{1}\right)\right)-\left(K\left(\pi_{2}\right)-K_{0}\left(\pi_{2}\right)\right) \geq a \frac{\left(n^{2}-n-4\right)}{2} \\
& +b\left\{(n-1)\left\|P^{T}\right\|^{2}-T\left(u_{2}\right)^{2}-T\left(u_{1}\right)^{2}-T\left(u_{4}\right)^{2}-T\left(u_{3}\right)^{2}\right\} \\
& -\frac{n^{2}(n-3)}{4(n-2)}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)-2\left(\bar{\tau}_{0}-\bar{K}_{0}\left(\pi_{1}\right)-\bar{K}_{0}\left(\pi_{2}\right)\right)
\end{aligned}
$$

So we state the following theorem.
Theorem 4.1. Let \bar{N} be an $(n+m)$-dimensional statistical manifold of quasi-constant curvature and N an n dimensional statistical submanifold of \bar{N}. Then

$$
\begin{gathered}
\tau_{0}-K_{0}\left(\pi_{1}\right)-K_{0}\left(\pi_{2}\right) \leq \tau-K\left(\pi_{1}\right)-K\left(\pi_{2}\right)-a \frac{\left(n^{2}-n-4\right)}{2} \\
-b\left\{(n-1)\left\|P^{T}\right\|^{2}-T\left(u_{2}\right)^{2}-T\left(u_{1}\right)^{2}-T\left(u_{4}\right)^{2}-T\left(u_{3}\right)^{2}\right\} \\
+\frac{n^{2}(n-3)}{4(n-2)}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)+2\left(\widetilde{\tau}_{0}-\widetilde{K}_{0}\left(\pi_{1}\right)-\widetilde{K}_{0}\left(\pi_{2}\right)\right) .
\end{gathered}
$$

Moreover, the equality holds if and only if for any $1 \leq \alpha \leq m$ we have

$$
\begin{gathered}
h_{11}^{\alpha}+h_{22}^{\alpha}=h_{33}^{\alpha}=\ldots=h_{n n}^{\alpha}, \\
h_{11}^{* \alpha}+h_{22}^{* \alpha}=h_{33}^{* \alpha}=\ldots=h_{n n}^{* \alpha}, \\
h_{i j}^{\alpha}=h_{i j}^{* \alpha}=0, \quad i \neq j,(i, j) \notin\{(1,2),(2,1),(3,4),(4,3)\} .
\end{gathered}
$$

If we consider statistical submanifold in statistical manifold of constant curvature we have the following corollary:
Corollary 4.1. Let \bar{N} be an $(n+m)$-dimensional statistical manifold of constant curvature and N an n-dimensional statistical submanifold of \bar{N}. Then

$$
\begin{aligned}
& \tau_{0}-K_{0}\left(\pi_{1}\right)-K_{0}\left(\pi_{2}\right) \leq \tau-K\left(\pi_{1}\right)-K\left(\pi_{2}\right)-a \frac{\left(n^{2}-n-4\right)}{2} \\
& +\frac{n^{2}(n-3)}{4(n-2)}\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right)+2\left(\widetilde{\tau}_{0}-\widetilde{K}_{0}\left(\pi_{1}\right)-\widetilde{K}_{0}\left(\pi_{2}\right)\right)
\end{aligned}
$$

Moreover, the equality is attained in the above inequality if and only if for any $1 \leq \alpha \leq m$ we have

$$
\begin{gathered}
h_{11}^{\alpha}+h_{22}^{\alpha}=h_{33}^{\alpha}=\ldots=h_{n n}^{\alpha}, \\
h_{11}^{* \alpha}+h_{22}^{* \alpha}=h_{33}^{* \alpha}=\ldots=h_{n n}^{* \alpha}, \\
h_{i j}^{\alpha}=h_{i j}^{* \alpha}=0, \quad i \neq j, \quad(i, j) \notin\{(1,2),(2,1),(3,4),(4,3)\} .
\end{gathered}
$$

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

Author read and approved the final manuscript.

References

[1] Amari, S.: Differential-Geometrical Methods in Statistics, Springer-Verlag, (1985).
[2] Aydın, M. E., Mihai, A., Mihai, I: Some inequalities on submanifolds in statistical manifolds of constant curvature. Filomat. 29 (3), 465-477 (2015).
[3] Aytimur, H., Özgür, C.: Inequalities for submanifolds in statistical manifolds of quasi-constant curvature. Annales Polonici Mathematici. 121 (3), 197-215 (2018).
[4] Aytimur, H., Kon, M., Mihai, A., Özgür, C., Takano, K.: Chen inequalities for statistical submanifolds of Kähler-like statistical manifolds. Mathematics. 7 (12), 1202 (2019).
[5] Aytimur, H., Mihai, A., Özgür, C.: Relations between Extrinsic and Intrinsic Invariants of Statistical Submanifolds in Sasaki-Like Statistical Manifolds. Mathematics. 9 (11), 1285 (2021).
[6] Chen, B. Y.: Some pinching and classification theorems for minimal submanifolds. Archiv der Mathematic. 60, 568-578 (1993).
[7] Chen, B.Y.: Mean curvature and shape operator of isometric immersions in real-space-forms. Glasgow Mathematical Journal. 38 (1), 87-97 (1996).
[8] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Mathematical Journal. 41(1), 33-41 (1999).
[9] Chen, B.Y.: Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific Publishing , Hackensack, NJ, (2011).
[10] Chen, B. Y., Mihai, A., Mihai, I.: A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Results in Mathematics. 74 (4), 165 (2019).
[11] Djebbouri, D., Ouakkas, S.: Product of statistical manifolds with doubly warped product. General Mathematics Notes. 31 (2), 16-28 (2015).
[12] Furuhata, H.: Hypersurfaces in statistical manifolds. Differential Geometry and its Applications. 27 (3), 420-429 (2009).
[13] Mihai, A.: Modern Topics in Submanifold Theory, Editura Universitatii Bucuresti, Bucharest, (2006).
[14] Mihai, A., Özgür, C.: Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection. Taiwanese Journal of Mathematics. 14 (4), 1465-1477 (2010).
[15] Mihai, A., Özgür, C.: Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections. Rocky Mountain Journal of Mathematics. 41(5), 1653-1673 (2011).
[16] Mihai, A., Mihai, I.: Curvature invariants for statistical submanifolds of Hessian manifolds of constant Hessian curvature. Mathematics. 6 (3), 44 (2018).
[17] Mihai, A., Mihai, I.: The $\delta(2,2)$ invariant on statistical submanifolds of Hessian manifolds of constant Hessian curvature. Entropy. 22 (2), 164 (2020).
[18] Mihai, I., Mihai, R. I.: An Algebraic Inequality with Applications to Certain Chen Inequalities. Axioms. 10 (1), 1-7, (2021).
[19] Opozda, B.: A sectional curvature for statistical structures. Linear Alg. Appl. 497, 134-161 (2016).
[20] Özgür, C.: B. Y. Chen inequalities for submanifolds of a Riemanian manifold of quasi-constant curvature. Turkish Journal of Mathematics. 35, 501-509 (2011).
[21] Todjihounde, L.: Dualistic structure on warped product manifolds. Differential Geometry-Dynamical Systems. 8, 278-284 (2006).
[22] Vos, P. W.: Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Annals of the Institute of Statististical Mathematics. 41 (3), 429-450 (1989).

Affiliations

HÜlya Aytimur

Address: Balikesir University, Department of Mathematics, 10145, Balikesir, Türkiye.
E-MAIL: hulya.aytimur@balikesir.edu.tr
ORCID ID: 0000-0003-4420-9861

[^0]: Received: 17-01-2023, Accepted : 24-05-2023

 * Corresponding author

