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ABSTRACT

We mention some properties of statistical submanifolds in statistical manifolds of quasi-constant
curvature. We obtain Chen first inequality and a Chen inequality for the δ(2, 2)-invariant for these
manifolds.
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1. Introduction

An important topic submanifold theory is to find out relations between the sectional curvature tensor, the
scalar curvature tensor and the mean curvature tensor of a submanifold. First relevant results in this field
were obtained by B.-Y. Chen in 1993 [6]. He set up some inequalities between the extrinsic (the squared mean
curvature) and intrinsic (the scalar curvature) invariants of a submanifold in a real space form, well-known
as Chen first inequalities. Similar problems for submanifolds in Sasakian space form, Kenmotsu space form,
Riemannian manifold of quasi-constant curvature etc., has been studied by many geometers, see [20], [7], [8],
[13], [14], [15]. All of results related to Chen inequalities were given in [9] and its references.

A differential geometric approach for a statistical model of discrete probability distribution was introduced
in [1] . Firstly, Amari was used the notion of a statistical manifold with applications in Information Geometry.
The geometry of these manifolds involves deals with conjugate connections and, consequently, is closed related
to affine differential geometry. A statistical manifold is a Riemannian manifold (N, g) endowed with a pair of
torsion-free affine connections D and D

∗
satisfying

Ug (V,E) = g
(
DUV,E

)
+ g

(
V,D

∗
UE
)
, (1.1)

for any U, V and E ∈ TN . The connections D and D
∗
are called conjugate (dual) connections (see [1] and [22]).

Any torsion-free affine connection D always has a dual connection given by

D +D
∗
= 2D

0
, (1.2)

where D
0

is Levi-Civita connection of N [1]. So, many geometers have been established inequalities for
statistical submanifolds of various statistical manifolds, for more details [2], [16], [3], [10], [17], [4], [5].

Motivated by the studies of the above papers, we obtain improved Chen inequality and a Chen inequality
for the invariant δ(2, 2) for statistical submanifolds in statistical manifolds of quasi-constant curvature.

2. Preliminaries

In [3], authors give an example of a statistical manifold of quasi-constant curvature and studied the
properties of statistical submanifolds of these manifolds.
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The curvature tensor R of D is defined by

R (U, V )E = a {g (V,E)U − g (U,E)V } (2.1)
+b[T (V )T (E)U − g (U,E)T (V )P

+g (V,E)T (U)P − T (U)T (E)V ],

where a, b are scalar functions, T is a 1-form given by

g (U,P ) = T (U) (2.2)

and P is a unit vector field. The vector field P can be written

P = PT + P⊥,

where PT and P⊥ are the tangent and normal components of P , respectively. If a statistical manifold N with
its statistical structure

(
D, g

)
has the curvature tensor R in the form (2.1), then it is called a statistical manifold of

quasi-constant curvature [3]. If b = 0, then the statistical manifold N turns into a statistical manifold of constant
curvature [2].

Let (N, g) be a statistical manifold given by torsion-free affine connections D and D
∗
. Denote by R and R

∗

the curvature tensor fields of D and D
∗
, respectively. Then R and R

∗
satisfy

g
(
R

∗
(U, V )E,F

)
= −g

(
E,R (U, V )F

)
, (2.3)

(see [12]). From (2.3), if
(
D, g

)
is a statistical structure of quasi-constant curvature, then

(
D

∗
, g
)

is also a

statistical structure of quasi-constant curvature. So (2.1) is valid for
(
D

∗
, g
)

.

Let (N, g,D) and
(
N, g,D

)
be two statistical manifolds. An immersion π : N −→ N is called a statistical

immersion [12]. If there is a statistical immersion between two statistical manifolds (N, g,D,D∗) and(
N, g,D,D

∗
)

, then N is called a statistical submanifold of N.

Let N be a statistical submanifold of a statistical manifold N. Then, the Gauss formulas are given by

DUV = DUV + h(U, V ),

D
∗
UV = D∗

UV + h∗(U, V ),

where the normal valued tensor fields h and h∗ are symmetric and bilinear the imbedding curvature tensors of N
in N for D and D

∗
. So, D and D∗ are called the induced connections of these connections, respectively. We have

the linear transformations Aξ and A∗
ξ defined by

g (AξU, V ) = g (h (U, V ) , ξ) (2.4)

and
g
(
A∗

ξU, V
)
= g (h∗ (U, V ) , ξ) (2.5)

for any unit ξ ∈ T⊥N and U, V ∈ TN [22].
Let R, R∗ denote the curvature tensors of the submanifold (N, g,D,D∗) in TN. Then we have the following

Propositions:

Proposition 2.1. [22] Let N be a statistical submanifold of N. Then the Gauss equation with respect to the connection
D is

g
(
R (U, V )E,F

)
= g (R (U, V )E,F ) (2.6)

+g (h (U,E) , h∗ (V, F ))− g (h∗ (U,F ) , h (V,E))

respectively, where U, V,E, F ∈ TN .

Proposition 2.2. [22] Let N be a statistical submanifold of N . Then the Gauss equation with respect to the connection
D∗ is

g
(
R

∗
(U, V )E,F

)
= g (R∗ (U, V )E,F )

+g (h∗ (U,E) , h (V, F ))− g (h (U,F ) , h∗ (V,E))

respectively, where U, V,E, F ∈ TN .

673 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


On Statistical Submanifolds in Manifolds of Quasi-Constant Curvature

In [19], the K-sectional curvature of the statistical manifold was introduced as follows:
Let π be a plane in TN ; for an orthonormal basis {U, V } of π, the K-sectional curvature is

K (π) =
1

2

[
R (U, V ) +R

∗
(U, V )− 2R

0
(U, V )

]
, (2.7)

where R
0

is the curvature tensor field of D
0

on TN .

Example 2.1. [3] Let
(
N = I ×Nn(c), D,D∗) be a dualistic product (for more details see [21]), I one-

dimensional statistical manifold, Nn(c) a statistical manifold of constant curvature c with its projection
π : N = I ×Nn(c) → Nn(c). Denote by dt2 the metric on I . Thus we have

g = dt2 + gN ,

where gN is a metric on Nn(c). The vector field U ∈ χ
(
N
)

can be written as

U = π∗ (U) + g

(
U,

∂

∂t

)
∂

∂t
, (2.8)

where ∂
∂t ∈ χ (I) .

For U, V,E, F ∈ χ
(
N
)
, using (2.8), we obtain

g
(
R (U, V )E,F

)
= c [g (V,E) g (U,F )− g (U,E) g (V, F )]

+c

[
g (U,E) g

(
V,

∂

∂t

)
g

(
F,

∂

∂t

)
− g (U,F ) g

(
V,

∂

∂t

)
g

(
E,

∂

∂t

)
+g (V, F ) g

(
U,

∂

∂t

)
g

(
E,

∂

∂t

)
− g (V,E) g

(
U,

∂

∂t

)
g

(
F,

∂

∂t

)]
.

It is known that (I,D, dt2) and
(
Nn(c), D̂, gN

)
are statistical manifolds if and only if

(
N = I ×Nn(c), D, g

)
is

a statistical manifold [11]. So N = I ×Nn(c) is a statistical manifold of quasi-constant curvature with constant
functions a = b = c.

Let {u1, ..., un} and {un+1, ...un+m} be orthonormal tangent and normal frames, respectively, on N. The mean
curvature vector fields are given by

H = 1
n

n∑
i=1

h (ui, ui) =
1
n

m∑
α=1

(
n∑

i=1

hα
ii

)
un+α , hα

ij = g (h (ui, uj) , un+α)

and

H∗ = 1
n

n∑
i=1

h∗ (ui, ui) =
1
n

m∑
α=1

(
n∑

i=1

h∗α
ii

)
un+α , h∗α

ij = g (h∗ (ui, uj) , un+α) .

3. Chen first inequality

In this section, we prove an improved Chen inequality statistical submanifolds in statistical manifolds of
quasi-constant curvature. So, we give the following algebraic lemma which will be used in the proof of the
main theorem.

Lemma 3.1. [18] Let m ≥ 3 be an integer and {b1, ..., bm} m real numbers. Then we have

∑
1≤i<j≤m

bibj − b1b2 ≤ m− 2

2 (m− 1)

(
m∑
i=1

bi

)2

.

The equality case of the above inequality holds if and only if b1 + b2 = b3 = ... = bm.
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Let N
n+m

be an (n+m)-dimensional statistical manifold of quasi-constant curvature, Nn an n-dimensional
statistical submanifold of N, p ∈ N and π a plane section at p. We consider an orthonormal basis {u1, u2} of π
and {u1, ..., un}, {un+1, ...un+m} orthonormal basis of TpN

n and T⊥
p Nn, respectively.

Let K0 be the sectional curvature of the Levi-Civita connection D0 on Nn, h0 the second fundamental form
of Nn. From (2.7), the sectional curvature K (π) of the plane section π is

K (π) =
1

2
[g (R (u1, u2)u2, u1) + g (R∗ (u1, u2)u2, u1)

−2g
(
R0 (u1, u2)u2, u1

)]
. (3.1)

Using (2.1), (2.3) and (2.6), we obtain

g (R (u1, u2)u2, u1) = a+ b
{
T (u2)

2
+ T (u1)

2
}
+

m∑
α=1

(h∗α
11 h

α
22 − h∗α

12 h
α
12)

and
g(R∗ (u1, u2)u2, u1) = −g (R (u1, u2)u1, u2) = a+ b

{
T (u2)

2
+ T (u1)

2
}

+

m∑
α=1

(hα
11h

∗α
22 − hα

12h
∗α
12 ) .

If the last equalities are used in (3.1) then

K (π) = a+ b
{
T (u2)

2
+ T (u1)

2
}
+

1

2

m∑
α=1

(h∗α
11 h

α
22 + hα

11h
∗α
22 − 2hα

12h
∗α
12 )−K0 (π) .

The last equality can be written as

K (π) = a+ b
{
T (u2)

2
+ T (u1)

2
}
+ 2

m∑
α=1

[
h0α
11h

0α
22 −

(
h0α
12

)2]− 1

2

m∑
α=1

[
h∗α
11 h

∗α
22 − (h∗α

12 )
2
]

−1

2

m∑
α=1

[
hα
11h

α
22 − (hα

12)
2
]
−K0 (π) .

From the Gauss equation with respect to Levi-Civita connection, we obtain

K (π) = a+ b
{
T (u2)

2
+ T (u1)

2
}
+K0 (π)− 2K0 (π)

−1

2

m∑
α=1

[
h∗α
11 h

∗α
22 − (h∗α

12 )
2
]
− 1

2

m∑
α=1

[
hα
11h

α
22 − (hα

12)
2
]

(3.2)

where K0 the sectional curvature of the Levi-Civita connection D
0

on N
n+m

.
Moreover, let τ be the scalar curvature of Nn. Then, using (2.7) and (2.3), we get

τ =
1

2

∑
1≤i<j≤n

[
g (R (ui, uj)uj , ui) + g (R∗ (ui, uj)uj , ui)− 2g

(
R0 (ui, uj)uj , ui

)]

=
1

2

∑
1≤i<j≤n

[g (R (ui, uj)uj , ui)− g (R (ui, uj)ui, uj)]− τ0, (3.3)

where τ0 is the scalar curvature of the Levi-Civita connection D0 on Nn. By the use of (2.6) and (2.1), we obtain

∑
1≤i<j≤n

g (R (ui, uj)uj , ui) = a

(
n2 − n

2

)
+ b (n− 1)

∥∥PT
∥∥2 + m∑

α=1

∑
1≤i<j≤n

(
h∗α
ii h

α
jj − h∗α

ij h
α
ij

)
.
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By similar calculations, we get∑
1≤i<j≤n

g (R (ui, uj)ui, uj) = −a

(
n2 − n

2

)
− b (n− 1)

∥∥PT
∥∥2 + m∑

α=1

∑
1≤i<j≤n

(
h∗α
ij h

α
ij − hα

iih
∗α
jj

)
.

By using the last two equality in (3.3), we obtain

τ = a

(
n2 − n

2

)
+ b (n− 1)

∥∥PT
∥∥2 + 1

2

m∑
α=1

∑
1≤i<j≤n

{
h∗α
ii h

α
jj + hα

iih
∗α
jj − 2h∗α

ij h
α
ij

}
− τ0.

From the above equation, we find

τ = a

(
n2 − n

2

)
+ b (n− 1)

∥∥PT
∥∥2 + 2

m∑
α=1

∑
1≤i<j≤n

{
h0α
ii h

0α
jj −

(
h0α
ij

)2}

−1

2

m∑
α=1

∑
1≤i<j≤n

{
h∗α
ii h

∗α
jj −

(
h∗α
ij

)2}− 1

2

m∑
α=1

∑
1≤i<j≤n

{
hα
iih

α
jj −

(
hα
ij

)2}− τ0.

By the Gauss equation for the Levi-Civita connection, we get

τ = a

(
n2 − n

2

)
+ b (n− 1)

∥∥PT
∥∥2 + τ0 − 2τ0

−1

2

m∑
α=1

∑
1≤i<j≤n

{
h∗α
ii h

∗α
jj −

(
h∗α
ij

)2}− 1

2

m∑
α=1

∑
1≤i<j≤n

{
hα
iih

α
jj −

(
hα
ij

)2} (3.4)

where τ0 the scalar curvature of the Levi-Civita connection D
0

on N
n+m

.
By subtracting (3.2) from (3.4), we get

(τ − τ0)− (K (π)−K0 (π)) = a

(
n2 − n− 2

2

)
+ b
[
(n− 1)

∥∥PT
∥∥2 − T (u2)

2 − T (u1)
2
]

−1

2

m∑
α=1

∑
1≤i<j≤n

{
h∗α
ii h

∗α
jj −

(
h∗α
ij

)2}− 1

2

m∑
α=1

∑
1≤i<j≤n

{
hα
iih

α
jj −

(
hα
ij

)2}− 1

2

m∑
α=1

[
h∗α
11 h

∗α
22 − (h∗α

12 )
2
]

−1

2

m∑
α=1

[
hα
11h

α
22 − (hα

12)
2
]
− 2τ0 + 2K0 (π) .

From the above equality, we obtain

(τ − τ0)− (K (π)−K0 (π)) ≥ a
(n− 2) (n+ 1)

2
+ b
[
(n− 1)

∥∥PT
∥∥2 − T (u2)

2 − T (u1)
2
]

−1

2

m∑
α=1

∑
1≤i<j≤n

{
h∗α
ii h

∗α
jj − h∗α

11 h
∗α
22

}
−1

2

m∑
α=1

∑
1≤i<j≤n

{
hα
iih

α
jj − hα

11h
α
22

}
− 2

(
τ0 −K0 (π)

)
. (3.5)

Applying now Lemma 3.1, we have

∑
1≤i<j≤n

{
hα
iih

α
jj − hα

11h
α
22

}
≤ (n− 2)

2 (n− 1)

(
n∑

i=1

hα
ii

)2

=
n2 (n− 2)

2 (n− 1)
(Hα)

2

and ∑
1≤i<j≤n

{
h∗α
ii h

∗α
jj − h∗α

11 h
∗α
22

}
≤ (n− 2)

2 (n− 1)

(
n∑

i=1

h∗α
ii

)2

=
n2 (n− 2)

2 (n− 1)
(H∗α)

2
.

Then using the last two inequality in (3.5), we can state the following main theorem:
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Theorem 3.1. Let N be an (n+m)-dimensional statistical manifold of quasi-constant curvature and N an n-
dimensional statistical submanifold of N. Then we have

τ0 −K0 (π) ≤ τ −K (π)− a
(n− 2) (n+ 1)

2
− b
[
(n− 1)

∥∥PT
∥∥2 − T (u2)

2 − T (u1)
2
]

+
n2 (n− 2)

4 (n− 1)

(
∥H∥2 + ∥H∗∥2

)
+ 2

(
τ0 −K0 (π)

)
.

Moreover, the equality case holds in the above inequality if and only if for any 1 ≤ α ≤ m we have

hα
11 + hα

22 = hα
33 = ... = hα

nn,
h∗α
11 + h∗α

22 = h∗α
33 = ... = h∗α

nn,
hα
ij = h∗α

ij = 0, i ̸= j, (i, j) /∈ {(1, 2) , (2, 1)} .

If we consider statistical submanifold in statistical manifold of constant curvature we have the following
corollary:

Corollary 3.1. Let N be an (n+m)-dimensional statistical manifold of constant curvature and N an n-dimensional
statistical submanifold of N. Then we have

τ0 −K0 (π) ≤ τ −K (π)− a
(n− 2) (n+ 1)

2
+

n2 (n− 2)

4 (n− 1)

(
∥H∥2 + ∥H∗∥2

)
+ 2

(
τ0 −K0 (π)

)
.

Moreover, one of the equality holds in the all cases if and only if for any 1 ≤ α ≤ m we have

σα
11 + σα

22 = σα
33 = ... = σα

nn,
σ∗α
11 + σ∗α

22 = σ∗α
33 = ... = σ∗α

nn,
σα
ij = σ∗α

ij = 0, i ̸= j, (i, j) /∈ {(1, 2) , (2, 1)} .

4. A Chen δ(2, 2) inequality

In this section, we establish Chen inequality for the invariant δ(2, 2) for submanifolds in statistical manifolds
of quasi-constant curvature. The following lemma has a major role in the proof of the our main result.

Lemma 4.1. [18] Let m ≥ 4 be an integer and {b1, ..., bm} m real numbers. Then we have

∑
1≤i<j≤m

bibj − b1b2 − b3b4 ≤ m− 3

2 (m− 2)

(
m∑
i=1

bi

)2

.

Equality holds if and only if b1 + b2 = b3 + b4 = b5 = ... = bm.

Let p ∈ N, π1, π2 ⊂ TpN , mutually orthogonal, spanned respectively by sp {u1, u2} = π1, sp {u3, u4} = π2.
Consider {u1, ..., un} ⊂ TpN, {un+1, ..., un+m} ⊂ T⊥

p N. Then from (3.2), for the planes π1 and π2 we have

K (π1) = a+ b
{
T (u2)

2
+ T (u1)

2
}
+K0 (π1)− 2K0 (π1)

−1

2

m∑
α=1

[
h∗α
11 h

∗α
22 − (h∗α

12 )
2
]
− 1

2

m∑
α=1

[
hα
11h

α
22 − (hα

12)
2
]

(4.1)

and
K (π2) = a+ b

{
T (u4)

2
+ T (u3)

2
}
+K0 (π2)− 2K0 (π2)

−1

2

m∑
α=1

[
h∗α
33 h

∗α
44 − (h∗α

34 )
2
]
− 1

2

m∑
α=1

[
hα
33h

α
44 − (hα

34)
2
]
. (4.2)

From (3.4), (4.1) and (4.2),

(τ − τ0)− (K (π1)−K0 (π1))− (K (π2)−K0 (π2)) ≥ a

(
n2 − n− 4

)
2
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+b
{
(n− 1)

∥∥PT
∥∥2 − T (u2)

2 − T (u1)
2 − T (u4)

2 − T (u3)
2
}

−1

2

m∑
α=1

∑
1≤i<j≤n

{[
hα
iih

α
jj − hα

11h
α
22 − hα

33h
α
44

]
+
[
h∗α
ii h

∗α
jj − h∗α

11 h
∗α
22 − h∗α

33 h
∗α
44

]}
−2
(
τ0 −K0 (π1)−K0 (π2)

)
.

From Lemma 4.1, ∑
1≤i<j≤n

[
hα
iih

α
jj − hα

11h
α
22 − hα

33h
α
44

]
≤ n− 3

2 (n− 2)

(
n∑

i=1

hα
ii

)2

=
n2 (n− 3)

2 (n− 2)
(Hα)

2
,

and similarly ∑
1≤i<j≤n

[
h∗α
ii h

∗α
jj − h∗α

11 h
∗α
22 − h∗α

33 h
∗α
44

]
≤ n− 3

2 (n− 2)

(
n∑

i=1

h∗α
ii

)2

=
n2 (n− 3)

2 (n− 2)
(H∗α)

2
.

Using the last two inequlities, we obtain the following inequality:

(τ − τ0)− (K (π1)−K0 (π1))− (K (π2)−K0 (π2)) ≥ a

(
n2 − n− 4

)
2

+b
{
(n− 1)

∥∥PT
∥∥2 − T (u2)

2 − T (u1)
2 − T (u4)

2 − T (u3)
2
}

−n2 (n− 3)

4 (n− 2)

(
∥H∥2 + ∥H∗∥2

)
− 2

(
τ0 −K0 (π1)−K0 (π2)

)
.

So we state the following theorem.

Theorem 4.1. Let N be an (n+m)-dimensional statistical manifold of quasi-constant curvature and N an n-
dimensional statistical submanifold of N. Then

τ0 −K0 (π1)−K0 (π2) ≤ τ −K (π1)−K (π2)− a

(
n2 − n− 4

)
2

−b
{
(n− 1)

∥∥PT
∥∥2 − T (u2)

2 − T (u1)
2 − T (u4)

2 − T (u3)
2
}

+
n2 (n− 3)

4 (n− 2)

(
∥H∥2 + ∥H∗∥2

)
+ 2

(
τ̃0 − K̃0 (π1)− K̃0 (π2)

)
.

Moreover, the equality holds if and only if for any 1 ≤ α ≤ m we have

hα
11 + hα

22 = hα
33 = ... = hα

nn,
h∗α
11 + h∗α

22 = h∗α
33 = ... = h∗α

nn,
hα
ij = h∗α

ij = 0, i ̸= j, (i, j) /∈ {(1, 2) , (2, 1) , (3, 4), (4, 3)} .

If we consider statistical submanifold in statistical manifold of constant curvature we have the following
corollary:

Corollary 4.1. Let N be an (n+m)-dimensional statistical manifold of constant curvature and N an n-dimensional
statistical submanifold of N. Then

τ0 −K0 (π1)−K0 (π2) ≤ τ −K (π1)−K (π2)− a

(
n2 − n− 4

)
2

+
n2 (n− 3)

4 (n− 2)

(
∥H∥2 + ∥H∗∥2

)
+ 2

(
τ̃0 − K̃0 (π1)− K̃0 (π2)

)
.

Moreover, the equality is attained in the above inequality if and only if for any 1 ≤ α ≤ m we have

hα
11 + hα

22 = hα
33 = ... = hα

nn,
h∗α
11 + h∗α

22 = h∗α
33 = ... = h∗α

nn,
hα
ij = h∗α

ij = 0, i ̸= j, (i, j) /∈ {(1, 2) , (2, 1) , (3, 4), (4, 3)} .
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