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ABSTRACT

Of the Thurston geometries, those with constant curvature geometries (Euclidean E3, hyperbolic
H3, spherical S3) have been extensively studied, but the other five geometries, H2×R, S2×R, Nil,
S̃L2R, Sol have been thoroughly studied only from a differential geometry and topological point
of view. However, classical concepts highlighting the beauty and underlying structure of these
geometries – such as geodesic curves and spheres, the lattices, the geodesic triangles and their
surfaces, their interior sum of angles and similar statements to those known in constant curvature
geometries – can be formulated. These have not been the focus of attention. In this survey, we
summarize our results on this topic and pose additional open questions.
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1. Introduction

W. Thurston’s results are essential for understanding the geometric structure of our world, where the eight
so-called Thurston geometries play the leading role. The importance of these geometries is emphasized by
Thurston’s famous theorem:

Let (X;G) be a 3-dimensional homogeneous geometry, where X is a simply connected Riemannian space
with a maximal group G of isometries, acting transitively on X with compact point stabilizers. G is maximal
means that no proper extension of G can act on the Riemannian space X in the same way. We recall the

Theorem 1.1 (Thurston, [54, 80]). Any 3-dimensional homogeneous geometry (X;G) that admits a compact quotient
is equivalent (equivariant) to one of the geometries (X;G) = Isom(X) where the space X is one of E3, H3, S3, H2×R,
S2×R, Nil, S̃L2R or Sol.

Therefore, there are eight so-called Thurston geometries, described in [54, 80]. Among them E3, S3 and H3 are
the classical spaces of constant zero, positive and negative curvature, respectively. Further geometries S2×R,
H2×R denote the direct product geometries where S2 is the spherical and H2 is the hyperbolic base plane
and the real line R is with usual metric. Then S̃L2R and Nil are obtained as twisted products of R with H2

and E2, respectively; and finally Sol geometry is a twisted product of the Minkowski plane M2 as fibre, with
R as base. In each of them there exists an infinitesimal (positive definite) Riemannian metric that is invariant
under certain translations, guaranteeing homogeneity at every point. These translations in general commute
only in E3, but a discrete (discontinuous) translation group, taken as a lattice, can be defined with compact
fundamental domain in analogy to the Euclidean case, but with some different properties. The additional
symmetries can define crystallographic groups, giving nice tilings, packings, material structures, etc.
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I mention here only the packing and covering problems. In addition to pure mathematical curiosity, the
study of sphere packings and coverings generalized Kepler problem is important because it is possible that under
different conditions (e.g. strong magnetic field) materials cannot be realized in the usual Euclidean space but in
one of the other Thurston geometries. The structures of substances formed under these conditions may differ
from the Euclidean case and can follow, for example, the geometry of non-constant curvature spaces, and in
these new geometries their atoms can be modeled by H2×R, S2×R, Nil, S̃L2R or Sol spheres. For example,
in Nil geometry we can define lattices and corresponding lattice-like ball packings where we found geodesic
ball packings with kissing number 14 that is denser than the densest Euclidean case (see Section 7, [34], [55]).
(The density is ≈ 0.78085.

A unified approach to Thurston geometries enabling the investigations in this direction were made possible
by the nice paper of E. Molnár [30] where he showed that the Thurston geometries can be uniformly modeled in
the projective 3-space P3 (or in the projective 3-sphere PS3). The projective spherical model is based on linear
algebra over the real vector space V4 (for points) and its dual V 4 (for planes), up to a positive real factor, so
that the proper dimension is indeed three. A plane → point polarity or scalar product (by specified signature)
induces the invariant metric in a unified way. In our work we will use these projective models of Thurston
geometries.

The constant curvature geometries E3, H3, S3 have been extensively studied from the point of view of
elementary geometry, differential geometry and topology. In this article we focus on results obtained in the
other five non-constant curvature Thurston geometries H2×R, S2×R, Nil, S̃L2R, Sol. These spaces have been
investigated from the perspective of differential geometry and topology but few results are stated in connection
with their internal structure in the classical sense. A lot of elementary notions are missing, problems are not
formulated, theorems are not proved. Hence, in this survey we focus on non-constant curvature Thurston
geometries and we emphasize some surprising facts.

Now, we review the notions of distance, angle, sphere, geodesic triangle, their surfaces and congruences in
each aforementioned geometry. Then we survey Apollonius surfaces, Dirichlet–Voronoi cells, and in a separate
chapter we review the concepts of sphere (ball) packings and their densities and the corresponding results so
far.

Furthermore, we emphasize the results related to the projective models of the considered geometries. In our opinion,
these models are suitable for the elementary examination and visualization of the above geometries.

Remark 1.2. There is another way of defining distance using the concept of so-called translational distance. We
introduced this concept in the paper [32], but in this survey we summarize the results related to the concept of geodesic
distance. Note that translation distance and geodesic distance are the same in the Euclidean geometry E3, Bolyai–
Lobachevsky hyperbolic geometry H3, spherical S2×R and H2×R spaces, but give different values in the Nil, Sol
and S̃L2R geometries (see [7, 37, 39, 60, 57, 64, 81]).

As the reader will see, the above results and their visualizations will open a new window towards other
(geometric) worlds.

2. On the projective models of Thurston geometries

We first summarize the key information about projective models of Thurston geometries (see [30, 31, 34]).
All the Thurston 3-geometries will be uniformly modelled in the projective spherical space PS3 that can be

embedded into the affine hence into Euclidean 4-space. Our main tool will be a 4-dimensional vector space V4

over the real numbers R with basis {e0, e1, e2, e3} (that is not assumed to be orthonormal).
V4 is the embedding real vector space with its affine image A4(O,V3,V 3). Let {O; e0, e1, e2, e3}, be a

coordinate system in the affine 4-space A4 = E4 with origin O and a (not necessarily orthonormal) vector basis
{e0, e1, e2, e3} for V4, where our affine model plane A3 = E3 ⊂ P3 = A3 ∪ (i) is placed to the point E0(e0) with
equation x0 = 1. Here any non-zero vector x = x0e0 + x1e1 + x2e2 + x3e3 =: xiei (the index sum convention of
Einstein–Schouten will be used) represents a point X(x) of A3, but also a point of the projective sphere PS3 after
having introduced the following positive equivalence. For non-zero vectors

x ∼ c x with 0 < c ∈ R represent the same point X = (x ∼ c x) of PS3;

z ∼ 0 e0 + z1e1 + z2e2 + z3e3 will be an ideal point (z) of PS3.
(2.1)

We write (z) ∈ (i), where (i) is the ideal plane (sphere) to A3, extending the affine space A3 into the projective
sphere PS3. Here (z) and (−z), and in general (x) and (−x), are opposite points of PS3. Then the identification
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of the opposite point pairs of PS3 leads to the projective space P3. Thus the embedding A3 = E3 ⊂ P3 ⊂ PS3

can be formulated in the vector space V3 in a unified way.
The dual (form) space V 4 to V4 is defined as the set of real valued linear functionals or forms on V4. This

means that we pose the following requirements for any form u ∈ V 3

u : V4 ∋ x 7→ xu ∈ R with linearity

(ax+ by)u = a(xu) + b(yu) for any x, y ∈ V4 and for any a, b ∈ R.
(2.2)

We emphasize our convention. The vector coefficients are written from the left, then linear forms act on vectors on the
right (as an easy associativity law; similar conventions will be used also later on).

This “built in" linear structure allows us to define the addition u+ v of two linear forms u, v, and the
multiplication uc of a linear form u by a real factor c, both resulting in linear forms of V 4. Moreover, we
can define for any basis {ei} in V4 the dual basis {ej} in V 4 by the Kronecker symbol δji :

eie
j = δji =

{
1 if i = j
0 if i ̸= j

i, j = 0, 1, 2, 3. (2.3)

Furthermore, we see that the general linear form u := e0u0 + e1u1 + e2u2 + e3u3 := ejuj takes on the vector
x := x0e0 + x1e1 + x2e2 + x3e3 := xiei the real value

(xiei)(e
juj) = xi(eie

j)uj = xiδji uj = xiui := x0u0 + x1u1 + x2u2 + x3u3. (2.4)

Thus, a linear form u ∈ V 4 describes a 3-dimensional subspace u, i.e., a vector hyperplane of V4 through the
origin. Moreover, forms

u ∼ uk with 0 < k ∈ R represent the same oriented hyperplane of V4. (2.5)

The positive equivalence class of forms (u) determines an open half-space (u)+ of V4, i.e., the vector classes (x)
for which

(u)+ := {(x) : x u > 0}. (2.6)

This also gives a corresponding half-sphere of PS3, and a corresponding half-hyperplane of A3. Note that this is
not so for the projective plane P2 which is not orientable, because the equivalence mapping x 7→ −x has negative
determinant in V4!

In order to advance on our main goal, we introduce a bijective linear mapping T of V4 onto itself, i.e.

T : V3 ∋ x 7→ xT =: y ∈ V3 with requirements

xiei 7→ (xiei)T = xi(eiT) = xitjiej =: yjej , det(t
j
i ) ̸= 0.

(2.7)

Assume that T has the above matrix (tji ) with respect to basis {ei} of V3 (i, j = 0, 1, 2). Then T defines a
projective point transformation τ(T) of PS2 onto itself, which preserves all the incidences of subspaces of V3 and
hence incidences of points and lines of PS2, respectively. The matrix (tji ) and its positive multiples (ctji ) = (tji c)
with 0 < c ∈ R (and only these mappings) define the same point transformation τ(T ∼ Tc) of PS2 by the above
requirements. As usual, we define the composition, or product, of transforms T and W of vector space V3 in
this order (right action on V3) by

TW : V4 ∋ x → (xT)W = yW = z =: x(TW) (2.8)

with matrices (tji ) and (wk
j ) to basis {ei} (i, j, k = 0, 1, 2, 3) as follows by our index conventions:

ei(TW) = (eiT)W = (tjiej)W = (tji )(w
k
j ek) = (tjiw

k
j )ek, (2.9)

with summation (from 0 to 3) for the occurring equal upper and lower indices.
The above inverse matrix class (tji ) is denoted by (T k

j ) ∼ 1
cT

k
j , with tjiT

k
j = δki inducing the corresponding linear

transform T of the dual V 4 (i.e. for lines) onto itself, and its inverse T−1, i.e.,

T : V4 ∋ v 7→ Tv =: u ∈ V 4 such that
yv = (xT)v = x(Tv) = xu, specifically

0 = xu = (xT)(T−1u) = yv, so 0 = yv = (yT−1)(Tv) = xu

X I u ↔ Y := Xτ I v := τu holds (see (2.13))

(2.10)
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for the τ -images of points and lines, respectively. We can see that the induced action on the dual V 3 is a left
action and so is the induced action on the lines of PS2.

Let us introduce the positive equivalence in V4 for non-zero vectors

x ∼ c x with 0 < c ∈ R defines the same point X(x) of PS3 (2.11)

whose coordinates in x = xiei, with respect to basis {ei} (i = 0, 1, 2, 3), can be written in matrix form

x = (x0, x1, x2, x3)

e0
e1

e2

e3

 . A form u =
(
e0 e1 e2 e3

)u0

u1

u2

u3

 (2.12)

in the dual space V 4, again up to positive equivalence, describes an oriented plane (2-sphere) of PS3 with the
dual basis {ej}, eiej = δji (the Kronecker symbol) (i, j = 0, 1, 2, 3). Equalities

0 = (xiei)(e
juj) = xi(eie

j)uj = xiδji uj = xiui (2.13)

express the incidence X I u. Formula (2.13) describes the set of varying points X(x) on the fixed plane u(u),
and at the same time the set of planes u(u) incident to the fixed point X(x). The projective transform τ(T,T−1)

with inverse matrix pair (tji ) to T of V4 and (tji )
−1 ∼ (T k

j ) to T−1 of V 4 – with respect to the dual basis pair
{ei}, {ej}, as in formulas (2.10) – can be described in matrix form. First for points it is:

(x0, x1, x2, x3)

t00 t10 t20 t30
t01 t11 t21 t31
t02 t12 t22 t32
t03 t13 t23 t33


e0
e1
e2
e3

 ∼ (y0, y1, y2, y3)

e0
e1
e2
e3

 (2.14)

and for planes eiT k
i uk ∼ eivi. Here τ(T,T−1) preserves the incidence by 0 = (xu) = (yv). These are, again up

to positive equivalence, related to a coordinate simplex E0E1E2E3 with the unit point E(e = e0 + e1 + e2 + e3)
and to e0e1e2e3 with the unit plane e(e = e0 + e1 + e2 + e3), where ei = (EjEkEl) with {0, 1, 2, 3} = {i, j, k, l}.

Spherical space geometry S3 is defined with the additional polarity Π(∗) or scalar product ⟨ , ⟩ in V 4, with
positive diagonal matrix (πij) and we have ei∗ = ei = πijej ,

(e0, e1, e2, e3)−→∗

e0

e1

e2

e3

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


e0
e1
e2
e3

 . (2.15)

For Euclidean E3 geometry and hyperbolic H3 (Bolyai–Lobachevsky) geometry the corresponding πij matrices
(i, j ∈ {0, 1, 2, 3}) are respectively:

E3 :

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , H3 :

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.16)

For the other Thurston geometries we include Table 1 from [31], where additional information on the
transformation groups are also indicated.
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Table 1

The eight Thurston geometries modelled in PS3 by a polarity
or scalar product and its isometry group.

Signature of The group G = IsomX as

Space polarity Π(⋆) Domain of proper points a special collineation

X or scalar prod- of X in PS3 (V4(R), V 4) group of PS3

uct ⟨ , ⟩ in V 4

S3 (+ + ++) PS3 Coll PS3 preserving Π(⋆)

H3 (− + ++) {(x) ∈ P3 : ⟨x,x⟩ < 0} Coll P3 preserving Π(⋆)

(− − ++) Universal covering of H := Coll PS3 preserving Π(⋆)

S̃L2R with skew := {[x] ∈ PS3 : ⟨x,x⟩ < 0} and fibres with 4 parameters.

line fibering by fibering transformations

E3 (0 + ++) A3 = P3 \ {ω∞} where Coll P3 preserving Π(⋆),

ω∞ := (b0), b0
⋆ = 0 generated by plane reflections

(0 + ++) G is generated by plane reflec-

S2×R with O-line A3 \ {O} tions and sphere inversions,

bundle O is a fixed origin leaving invariant the O-

fibering concentric 2-spheres of Π(⋆)

(0 − ++) G is generated by plane reflec-

with O-line C+ = {X ∈ A3 : tions and hyperboloid inver-

H2×R bundle ⟨
−−→
OX,

−−→
OX⟩ < 0, half cone} sions, leaving invariant the

fibering by fibering O-concentric half-hyperboloids

in the half-cone C+ by Π(⋆)

(0 − ++) A3 = P3 \ ϕ Coll. of A3 preserving

Sol and parallel Π(∗) and the

plane fibering fibering with 3 parameters

with an ideal plane ϕ

Null-polarity Π(⋆) A3 = P3 \ ϕ Coll. of A3 preserving

Nil with parallel Π(⋆) with

line bundle fibering 4 parameters

F with its polar

ideal plane ϕ

3. S2×R and H2×R spaces

Of the rich literature not directly related to the projective model of two considered geometries examined,
only a few would now be highlighted. In the nice papers [29, 41, 50] the authors investigated the topic of
special surfaces of the above geometries, among others, surfaces of constant mean curvature (CMC) surfaces
involved minimal surfaces (these surfaces are generally different from constant Gaussian curvature surfaces)
(see the further references given in them). In [42] L. Németh studied Pascal pyramids in the H2×R space whose
examination has led to nice combinatorial and number theoretical correlations.

3.1. Geodesic curves in S2×R geometry

In this section we recall important notions and results from the papers [30, 45, 47, 48, 56, 61, 62, 65, 66, 82].
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The well-known infinitesimal arc-length square at any point of S2×R is the following

(ds)2 =
(dx)2 + (dy)2 + (dz)2

x2 + y2 + z2
. (3.1)

We shall apply the usual geographical coordiantes (ϕ, θ), (−π < ϕ ≤ π, −π
2 ≤ θ ≤ π

2 ) of the sphere with the fibre
coordinate t ∈ R. We describe points in the above coordinate system in our model by the following equations:

x0 = 1, x1 = et cos θ, x2 = et sin θ cosϕ, x3 = et sin θ sinϕ. (3.2)

Then we have x = x1

x0 = x1, y = x2

x0 = x2, z = x3

x0 = x3, i.e. the usual Cartesian coordinates. By [30] we obtain that
in this parametrization the infinitesimal arc-length square at any point of S2×R is the following

(ds)2 = (dt)2 + (dϕ)2 cos2 θ + (dθ)2. (3.3)

The geodesic curves of S2×R are generally defined as having locally minimal arc length between any two
(near enough) points. The system of equations of the parametrized geodesic curves γ(t(τ), ϕ(τ), θ(τ)) in our
model can be determined by the general theory of Riemannian geometry (see [23], [62]).

Then by (3.1-2) we obtain the system of equations of a geodesic curve in our Euclidean model (see [61] and
Fig. 1.):

x(τ) = eτ sin v cos (τ cos v),

y(τ) = eτ sin v sin (τ cos v) cosu,

z(τ) = eτ sin v sin (τ cos v) sinu,

−π < u ≤ π, −π

2
≤ v ≤ π

2
.

(3.4)

3.2. Geodesic curves in H2×R geometry

In this section we recall the important notions and results from the papers [30, 47, 63].
The points of H2×R, form an open cone in projective space P3, as follows:

H2×R :=
{
X(x = xiei) ∈ P3 : −(x1)2 + (x2)2 + (x3)2 < 0 < x0, x1

}
.

E. Molnár [30] found the infinitesimal arc length square, at any point of H2×R as follows

(ds)2 =
1

(−x2 + y2 + z2)2
·
[
[(x)2 + (y)2 + (z)2](dx)2+

+2dxdy(−2xy) + 2dxdz(−2xz) + [(x)2 + (y)2 − (z)2](dy)2+

+2dydz(2yz) + [(x)2 − (y)2 + (z)2](dz)2
]
.

(3.5)

This simplifies in the cylindrical coordinates (t, r, α), (r ≥ 0, −π < α ≤ π) with fibre coordinate t ∈ R. Points in
our model are then

x0 = 1, x1 = et cosh r, x2 = et sinh r cosα, x3 = et sinh r sinα. (3.6)

Then we have x = x1

x0 = x1, y = x2

x0 = x2, z = x3

x0 = x3, i.e., the usual Cartesian coordinates. We obtain by [30]
that in this parametrization the infinitesimal arc-length square in (3.5) at an arbitrary point of H2×R is

(ds)2 = (dt)2 + (dr)2 + sinh2 r(dα)2. (3.7)

The geodesic curves of H2×R are generally defined as having locally minimal arc length between any two
(near enough) points. The systems of equations of the parametrized geodesic curves γ(t(τ), r(τ), α(τ)) in our
model can be determined by the general theory of Riemannian geometry (see [63]).

Then by (3.6-7) we obtain the system of equations for a geodesic curve in our model (see [63] and Fig. 2.):

x(τ) = eτ sin v cosh (τ cos v),

y(τ) = eτ sin v sinh (τ cos v) cosu,

z(τ) = eτ sin v sinh (τ cos v) sinu,

−π < u ≤ π, −π

2
≤ v ≤ π

2
.

(3.8)
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3.3. Distances and spheres

Let X be one of the two geometries, X ∈ {S2×R,H2×R}. Using geodesic curves, we introduced in
[30, 45, 62, 48, 56, 61, 47, 63] the notions of geodesic distance in X .

Definition 3.1. The distance dX(P1, P2) between the points P1 and P2 is defined by the arc length of the geodesic
curve from P1 to P2.

Definition 3.2. The geodesic sphere of radius ρ (denoted by SX
P1
(ρ)) with centre at P1 is defined as the set of

all points P2 in the space with the condition dX(P1, P2) = ρ. Moreover, we require that the geodesic sphere is a
simply connected surface without self-intersection in X space (Fig.1, 2).

Definition 3.3. The body of the geodesic sphere with centre P1 and radius ρ in X space is called geodesic ball,
and denoted by BP1(ρ), i.e., Q ∈ BP1(ρ) if and only if 0 ≤ d(P1, Q) ≤ ρ.

Proposition 3.4. A geodesic sphere and ball of radius ρ exists in the S2×R space if and only if ρ ∈ [0, π].

Proposition 3.5. S(ρ) is a simply connected surface in H2×R for ρ > 0.

-1

0

1

2

3

-2

-1

0

1

2

-2

-1

0

1

2

Figure 1. a. Geodesics with varying parameters. b. The geodesic sphere with radius 2 centered at (1, 1, 0, 0).

Figure 2. a. Geodesics with varying parameters b. The "base-hyperboloid" in the cone and a geodesic sphere with radius 2
3 centered at (1, 1, 0, 0) in H2×R.
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3.4. Geodesic triangles and their interior angle sums

We recall the important notions related to the interior angle sums of geodesic triangles in the above
geometries elaborated in [65].

A geodesic triangle in Riemannian geometry and more generally in metric geometry is a figure consisting of
three different points together with pairwise-connecting geodesic curves. The points are known as the vertices,
while the geodesic curve segments are known as the sides of the triangle.

In the geometries of constant curvature E3, H3, S3 the well-known sums of the interior angles of geodesic
triangles characterize the space. This is related to the Gauss-Bonnet theorem which states that the integral of
the Gauss curvature on a compact 2-dimensional Riemannian manifold M is equal to 2πχ(M) where χ(M)
denotes the Euler characteristic of M . This theorem has a generalization to any compact even-dimensional
Riemannian manifold (see e.g. [5], [23]).

Therefore, it is interesting to investigate the interior angle sums of geodesic triangles in Thurston geometries.
We consider three points A1, A2, A3 in the projective model of the space X (see Section 2) (X ∈ {S2×R,H2×

R}). Three geodesic segments ak connecting the points Ai and Aj (i < j, i, j, k ∈ {1, 2, 3}, k ̸= i, j) are called sides
of the geodesic triangle with vertices A1, A2, A3 (see Fig. 4).

In Riemannian geometry the infinitesimal arc length square (see (3.1) and (3.5)) is used to define the angle
θ between two geodesic curves. If their tangent vectors at their common point are u and v and gij are the
components of the metric tensor then

cos(θ) =
uigijv

j√
uigijuj vigijvj

, θ ∈ [0, π]. (3.9)

Considering a geodesic triangle A1A2A3 we can assume by the homogeneity of the geometries considered
that one vertex coincides with the point A1 = (1, 1, 0, 0) and the other two vertices are A2 = (1, x2, y2, z2) and
A3 = (1, x3, y3, z3).

We investigated the interior angles and their sums of geodesic triangles in S2×R and H2×R geometries (see
[65]).

The answer to the question about the sum of angles of a geodesic triangle is a direct is a consequence of
the comparison theorems in Riemannian geometry (Toponogov and Alexandrov’s theorems, see [6]), since the
sectional curvature of S2×R is non-negative and the sectional curvature of H2×R is non-positive.

3.4.1. Interior angle sums in S2×R geometry We gave a new direct approach to this question based on the
projective model and the isometry groups of S2×R and H2×R in [65].

We directly obtained from equations (3.4) of geodesic curves the following

Lemma 3.6 ([65]). Let P be an arbitrary point and g(A1, P ) (A1 = (1, 1, 0, 0)) be a geodesic curve in the projective
model of the S2×R geometry. The points of the geodesic curve g(A1, P ) and the centre of the model E0 lie in a plane in
the Euclidean sense (see Fig. 3).

P

P

A
1

A
1

Figure 3. Geodesic curve g(A1, P ) (A1 = (1, 1, 0, 0) and P ∈ S2×R) with “base plane", the plane of the geodesic curve contains the origin E0 = (1, 0, 0, 0)

of the model [65].

Theorem 3.7 ([65]). If the Euclidean plane of the vertices of an S2×R geodesic triangle A1A2A3 contains the centre of
model E0 then its interior angle sum is equal to π.
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A3

A1

A2

A

2

A
3

A1
A1

A1

A
2

A2

3

2

3

3

A
3

2

A1

3

2
A1

3
A

2

w
3

w
3

w
2

w
3

w
1

w
2

w
2

w
3

w

w

2

1

Figure 4. A geodesic triangle with vertices A1 = (1, 1, 0, 0), A2 = (1, 3,−2, 1), A3 = (1, 2, 1, 0) in S2×R geometry, and the transformed images of its
geodesic side segments [65].

We could determine the interior angle sum of arbitrary geodesic triangle (for some numerical results see
[65]).

We obtained the following

Theorem 3.8 ([65]). If the Euclidean plane of the vertices of an S2×R geodesic triangle A1A2A3 does not contain the
centre of the model E0 then its interior angle sum is greater than π.

Remark 3.9. It is well known that if the vertices A1, A2, A3 lie on a sphere of radius R ∈ R+ centred at E0 then the
interior angle sum of the spherical triangle A1A2A3 is greater than π.

In summary we have the following

Theorem 3.10 ([65]). The sum of the interior angles of a geodesic triangle of S2×R is greater than or equal to π.

3.4.2. Interior angle sums in H2×R geometry Similarly to the S2×R space we investigated the interior angles of
a geodesic triangle A1A2A3 and its interior angle sum

∑3
i=1(ωi) in the H2×R space (see [65] and Fig. 6).

Lemma 3.11 ([65]). Let P be an arbitrary point and g(A1, P ) (A1 = (1, 1, 0, 0)) be a geodesic curve in the projective
model of H2×R geometry. The points of the geodesic curve g(A1, P ) and the centre of the model E0 lie in a plane in the
Euclidean sense (see Fig. 5).

A
1

A
1

P

P

Figure 5. Geodesic curve g(A1, P ) (A1 = (1, 1, 0, 0) and P ∈ H2×R) with “base plane" (the "upper" sheet of the two-sheeted hyperboloid), the plane of a
geodesic curve contains the origin E0 = (1, 0, 0, 0) of the model [65].

Remark 3.12. More information about the isometry group of H2×R and about its discrete subgroups can be found in
[63].

Theorem 3.13 ([65]). If the Euclidean plane of the vertices of a H2×R geodesic triangle A1A2A3 contains the centre of
the model E0 then its interior angle sum is equal to π.
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Figure 6. Geodesic triangle with vertices A1 = (1, 1, 0, 0), A2 = (1, 2, 3/2, 1), A3 = (1, 3,−1, 0) in H2×R geometry [65].

We can determine the interior angle sum of an arbitrary H2×R geodesic triangle.
We have the following

Theorem 3.14 ([65]). If the Euclidean plane of the vertices of a H2×R geodesic triangle A1A2A3 does not contain the
centre of model E0 then its interior angle sum is less than π.

Remark 3.15. It is well known that if the vertices A1, A2, A3 lie on an "upper" sheet of the two-sheeted hyperboloid
(in the hyperboloid model of the hyperbolic plane geometry where the straight lines of hyperbolic 2-space are modelled by
geodesics on the hyperboloid) centred at E0 then the interior angle sum of hyperbolic triangle A1A2A3 is less than π.

In summary we obtained the following

Theorem 3.16 ([65]). The sum of the interior angles of a geodesic triangle of H2×R space is less than or equal to π.

3.5. Surfaces of geodesic triangles

We consider 3 points A0, A1, A2 in the projective model of the X space (see Section 2, subsections 3.1-2)
(X ∈ {S2×R,H2×R}). The geodesic segments ak connecting the points Ai and Aj (i < j, i, j, k ∈ {0, 1, 2}, k ̸= i, j)
are called sides of the geodesic triangle with vertices A0, A1, A2.

The definition of the surface of a geodetic triangle in the space X is not straightforward. The usual geodesic
triangle surface’s definition in these geometries is not possible because the geodesic curves starting from
different vertices and ending at points of the corresponding opposite edges define different surfaces, i.e.
geodesics starting from different vertices and ending at points on the corresponding opposite side usually do not intersect.
Therefore, we introduced the definition (see [66]) of the surface SA0A1A2

of the geodesic triangle using the
notion of the generalized Apollonius surfaces:

Definition 3.17. The Apollonius surface ASX
P1P2

(λ) in the Thurston geometry X is the set of all points of X
whose geodesic distances from two fixed points are in a constant ratio λ ∈ R+

0 where X ∈ E3,S3,H3,S2×
R,H2×R,Nil, S̃L2R,Sol. i.e. ASX

P1P2
(λ) of two arbitrary points P1, P2 ∈ X consists of all points P ′ ∈ X , for

which dX(P1, P
′) = λ · dX(P ′, P2) (λ ∈ [0,∞)) where dX is the corresponding distance function of X . If λ = 0,

then ASX
P1P2

(0) := P1 and it is clear, that in case λ → ∞ then dX(P ′, P2) → 0 therefore we say ASX
P1P2

(∞) := P2.

We consider the geodesic triangle A0A1A2 in the projective model of X space (X ∈ {S2×R,H2×R}) and
consider the Apollonius surfaces ASX

A0A1
(λ1) and ASX

A2A0
(λ2) (λ1, λ2 ∈ [0,∞), λ2

1 + λ2
2 > 0). It is clear, that

if Y ∈ C(λ1, λ2) := ASX
A0A1

(λ1) ∩ ASX
A2A0

(λ2) then dX(A0,Y )
dX(Y,A1)

= λ1 and dX(A2,Y )
dX(Y,A0)

= λ2 ⇒ dX(A2,Y )
dX(Y,A1)

= λ1 · λ2 for
parameters λ1, λ2 ∈ (0,∞) and if λ1 = 0 then C(λ1, λ2) = A0, if λ2 = 0 then C(λ1, λ2) = A2

Definition 3.18. 1.

PX(λ1, λ2) := {P ∈ X | P ∈ C(λ1, λ2) and dX(P,A0) = min
Q∈C(λ1,λ2)

(dX(Q,A0))

with given real parameters λ1, λ2 ∈ [0,∞), λ2
1 + λ2

2 > 0}
(3.10)

617 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Classical Notions and Problems in Thurston Geometries

2. The surface SX
A0A1A2

of the geodesic triangle A0A1A2 is

SX
A0A1A2

:= {PX(λ1, λ2) ∈ X, where λ1, λ2 ∈ [0,∞), λ2
1 + λ2

2 > 0}. (3.11)

We obtained the following implicit equation of the Apollonius surfaces ASX
P1P2

(λ) of two proper points
P1(1, a, b, c) and P2(1, d, e, f) with given ratio λ ∈ R+

0 , in X geometry:

Theorem 3.19 ([66]). The implicit equation of the Apollonius surfaces ASX
P1P2

(λ) of two proper points P1(1, a, b, c) and
P2(1, d, e, f) with given ratio λ ∈ R+

0 , in the X geometry is:

ASX
P1P2

(λ)(x, y, z) ⇒

4ω2
X

(
ax± by ± cz

√
a2 ± b2 ± c2

√
x2 ± y2 ± z2

)
+ log2

( a2 ± b2 ± c2

x2 ± y2 ± z2

)
=

= λ2
[
4ω2

X

(
dx± ey ± fz√

d2 ± e2 ± f2
√

x2 ± y2 ± z2

)
+ log2

(d2 ± e2 ± f2

x2 ± y2 ± z2

)]
,

where if X = S2×R then all ± signs are +, ωX(x) = arccos(x) and if X = H2×R then the all ± signs are −,
ωX(x) = arccosh(x) (see Fig. 7, 8).

P
2

P
1

Figure 7. The Apollonius surface ASS2×R
P1P2

(λ) where P1 = (1, 1, 0, 0), P2 = (1, 2, 1, 1), λ = 2 (left) and λ = 1 (right, equidistance surface (see [66, 45])

We used the statement of the following lemma

Lemma 3.20 ([65]). Let P be an arbitrary point, gX(P1, P ) (X ∈ {S2×R,H2×R}, and P1 = (1, 1, 0, 0)) a geodesic
curve in the considered model of X geometry. The points of the geodesic curve gX(P1, P ) and the centre of the model
E0 = (1, 0, 0, 0) lie in a Euclidean plane.

3.6. Geodesic tetrahedra and their circumscribed spheres

We consider 4 points A0, A1, A2, A3 in the projective model of the space X (see Section 2, subsections
3.1-2 X ∈ {S2×R,H2×R}). These points are the vertices of a geodesic tetrahedron in the space X if any two
geodesic segments connecting the points Ai and Aj (i < j, i, j ∈ {0, 1, 2, 3}) do not have common inner points
and any three vertices do not lie on the same geodesic curve. The geodesic segments AiAj are called edges of
the geodesic tetrahedron A0A1A2A3. A circumscribed sphere of a geodesic tetrahedron is a geodesic sphere
that touches each of the tetrahedron’s vertices. As in the Euclidean case the radius of a geodesic sphere
circumscribed around a tetrahedron T is called the circumradius of T , and the centre point of this sphere is
called the circumcenter of T (Fig. 9, 10). For any S2×R geodesic tetrahedron there exists a unique geodesic
surface on which all four vertices lie. If its radius is less than or equal to π then the above surface is a geodesic
sphere called circumscibed sphere, (see Definition 3.2 of sphere and [66]).

Remark 3.21. If the common point of bisectors related to the vertices of a geodesic tetrahedron lies at infinity then the
vertices of a geodesic tetrahedron lie on a horosphere-like surface and if the common point is an outer point then the vertices
of the tetrahedron are on a hypershere-like surface. These surfaces will be examined in detail in a forthcoming paper.

dergipark.org.tr/en/pub/iejg 618

https://dergipark.org.tr/en/pub/iejg


J. Szirmai

P
1

P
2

Figure 8. The Apollonius surface ASH2×R
P1P2

(λ) where P1 = (1, 1, 0, 0), P2 = (1, 3/2, 1,−1/2), λ = 2 (left) and P1 = (1, 1, 0, 0), P2 = (1, 2, 1, 1), λ = 1

(right, equidistance surface) (see [66, 47])

A
1

A
1

A
3

A
0

A
2

A
2

A
2C

Figure 9. Geodesic S2×R tetrahedron with vertices A0 = (1, 1, 0, 0), A1 = (1,−2,−1/2, 3), A2 = (1, 1, 3, 0), A3 = (1, 4,−1, 2) and its circumscibed
sphere of radius r ≈ 1.30678 with circumcenter C = (1,≈ 0.64697,≈ 0.51402,≈ 0.15171) [66].
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1
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A
0

A
1

A
2

A
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0

Figure 10. Geodesic H2×R tetrahedron with vertices A0 = (1, 1, 0, 0), A1 = (1, 3/2, 1,−1), A2 = (1, 1, 1/2, 0), A3 = (1, 1, 1/2, 1/2) and its circumscibed
sphere of radius r ≈ 2.89269 with circumcenter C = (1,≈ 0.07017,≈ −0.02714,≈ −0.02640) [66]
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Figure 11. Simple ratios in S2×R and H2×R spaces

For any H2×R geodesic tetrahedron there exists a unique geodesic surface on which all four vertices lie. If
its centre is a proper point of H2×R then the above surface is a geodesic sphere (called a circumscibed sphere)
(see Definition 3.2 of sphere and [66]).

3.7. Menelaus’ and Ceva’s theorems in S2×R and H2×R spaces

First we recall the definition of simple ratios in the sphere S2 and the plane H2 (see [49]). The models of
the above plane geometries of constant curvature are embedded in the models of the previously described
geometries S2×R and H2×R as “base planes" and are used hereinafter for our discussions.

A spherical triangle is the space enclosed by arcs of great circles on the surface of a sphere, subject to the
constraint that these arcs and the further circular arcs in the spherical plane are always less than or equal to a
semicircle.

Definition 3.22. If A, B and P are distinct points on a line in Y ∈ {H2,S2}, then their sim-
ple ratio is sY (A,P,B) = wY (dY (A,P ))/wY (dY (P,B)) if P is between A and B, and sY (A,P,B) =
−wY (dY (A,P ))/wY (dY (P,B)), otherwise where wY (x) := sin(x) if Y = S2 and wY (x) := sinh(x) if Y = H2.

Remark 3.23. Basic properties of simple ratio:

1. sY (A,P,B) = 1/sY (B,P,A),

2. if P is between A and B, then sY (A,P,B) ∈ (0,∞),

3. if P is on AB, beyond B, then sY (A,P,B) ∈ (−∞,−1),

4. if P is on AB, beyond A, then sY (A,P,B) ∈ (−1, 0).

Note that the value of sY (A,P,B) determines the position of Y relative to A and B.
With this definition, the corresponding sine rule of the geometry Y leads to Menelaus’s and Ceva’s theorems

[28, 49]:

Theorem 3.24 (Menelaus’s Theorem for triangles in the plane Y ). If a line l not passing through any vertex of a
triangle ABC is such that l meets BC in Q, AC in R, and AB in P , then

sY (A,P,B)sY (B,Q,C)sY (C,R,A) = −1.

Theorem 3.25 (Ceva’s Theorem for triangles in the plane Y ). If T is a point not on any side of a triangle ABC such
that AT and BC meet in Q, BT and AC in R, and CT and AB in P , then

sY (A,P,B)sY (B,Q,C)sY (C,R,A) = 1.

3.8. Generalizations of Menelaus’ and Ceva’s theorems

3.8.1. Geodesic triangle in general position First we consider a general location geodesic triangle A0A1A2 in the
projective model of the space X (see subsections 3.1-2) (X ∈ {S2×R,H2×R}). Without loss of generality, we
can assume that A0 = (1, 1, 0, 0) and A2 lies in the coordinate plane [x, y]. The geodesic lines that contain the
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sides A0A1 and A0A2 of the given triangle can be characterized directly by the corresponding parameters v and
u (see (3.4) and (3.8)).

The geodesic curve including the side segment A1A2 is also determined by one of its endpoints and
its parameters, however in order to determine the corresponding parameters of this geodesic line we use
orientation preserving isometric transformations TX(A2), as elements of the isometry group of the geometry X ,
that maps A2 = (1, x2, y2, 0) onto A0 = (1, 1, 0, 0) (up to a positive determinant factor).

We extend the definition of the simple ratio to the X ∈ {S2×R,H2×R} spaces. If X = S2×R then it is clear
that the space contains its “base sphere" (unit sphere centred in E0) which is a geodesic surface. Therefore,
similarly to the spherical spaces we assume that the geodesic arcs are always less than or equal to a semicircle
(at present π).

Definition 3.26. If A, B and P are distinct points on a non-fiber-like geodesic curve in the X ∈ {S2×R,H2×R}
space , then their simple ratio is

sXg (A,P,B) = wX
(
dX(A,P )cos(v)

)
/wX

(
dX(P,B)cos(v)

)
,

if P is between A and B, and

sXg (A,P,B) = −wX
(
dX(A,P )cos(v)

)
/wX

(
dX(P,B)cos(v)

)
,

where wX(x) := sin(x) if X = S2×R, wY (x) := sinh(x) if X = H2×R and v is the parameter of the geodesic
curve containing points A,B and P (see Fig. 11).

Theorem 3.27 (Ceva’s Theorem for triangles in general location, [66]). If T is a point not contained in any side of a
geodesic triangle A0A1A2 in X ∈ {S2×R,H2×R} such that the curves A0T and gXA1A2

meet in Q, A1T and gXA0A2
in

R, and A2T and gXA0A1
in P , (A0T,A1T,A2T ⊂ SX

A0A1A2
) then

sXg (A0, P,A1)s
X
g (A1, Q,A2)s

X
g (A2, R,A0) = 1.

Theorem 3.28 (Menelaus’s theorem for triangles in general location, [66]). If l is a line not through any vertex
of a geodesic triangle A0A1A2 lying in a surface SX

A0A1A2
in the X ∈ {S2×R,H2×R} geometry such that l meets the

geodesic curves gXA1A2
in Q, gXA0A2

in R, and gXA0A1
in P , then

sXg (A0, P,A1)s
X
g (A1, Q,A22)s

X
g (A2, R,A0) = −1.

3.8.2. Fibre type triangle We consider a fibre type geodesic triangle A0A1A2 in the projective model of the space
X . Without limiting generality, we can assume that A0 = (1, 1, 0, 0), A1 = (1, x1, y1, 0) and A2 = (1, x2, y2, 0) lie
in the coordinate plane [x, y]. The geodesic lines that contain the sides A0A1 and A0A2 of the given triangle can
be characterized directly by the corresponding parameters v and u = 0 similar to the above case.

We extend the definition of the simple ratio to the X ∈ {S2×R,H2×R} spaces.
If X = S2×R it is clear that the S2×R space contains its “base sphere" (unit sphere centred in E0) which is a

geodesic surface. Therefore, similarly to the spherical spaces we assume that the geodesic arcs are always less
than or equal to a semicircle (at present π).

Definition 3.29. If A, B and P are distinct points on fibrum-like geodesic curve in the X ∈ {S2×R,H2×R}
space , then their simple ratio is

sXf (A,P,B) = dX(A,P )/dX(P,B)

if P is between A and B, and
sXf (A,P,B) = −dX(A,P )/dX(P,B)

(see Fig. 11).

Theorem 3.30 (Ceva’s Theorem in the X geometry for triangles in fibre types, [66]). If T is a point not on any side
of a geodesic triangle A0A1A2 in X ∈ {S2×R,H2×R} such that the geodesic curves gXA0T

and gXA1A2
meet in Q, gXA1T

and gXA0A2
in R, and gXA2T

and gXA0A1
in P , (gXA0T

, gXA1T
, gXA2T

⊂ SX
A0A1A2

) then

sXf (A0, P,A1)s
X
f (A1, Q,A2)s

X
f (A2, R,A0) = 1.

621 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Classical Notions and Problems in Thurston Geometries

Theorem 3.31 (Menelaus’s theorem in the X geometry for triangles in fibre types, [66]). If l is a line not through
any vertex of a geodesic triangle A0A1A2 lying in its surface SX

A0A1A2
in X ∈ {S2×R,H2×R} geometry such that l

meets the geodesic curves gXA1A2
in Q, gXA0A2

in R, and gXA0A1
in P , then

sXf (A0, P,A1)s
X
f (A1, Q,A2)s

X
f (A2, R,A0) = −1.

.

Thus, we can formulate similar theorems for the fibre-like geodesic triangle as for the corresponding
Euclidean triangles; therefore the Ceva’s and Menelaus’ theorems in the geometry X follow from the well-
known corresponding Euclidean cases.

4. Nil space

In her dissertation [3] K. Brodaczewska studied some aspects of the elementary geometry and in [43] the
authors discussed the visualization of the Nil geometry. In the papers [34, 46, 52, 51] we investigated the
equidistant surfaces, parallelohedra, crystallography, and another possible model (so called linear model) of
Nil geometry. In [22] J. Inoguchi classified the minimal translation surfaces of the considered space.

In this Section we summarize the relevant notions and notation (see [30], [55]).

4.1. Basic notions of Nil geometry

Nil geometry is a homogeneous 3-space derived from the famous real matrix group L(R), used by
W. Heisenberg in his electro-magnetic studies. The Lie theory with the method of projective geometry makes
possible to describe this topic.

The left (row-column) multiplication of Heisenberg matrices1 x z
0 1 y
0 0 1

1 a c
0 1 b
0 0 1

 =

1 a+ x c+ xb+ z
0 1 b+ y
0 0 1

 (4.1)

defines the “translations" L(R) = {(x, y, z) : x, y, z ∈ R} on the points of Nil = {(a, b, c) : a, b, c ∈ R}. These
translations are not commutative, in general. The matrices K(z) ◁ L(R) of the form

K(z) ∋

1 0 z
0 1 0
0 0 1

 7→ (0, 0, z) (4.2)

constitute the one parametric centre, i.e., each of its elements commutes with all elements of L(R). The
elements of K(z) are called fibre translations. Nil geometry of the Heisenberg group can be projectively (affinely)
interpreted by the “right translations" (see ([30, 31]) on points as the matrix formula

(1; a, b, c) → (1; a, b, c)

1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

 = (1;x+ a, y + b, z + bx+ c) (4.3)

shows, according to (4.1). Here we consider L(R) the projective collineation group with right actions in
homogeneous coordinates.

E. Molnár [30] derived the well-known infinitesimal arc length square, invariant under translations L at any
point of Nil as follows

(ds)2 := (dx)2 + (dy)2 + (−xdy + dz)2 =

(dx)2 + (1 + x2)(dy)2 − 2x(dy)(dz) + (dz)2
(4.4)

Hence we obtain the symmetric metric tensor field g on Nil with components gij , and its inverse:

gij :=

1 0 0
0 1 + x2 −x
0 −x 1

 , gij :=

1 0 0
0 1 x
0 x 1 + x2


where det(gij) = 1.

(4.5)
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The translation group L defined by formula (4.3) can be extended to a larger group G of collineation, preserving
the fibering, that will be equivalent to the (orientation preserving) isometry group of Nil. In [33] E. Molnár has
shown that a rotation by angle ω about the z-axis at the origin, as isometry of Nil, leaves invariant the Riemann
metric everywhere, and is a quadratic mapping in x, y to z-image z as follows:

r(O,ω) : (1;x, y, z) → (1;x, y, z);

x = x cosω − y sinω, y = x sinω + y cosω,

z = z − 1

2
xy +

1

4
(x2 − y2) sin 2ω +

1

2
xy cos 2ω.

(4.6)

This rotation formula, however, is conjugate by the quadratic mapping

M : x → x′ = x, y → y′ = y, z → z′ = z − 1

2
xy to

(1;x′, y′, z′) → (1;x′, y′, z′)

1 0 0 0
0 cosω sinω 0
0 − sinω cosω 0
0 0 0 1

 = (1;x∗, y∗, z∗),

with x∗ → x = x∗, y∗ → y = y∗, z∗ → z = z∗ +
1

2
x∗y∗,

(4.7)

i.e., to the linear rotation formula. This quadratic conjugacy modifies the Nil translations in (4.3), as well. This
is characterized by the following important classification theorem.

Theorem 4.1 ([33]). 1. Any group of Nil isometries, containing a 3-dimensional translation lattice, is conjugate by
the quadratic mapping in (4.7) to an affine group of the affine (or Euclidean) space A3 = E3 whose projection onto
the (x, y)-plane is an isometry group of E2. Such an affine group preserves a plane → point null-polarity.

2. The involutive line reflection about the y axis

(1;x, y, z) → (1;−x, y,−z),

preserves the Riemann metric, and its conjugates by the above isometries in 1 (those of the identity component) are
also Nil-isometries. Orientation reversing Nil-isometries do not exist.

Remark 4.2. We obtain a new projective model for Nil geometry from the projective model, derived from the quadratic
mapping M. This is the linearized model of Nil space (see [3], [33]) that seems to be more advantageous for future study.
But we will continue to use the classical Heisenberg model in this survey.

4.2. Geodesic curves, spheres and their properties

The geodesic curves of the Nil geometry are generally defined as having locally minimal arc length between
any two (near enough) points. The system of equations of the parametrized geodesic curves g(x(t), y(t), z(t))
in our model can be determined by the Levy–Civita theory of Riemannian geometry. We can assume that the
starting point of a geodesic curve is the origin because we can transform a curve to have arbitrary starting
point by translation;

x(0) = y(0) = z(0) = 0; ẋ(0) = c cosα, ẏ(0) = c sinα,

ż(0) = w; −π ≤ α ≤ π.

The arc length parameter s is introduced by

s =
√

c2 + w2 · t, where w = sin θ, c = cos θ, −π

2
≤ θ ≤ π

2
,

i.e., unit velocity can be assumed.
The system of equations for helix-like geodesic curves (see Fig. 12) g(x(t), y(t), z(t)) if 0 < |w| < 1 is:

x(t) =
2c

w
sin

wt

2
cos
(wt

2
+ α

)
, y(t) =

2c

w
sin

wt

2
sin
(wt

2
+ α

)
,

z(t) = wt ·
{
1 +

c2

2w2

[(
1− sin(2wt+ 2α)− sin 2α

2wt

)
+

+
(
1− sin(2wt)

wt

)
−
(
1− sin(wt+ 2α)− sin 2α

2wt

)]}
=

= wt ·
{
1 +

c2

2w2

[(
1− sin(wt)

wt

)
+
(1− cos(2wt)

wt

)
sin(wt+ 2α)

]}
.

(4.8)
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In the cases with when w = 0 the geodesic curve is the following:

x(t) = c · t cosα, y(t) = c · t sinα, z(t) =
1

2
c2 · t2 cosα sinα. (4.9)

The cases |w| = 1 are trivial: (x, y) = (0, 0), z = w · t.

−1.5

−1.0

−0.5

0.0

00.0

0.5

5

10

0.5

15

1.0

20

25

1.5

Figure 12. Geodesic curve with parameters α = π
6 and β = π

4 .

Definition 4.3. The distance d(P1, P2) between the points P1 and P2 is defined by the arc length of geodesic
curve from P1 to P2.

Definition 4.4. The geodesic sphere of radius R with centre at the point P1 is defined as the set of all points
P2 in the space with the condition d(P1, P2) = R. Moreover, we require that the geodesic sphere is a simply
connected surface without self-intersection in Nil space (Fig. 13).

Definition 4.5. The body of the geodesic sphere with centre P1 and radius R in Nil space is called a geodesic
ball, denoted by BP1(R), i.e., Q ∈ BP1(R) if and only if 0 ≤ d(P1, Q) ≤ R.

We proved in [64, 55] the following theorems:

Figure 13. Nil geodesic spheres of radii: R = 0.2, R = 1, R = 6.

Theorem 4.6 ([55]). The geodesic sphere and ball of radius R exist in Nil space if and only if R ∈ [0, 2π].
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Theorem 4.7 ([64]). The geodesic Nil ball B(S(R)) is convex in the affine-Euclidean sense in our model if and only if
R ∈ [0, π

2 ].

Next, we recall some important properties of geodesic curves and spheres proved in [67].

1. Consider points P (x(t), y(t), z(t)) lying on a sphere S of radius R centred at the origin. The coordinates of
P are given by parameters (α ∈ [−π, π), θ ∈ [−π

2 ,
π
2 ], R > 0).

From the equations (4.8) and (4.9) we directly obtain the following

Lemma 4.8 ([67]). (a) x(t)2 + y(t)2 = 4c2

w2 sin2 wt
2 , that is if θ ̸= ±π

2 and t = R is given and α ∈ [−π, π) then
the endpoints P of the geodesic curves lie on a cylinder of radius r =

∣∣ 4c
w sin wR

2

∣∣ with axis z. Therefore, we
obtain the following connection between parameters θ and R:

R = 2 · arcsin

[√
x2(R) + y2(R)

2 · cot θ

]
1

sin θ
(4.10)

(b) If θ = ±π
2 then the endpoints P (x(R), y(R), z(R)) of the geodesics g(x(t), y(t), z(t)) lie on the z-axis thus

their orthogonal projections onto the [x, y]-plane are the origin and x(R) = y(R) = 0, z(R) = d(O,R) = R.
(c) Moreover, the cross section of the spheres S with the plane [x, z] is given by the following system of equations:

X(R, θ) =
2c

w
sin

wR

2
=

2 cos θ

sin θ
sin

R sin θ

2
,

Z(R, θ) = wR+
c2R

2w
− c2

2w2
sinwR =

R sin θ +
R cos2 θ

2 sin θ
− cos2 θ

2 sin2 θ
sin(R sin θ), (θ ∈ [−π

2
,
π

2
] \ {0});

if θ = 0 then X(R, 0) = R, Z(R, 0) = 0.

(4.11)

2. In [67] we introduced the usual notion of the fibre projection P , a projection parallel to fibre lines (parallel
to the z-axis) onto the [x, y] plane. The image of a point P is the intersection with the [x, y] base plane of
the line parallel to the fibre line passing through P , P(P ) = P ∗.
Analysing the parametric equations of the geodesic curves g(x(t), y(t), z(t)) with starting points at the
origin we found the following

Lemma 4.9 ([67]). If 0 < |w| < 1 for the geodesic curve g(x(t), y(t), z(t)) (t ∈ [0, R]) then the fibre projection P
of the geodesic curves onto the [x, y] plane is an Euclidean circular arc that is contained in a circle with equation(

x(t) +
c

w
sinα

)2
+
(
y(t)− c

w
cosα

)2
=
( c

w

)2
= cot2 θ. (4.12)

If w = 0 then the fibre projection P of the geodesic curves g(x(t), y(t), z(t)) (t ∈ [0, R]) onto the [x, y] plane is a
segment with starting point at the origin where it is contained by the straight line with equation

y = tanα · x. (4.13)

If w = 1 then the fibre projection P of the geodetic curves g(x(t), y(t), z(t)) (t ∈ [0, R]) onto the [x, y] plane is the
origin.

From the equation (4.12) we directly have the following

Corollary 4.10 ([67]). (a) If we know the equation of the circle that contains the orthogonal projected image OP ∗

of a geodesic curve segment gOP = g(x(t), y(t), z(t)) (t ∈ [0, R]) onto the [x, y] plane where 0 < |w| < 1 is a
known real number and the coordinates of P ∗ = (x(R), y(R), 0) then the parametric equation of the geodesic
curve segment gOP is uniquely determined. This means that there is a one-to-one correspondence between the
circular arcs OP ∗ and the geodesic curve segments OP in the above sense.

(b) If w = 0 then the fibre projection P of the geodetic curve is a segment with starting point at the origin and it
is contained in the straight line y = tanα · x, therefore in this situation there is a one-to-one correspondence
between the projected image OP ∗ and the geodesic curve segments OP .

(c) If w = 1 then the fibre projection P of the geodetic curve is the origin so here it is also a one-to-one
correspondence between the projected image and the above geodesic curves.
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4.3. Geodesic triangles and their interior angle sums

Similarly to the S2×R and H2×R geometries in subsection 3.4 or more generally in Riemannian geometries
the angle θ of two intersecting curves can be determined by the metric tensor (gij) of the considered geometry
(see (4.5)) using the formula (3.9) where tangent vectors at their common point are u and v.

It is clear by the above definition of angles and by the metric tensor (4.5), that the angles are the same as the
Euclidean angles at the origin by a pull back translation.

We note here that the angle of two intersecting geodesic curves depends on the orientation of the tangent
vectors. We will consider the interior angles of the triangles that are denoted at the vertex Ai by ωi (i ∈ {1, 2, 3}).

A geodesic triangle is called fibre-like if one of its edges lies on a fibre line. In this section we study the right-
angled fibre-like triangles. We can assume without loss of generality that the vertices A1, A2, A3 of a fibre-like
right-angled triangle (see Fig. 14.a-b) have the following coordinates:

A1 = (1, 0, 0, 0), A2 = (1, 0, 0, z2), A3 = (1, x3, 0, z3 = z2) (4.14)

a. b.

Figure 14. a. The fibre-like geodesic triangle A1A2A3, where A1 = (1, 0, 0, 0), A2 = (1, 0, 0, 1
2 ), A3 = (1, 4, 0, 1

2 ). b. Its translated image A3
1A

3
2A

3
3 where

A3
1 = (1,−4, 0,− 1

2 ), A3
2 = (1,−4, 0, 0), A3

3 = (1, 0, 0, 0) (see [58]).

In order to determine the interior angles, we defined translations TAi , (i ∈ {2, 3}) as elements of the isometry group of
Nil that maps the origin E0 onto Ai (see Fig. 14, 15). Our aim is to determine the angle sum

∑3
i=1(ωi) of the interior

angles of the above right-angled fibre-like geodesic triangle A1A2A3. We have seen that ω2 = π
2 and that the

angle of geodesic curves with a common point at the origin E0 is the same as the Euclidean one. Therefore, these
angles can be determined in the usual Euclidean sense. Hence, ω1 is equal to the angle ∠(g(E0, A3), g(E0, A2))
where g(E0, A3) and g(E0, A2) are oriented geodesic curves. Moreover, the translation TA3

is an isometry in Nil
geometry, thus ω3 is equal to the angle ∠(g(A3

3, A
3
1), g(A

3
3, A

3
2)) where g(A3

3, A
3
1) and g(A3

3, A
3
2) are also oriented

geodesic curves (E0 = A3
3).

We denote the oriented unit tangent vectors of the geodesic curves g(E0, A
j
i ) with tji where (i, j) ∈

{(1, 3), (2, 3), (3, 0), (2, 0)} and A0
3 = A3, A0

2 = A2. The Euclidean coordinates of tji are :

tji = (cos(θji ) cos(α
j
i ), cos(θ

j
i ) sin(α

j
i ), sin(θ

j
i )). (4.15)

Lemma 4.11 ([58]). The sum of the interior angles of a fibre-like right-angled geodesic triangle is greater than or equal
to π.

Conjecture 4.12 ([58]). The sum of the interior angles of any fibre-like geodesic triangle is greater or equal to π.

We fix the coordinates the z2 = z3 ∈ R of A2 and A3 and study the interior angle sum
∑3

i=1(ωi(x
3)) of the

right-angled geodesic triangle A1A2A3 if the x3 coordinate of A3 tends to zero or infinity. E.g. limx3→0(ω1(x
3)) =

0 because the geodesic line g(E0, A3) tends to the geodesic line g(E0, A2) therefore their angle ω1 tends to zero,
and ω3 tends to π

2 (see Fig. 14). Similarly the system of equations (4.8) gives the following results

Lemma 4.13 ([58]). If the coordinates z2 = z3 ∈ R are fixed then

lim
x3→0

(ω1(x
3)) = 0, lim

x3→0
(ω3(x

3)) =
π

2
⇒ lim

x3→0

(
3∑

i=1

(ωi(x
3))

)
= π,
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lim
x3→∞

(ω1(x
3)) =

π

2
, lim

x3→∞
(ω3(x

3)) = 0 ⇒ lim
x3→∞

(
3∑

i=1

(ωi(x
3))

)
= π.

4.3.1. Hyperbolic-like right angled geodesic triangles A geodesic triangle is hyperbolic-like if its vertices lie in the
base plane of the model. In this section we recall the results of [58] about the interior angle sum of right-
angled hyperbolic-like triangles. We can assume without loss of generality that the vertices A1, A2, A3 of a
hyperbolic-like right-angled triangle (see Fig. 15) Tg have the following coordinates:

A1 = (1, 0, 0, 0), A2 = (1, 0, y2, 0), A3 = (1, x3, y2 = y3, 0).

First we fix the x3 ∈ R coordinate of the vertex A3 and study the interior angle sum
∑3

i=1(ωi(y
2 = y3)) of the

a. b.

Figure 15. A hyperbolic-like geodesic triangle A1A2A3, where A1 = (1, 0, 0, 0), A2 = (1, 0, 3, 0), A3 = (1, 1
2 , 3, 0). b. Its translated image A3

1A
3
2A

3
3 where

A3
1 = (1,− 1

2 ,−3, 3
2 ), A3

2 = (1,− 1
2 , 0, 0), A3

3 = (1, 0, 0, 0) (see [58]).

right-angled geodesic triangle A1A2A3 if the coordinates y2 = y3 of vertices A2 and A3 tend to zero or infinity.
From the system of equations (4.8) we obtain the following results

Lemma 4.14 ([58]). If the coordinate x3 ∈ R is fixed then

lim
y2=y3→0

(ω1(y
2)) =

π

2
, lim

y2=y3→0
(ω3(y

2)) = 0 ⇒ lim
y2=y3→0

(
3∑

i=1

(ωi(y
2))

)
= π,

lim
y2=y3→∞

(ω1(y
2)) = 0, lim

y2=y3→∞
(ω3(y

2)) =
π

2
⇒ lim

y2=y3→∞

(
3∑

i=1

(ωi(y
2))

)
= π.

Secondly we fix the y2 = y3 ∈ R coordinates of the vertices A2 and A3 and study the internal angle sum∑3
i=1(ωi(x

3)) of the right-angled geodesic triangle A1A2A3 if the x3 coordinate of the vertex A3 tends to zero
or infinity. From the system of equations (4.8) we obtain the following

Lemma 4.15 ([58]). If the coordinates y2 = y3 ∈ R are fixed then

lim
x3→0

(ω1(x
3)) = 0, lim

x3→0
(ω3(x

3)) =
π

2
⇒ lim

x3→0

(
3∑

i=1

(ωi(x
3))

)
= π,

lim
x3→∞

(ω1(x
3)) =

π

2
, lim

x3→∞
(ω3(x

3)) = 0 ⇒ lim
x3→∞

(
3∑

i=1

(ωi(x
3))

)
= π.

We can determine the interior angle sum of an arbitrary hyperbolic-like geodesic triangle similarly as in the
fibre-like case.

Finally, we have the following

Lemma 4.16 ([58]). The interior angle sums of hyperbolic-like right-angled geodesic triangles are less than or equal to π.

Conjecture 4.17 ([58]). The sum of the interior angles of any hyperbolic-like geodesic triangle is less than or equal to π.
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4.3.2. Geodesic triangles with interior angle sum π In the above sections we discussed the fibre- and hyperbolic-
like geodesic triangles and proved that there are right-angled geodesic triangles whose angle sum

∑3
i=1(ωi) is

greater, less than or equal to π, but
∑3

i=1(ωi) = π is realized if one of the vertices of a geodesic triangle A1A2A3

tends to infinity. In [58] we proved the following

Lemma 4.18 ([58]). There exists a geodesic triangle A1A2A3 with interior angle sum π where its vertices are proper (i.e.,
Ai ∈ Nil, vertices are not at infinity, i ∈ {1, 2, 3}).

We summarize the lemmas of this Section as follows

Theorem 4.19 ([58]). The sum of the interior angles of a geodesic triangle of Nil space can be greater, less or equal to π.

4.4. On Menelaus’ and Ceva’s theorems in Nil space

As in previous the S2×R and H2×R spaces, the question arises as to what the surface of a geodesic triangle
will be and which elementary theorems may be true in this geometry. In the paper [67], as in the previously
discussed spaces, we introduced the concept of the surface of Nil geodesic triangles using Apollonius surfaces
and examined the theorems of Menelaus and Ceva. To discuss Menelaus’ and Ceva’s theorems, we had to
define what we consider to be a line on the surface of a geodesic triangle and the definition of a simple ratio.

Let SA0A1A2
be the surface of the geodesic triangle A0A1A2 and P1, P2 ∈ SA0A1A2

be any two points. Natural
requirements for a line passing through points P1 and P2 on SA0A1A2

are that:

1. Two surface points uniquely determine a line (connecting curve) GSA0A1A2

P1P2
.

2. Any two points on a surface line GSA0A1A2

P1P2
define the same line.

3. The surface line determined by two points of a geodesic curve lying on the surface SA0A1A2
coincides with

the geodesic curve.

Remark 4.20. An obvious option for definition of a line (connecting curve) GSA0A1A2

P1P2
would be the fibre projection of the

geodesic curve gP1P2
into the surface SA0A1A2

but it is clear that this definition does not satisfy requirement 2.

We consider a geodesic triangle A0A1A2 in the projective model of Nil space (see Subsection 4.1). Without loss
of generality, we can assume that A0 = (1, 0, 0, 0). The geodesic lines that contain the sides A0A1 and A0A2 of
the given triangle can be characterized directly by the corresponding parameters θi and αi (i = 1, 2) (see (4.8)
and (4.9)). The geodesic curve including the side segment A1A2 is also determined by one of its endpoints and
its parameters. In order to determine the corresponding parameters of this geodesic line we use for example
a Nil translation T(A1), as elements of the isometry group of Nil geometry, that maps A1 = (1, x1, y1, z1) onto
A0 = (1, 0, 0, 0) (up to a positive determinant factor).

Remark 4.21. By the results of Theorem 4.6, we may assume that the surface SA0A1A2 of the geodesic triangle A0A1A2

is contained by a geodesic Nil sphere of radius π.

We generalized the notion of simple ratio to the triples point lying on geodesic lines of Nil space:

Definition 4.22. Let A, B, and P be distinct points on a geodesic curve in Nil space. Then their simple ratio is

sN (A,P,B) = d(A,P )/d(P,B)

if P is between A and B, and
sN (A,P,B) = −d(A,P )/d(P,B)

otherwise, where d is the distance function of Nil geometry.

Let A, B and P be distinct points on a non-fibre-like geodetic curve in Nil and let A∗, B∗ and P ∗ be their
projected images by P .

Lemma 4.23 ([67]). The Euclidean length C(A∗, P ∗) of a circle arc or line segment
⌢

A∗P ∗ satisfies the following equations

C(A∗, P ∗) = d(A,P ) · cos θ, C(P ∗, B∗) = d(P,B) · cos θ. (4.16)

Therefore, the projection P preserves the ratio of lengths in the above sense.

dergipark.org.tr/en/pub/iejg 628

https://dergipark.org.tr/en/pub/iejg


J. Szirmai

Lemma 4.9, Corollary 4.10 and the above projection P were used to define the surface line but the definition
is technical due to the complex structure of the geometry and therefore they are not detailed here (see [67]).
The main results are summarized as follows

Corollary 4.24 ([67]). Menelaus’ theorem does not hold in Nil geometry. However, the so-called Menelaus’ condition
plays an important role in defining lines on the surface of a given triangle (see [67]).

Using the above Menelaus’ condition, similar to the Euclidean proof, we obtain the Nil Ceva’s theorem:

Theorem 4.25 ([67]). If T is a point on a geodesic triangle A0A1A2 in Nil space which does not lie on any side such that
the curves GSA0A1A2

A0T
and gA1A2 intersect at P12, GSA0A1A2

A1T
and gA0A2 at P02, and GSA0A1A2

A2T
and gA0A1 at P01, then

sN (A0, P01, A1)s
N (A1, P12, A2)s

N (A2, P02, A0) = 1.

Using the Lemma 4.9 it follows that the corresponding Ceva theorem is also true for the projected configuration
i.e. for the triangle A∗

0A
∗
1A

∗
2 and the points T ∗, P ∗

01, P ∗
12, P ∗

02.

Theorem 4.26 ([67]). If T ∗ is a point not on any side of circle arc triangle (the projected image of a geodesic triangle in

general type) A∗
0A

∗
1A

∗
2 in the base plane of the Nil space such that the arcs (or line segments)

⌢

A∗
0T

∗ and
⌢

A∗
1A

∗
2 meet in

P ∗
12,

⌢

A∗
1T

∗ and
⌢

A∗
0A

∗
2 in P ∗

02, and
⌢

A∗
2T

∗ and
⌢

A∗
0A

∗
1 in P ∗

01, then

sc(A∗
0, P

∗
01, A

∗
1)s

c(A∗
1, P

∗
12, A

∗
2)s

c(A∗
2, P

∗
02, A

∗
0) = 1.

Remark 4.27. Using the previous notions and theorems, as in the Euclidean case, we can define, for example, the
circumscribed circle of a geodesic triangle and its centre, the centroid of a geodesic triangle as the point where the three
medians of the triangle meet. A median of a geodesic triangle A0A1A2 in the Nil space is a surface line GSA0A1A2 from
one vertex to the midpoint on the opposite side of the triangle. We will examine these in a forthcoming paper.

5. S̃L2R geometry

The basic concepts of the model of S̃L2R geometry can be found in [30].
In [9] the authors considered the geodesics and geodesic spheres that gave exact solutions of an ODE system

that describes geodesics. Moreover, geodesic spheres are determined and a visualization of S̃L2R geometry
is also given. In [10] Z. Erjavec and D. Horvat investigated and characterized the non-geodesic biharmonic
curves and proved the statement that only proper biharmonic curves are helices. Also, the explicit parametric
equations of proper biharmonic helices were found. In [11] the author derived the equation of a minimal
surface and gave fundamental examples of minimal surfaces. In [12] Z. Erjavec discussed the so-called Killing
magnetic curves. In [43] the authors discussed visualization methods of the considered geometry.

In [7], we studied the sum of the interior angles of the geodesic and translation triangles (see Subsection 5.3).

5.1. Basic notions of the S̃L2R geometry

In this section we summarize the real 2× 2 matrices
(
d b
c a

)
with unit determinant ad− bc = 1 which

constitute a Lie transformation group by the usual product operation, taken to act on row matrices as on
point coordinates on the right as follows

(z0, z1)

(
d b
c a

)
= (z0d+ z1c, z0b+ z1a) = (w0, w1)

with w =
w1

w0
=

b+ z1

z0 a

d+ z1

z0 c
=

b+ za

d+ zc

(5.1)

as a right action on the complex projective line C∞. This group is a 3-dimensional manifold, because of its
3 independent real coordinates and with its usual neighbourhood topology [54], [80]. In order to model the
above structure in the projective sphere PS3 and in the projective space P3 (see [30]), we introduce the new
projective coordinates (x0, x1, x2, x3) where

a := x0 + x3, b := x1 + x2, c := −x1 + x2, d := x0 − x3.
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Then it follows that

0 > bc− ad = −x0x0 − x1x1 + x2x2 + x3x3 (5.2)

describes the interior of the above one-sheeted hyperboloid solid H in the usual Euclidean coordinate simplex,
with the origin E0(1, 0, 0, 0) and the ideal points of the axes E∞

1 (0, 1, 0, 0), E∞
2 (0, 0, 1, 0), E∞

3 (0, 0, 0, 1). We
consider the collineation group G∗ that acts on the projective sphere SP3 and preserves a polarity, i.e. a scalar
product of signature (−−++), this group leaves the one sheeted hyperboloid solid H invariant. We have to
choose an appropriate subgroup G of G∗ as the isometry group, then the universal covering group and space
H̃ of H will be the hyperboloid model of S̃L2R ([30]).

The specific isometries S(ϕ) (ϕ ∈ R) constitute a one parameter group given by the matrices

S(ϕ) : (sji (ϕ)) =

 cosϕ sinϕ 0 0
− sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ

 . (5.3)

The elements of S(ϕ) are the so-called fibre translations. We obtain a unique fibre line to each X(x0, x1, x2, x3) ∈ H̃
as the orbit by right action of S(ϕ) on X . The coordinates of points lying on the fibre line through X can be
expressed as the images of X by S(ϕ):

(x0, x1, x2, x3)
S(ϕ)−→ (x0 cosϕ− x1 sinϕ, x0 sinϕ+ x1 cosϕ,

x2 cosϕ+ x3 sinϕ,−x2 sinϕ+ x3 cosϕ)
(5.4)

for the Euclidean coordinate set x := x1

x0 , y := x2

x0 , z := x3

x0 , x0 ̸= 0.
In (5.3) and (5.4) we can see the 2π periodicity of ϕ. Moreover, we see the (logical) extension to ϕ ∈ R, as

real parameter, to have the universal covers H̃ and S̃L2R, respectively, through the projective sphere PS3.
The elements of the isometry group of SL2R (and so by the above extension the isometries of S̃L2R) can be
described by the matrix (aji ) (see [30] and [31])

(aji ) =

 a00 a10 a20 a30
∓a10 ±a00 ±a30 ∓a20
a02 a12 a22 a32
±a12 ∓a02 ∓a32 ±a22

 where

−(a00)
2 − (a10)

2 + (a20)
2 + (a30)

2 = −1, −(a02)
2 − (a12)

2 + (a22)
2 + (a32)

2 = 1,

−a00a
0
2 − a10a

1
2 + a20a

2
2 + a30a

3
2 = 0 = −a00a

1
2 + a10a

0
2 − a20a

3
2 + a30a

2
2,

(5.5)

and we allow positive proportionality, as the projective freedom. The horizontal intersection of the hyperboloid
solid H with the plane E0E

∞
2 E∞

3 provides the base plane of the model H̃ = S̃L2R. The fibre through X intersects
the hyperbolic (H2) base plane z1 = x = 0 at the foot point

Z(z0 = x0x0 + x1x1; z1 = 0; z2 = x0x2 − x1x3; z3 = x0x3 + x1x2). (5.6)

We introduce a so-called hyperboloid parametrization as in [30] as follows

x0 = cosh r cosϕ,

x1 = cosh r sinϕ,

x2 = sinh r cos (θ − ϕ),

x3 = sinh r sin (θ − ϕ),

(5.7)

where (r, θ) are the polar coordinates of the H2 base plane, and ϕ is the fibre coordinate. We note that

−x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1 < 0.
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The inhomogeneous coordinates will play an important role in the later E3-visualization, e.g., of the prism
tilings in S̃L2R, and are given by

x =
x1

x0
= tanϕ,

y =
x2

x0
= tanh r

cos (θ − ϕ)

cosϕ
,

z =
x3

x0
= tanh r

sin (θ − ϕ)

cosϕ
.

5.2. Distances and spheres

The infinitesimal arc length square can be derived by the standard pull back method. By the T−1-action of
(5.6) on the differentials (dx0; dx1; dx2; dx3), we obtain that in this parametrization the infinitesimal arc length
square at any point of S̃L2R is the following:

(ds)2 = (dr)2 + cosh2 r sinh2 r(dθ)2 +
[
(dϕ) + sinh2 r(dθ)

]2
. (5.8)

Hence we get the symmetric metric tensor field gij on S̃L2R by components:

gij :=

1 0 0

0 sinh2 r(sinh2 r + cosh2 r) sinh2 r

0 sinh2 r 1

 , (5.9)

and

dV =
√

det(gij) dr dθ dϕ =
1

2
sinh(2r)dr dθ dϕ

as the volume element in the hyperboloid coordinates. The geodesic curves of S̃L2R are generally defined as
having locally minimal arc length between any two of their (close enough) points.

By (5.9) the second order differential equation system of the S̃L2R geodesic curve is the following:

r̈ = sinh(2r) θ̇ ϕ̇+
1

2

(
sinh(4r)− sinh(2r)

)
θ̇ θ̇,

ϕ̈ = 2ṙ tanh (r)(2 sinh2 (r) θ̇ + ϕ̇),

θ̈ =
2ṙ

sinh (2r)

(
(3 cosh (2r)− 1)θ̇ + 2ϕ̇

)
.

(5.10)

We can assume, by the homogeneity, that the starting point of a geodesic curve is the origin (1, 0, 0, 0). Moreover,
r(0) = 0, ϕ(0) = 0, θ(0) = 0, ṙ(0) = cos(α), ϕ̇(0) = sin(α) = −θ̇(0) are the initial values in Table 1 for the solution
of (5.10), and so the unit velocity will be achieved.
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Table 2
Types

0 ≤ α <
π

4

(H2 − like direction)

r(s, α) = arsinh
( cosα√

cos 2α
sinh(s

√
cos 2α)

)
θ(s, α) = −arctan

( sinα√
cos 2α

tanh(s
√
cos 2α)

)
ϕ(s, α) = 2 sinαs+ θ(s, α)

α =
π

4
(light direction)

r(s, α) = arsinh
(√2

2
s
)

θ(s, α) = −arctan
(√2

2
s
)

ϕ(s, α) =
√
2s+ θ(s, α)

π

4
< α ≤ π

2
(fibre− like direction)

r(s, α) = arsinh
( cosα√

− cos 2α
sin(s

√
− cos 2α)

)
θ(s, α) = −arctan

( sinα√
− cos 2α

tan(s
√
− cos 2α)

)
ϕ(s, α) = 2 sinαs+ θ(s, α)

The equation of geodesic curve in the hyperboloid model was determined in [9], with the usual geographical
sphere coordiantes (λ, α), (−π < λ ≤ π, −π

2 ≤ α ≤ π
2 ), and the arc length parameter 0 ≤ s ∈ R.

Definition 5.1. The distance d(P1, P2) between the points P1 and P2 is defined by the arc length of the geodesic
curve from P1 to P2.

Definition 5.2. The geodesic sphere of radius ρ (denoted by SP1(ρ)) with centre at point P1 is defined as the set
of all points P2 satisfying the condition d(P1, P2) = ρ. Moreover, we require that the geodesic sphere is a simply
connected surface without self-intersection (Fig. 16).

Definition 5.3. The body of the geodesic sphere of centre P1 and radius ρ is called geodesic ball, denoted by
BP1

(ρ), i.e., Q ∈ BP1
(ρ) if and only if 0 ≤ d(P1, Q) ≤ ρ.

Figure 16. a. Geodesic sphere of radius 1 centred at the origin, b. A series of tangent geodesic spheres of radius 1
6 centred along a fibre line.

From (5.10) and from Table 2 it follows that S(ρ) is a simply connected surface in both E3 and S̃L2R if
ρ ∈ [0, π

2 ). If ρ ≥ π
2 then the universal cover should be discussed. Therefore, we consider geodesic spheres and balls

only with radii ρ ∈ [0, π
2 ) in the following. These will be satisfactory in our cases.

5.3. Geodesic triangles and their interior angle sums

In this subsection we recall the results of [7].
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5.3.1. Fibre-like right angled triangles A geodesic triangle is called fibre-like if one of its edges lies on a fibre
line (Fig. 17). We can assume without loss of generality that the vertices A1, A2, A3 of a fibre-like right angled
triangle Tg has the following coordinates: A1 = (1, 0, 0, 0), A2 = (1, 0, y2, 0), A3 = (1, x3, 0, 0).

The geodesic segment A1A2 lies on the y axis, the geodesic segment A1A3 lies on the x axis and its angle is
ω1 = π

2 in S̃L2R (this angle is also π
2 in the Euclidean sense since A1 = E0).

In order to determine the further interior angles of the fibre-like geodesic triangle A1A2A3 we define
translations TAi

, (i ∈ {2, 3}) as elements of the isometry group of S̃L2R, that maps the origin E0 onto Ai. E.g.,
the isometry TA2 and its inverse (up to a positive determinant factor) and the images TA2(Ai) of the vertices
Ai (i ∈ {1, 2, 3} are the following:

T−1
A2

(A1) = A2
1 = (1, 0,−y2, 0), T−1

A2
= A2

2(A2) = E0 = (1, 0, 0, 0),

T−1
A2

(A3) = A2
3 = (1, x3,−y2, x3y2).

(5.11)

Similarly to the above cases we obtain:

T−1
A3

(A1) = A3
1 = (1,−x3, 0, 0), T−1

A3
(A2) = A3

2 = (1,−x3, y2,−x3y2),

T−1
A3

(A3) = A3
3 = E0 = (1, 0, 0, 0).

(5.12)

=A1

A3

A2

E0

y

z

x

A3

2

A1

2

A2
E =

2

x

z
0

Figure 17. A fibre-like geodesic triangle A1A2A3 and its translated image A2
1A

2
2A

3
3 by translation TA2

Lemma 5.4 ([7]). The sum of the interior angles of a fibre-like right angled geodesic triangle is greater or equal to π.

5.3.2. Hyperbolic-like right angled geodesic triangles A geodesic triangle is hyperbolic-like if its vertices lie in
the base plane (i.e., in the [y, z] coordinate plane) of the model. In this section we analyze the interior
angle sum of the right angled hyperbolic-like triangles. We can assume without loss of generality that the
vertices A1, A2, A3 of a hyperbolic-like right angled triangle (see Figure 18) Tg have the following coordinates:
A1 = (1, 0, 0, 0), A2 = (1, 0, y2, 0), A3 = (1, 0, 0, z3). The geodesic segment A1A2 lies on the y axis, the geodesic
segment A1A3 lies on the z axis and its angle is ω1 = π

2 in the S̃L2R space (this angle is in the Euclidean sense
also π

2 since A1 = E0).
Similarly we get to the above cases that the images T−1

Aj
(Ai) of the vertices Ai (i ∈ {1, 2, 3}, j ∈ {2, 3}) are the

following (see also Figure 18):

T−1
A2

(A1) = A2
1 = (1, 0,−y2, 0), T−1

A2
= A2

2(A2) = E0 = (1, 0, 0, 0),

T−1
A2

(A3) = A2
3 = (1, y2z3,−y2, z3),

(5.13)

T−1
A3

(A1) = A3
1 = (1,−z3, 0, 0), T−1

A3
(A2) = A3

2 = (1,−y2z3, y2,−z3),

T−1
A3

(A3) = A3
3 = E0 = (1, 0, 0, 0),

(5.14)

Finally, we obtain the following lemma:

Lemma 5.5 ([7]). The interior angle sums of hyperbolic-like geodesic triangles can be less than or equal to π.

Conjecture 5.6 ([7]). The interior angle sum of any hyperbolic-like right angled geodesic triangle is less Than or equal
to π.
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A3

A1

A
3

A1

A2

2

2

E0=
y

z

x

Figure 18. A hyperbolic-like geodesic triangle A1A2A3 and its translated copy A2
1A

2
2A

2
3

5.3.3. Geodesic triangles with interior angle sum π In the above sections we discussed the fibre- and hyperbolic-
like geodesic triangles and proved that there are right angled geodesic triangles whose angle sum

∑3
i=1(ωi) is

greater than or equal to π, less than or equal to π, but
∑3

i=1(ωi) = π is realized only if one of the vertices of a
geodesic triangle A1A2A3 tends to infinity (see Table 3-4). We prove the following

Lemma 5.7 ([7]). There is geodesic triangle A1A2A3 with interior angle sum π where its vertices are proper (i.e.
Ai ∈ S̃L2R).

We summarize the lemmas of this Section as follows

Theorem 5.8 ([7]). The sum of the interior angles of a geodesic triangle of S̃L2R can be greater, less or equal to π.

6. Sol space

The projective model of Sol geometry was developed in [30].

6.1. Basic notions of Sol geometry

In this section we summarize the significant concepts and notations of real Sol geometry (see [30], [54]).
Sol is defined as a 3-dimensional real Lie group with multiplication

(a, b, c)(x, y, z) = (x+ ae−z, y + bez, z + c). (6.1)

We note that conjugation by (x, y, z) leaves invariant the plane (a, b, c) with fixed c:

(x, y, z)−1(a, b, c)(x, y, z) = (x(1− e−c) + ae−z, y(1− ec) + bez, c). (6.2)

Moreover, for c = 0 the action of (x, y, z) is only by its z-component, where (x, y, z)−1 = (−xez,−ye−z,−z).
Thus the (a, b, 0) plane is distinguished as a base plane in Sol, or in other words, (x, y, 0) is a normal subgroup
of Sol. Sol multiplication can also be affinely (projectively) interpreted by “right translations" on its points as
the following matrix formula shows, according to (6.1):

(1; a, b, c) → (1; a, b, c)

1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1

 = (1;x+ ae−z, y + bez, z + c) (6.3)

by row-column multiplication. This defines “translations" L(R) = {(x, y, z) : x, y, z ∈ R} on the points of the
space Sol = {(a, b, c) : a, b, c ∈ R}. These translations are not commutative, in general. Here we can consider
L as a projective collineation group with right actions in homogeneous coordinates as usual in classical affine-
projective geometry. We will use the Cartesian homogeneous coordinate simplex E0(e0),E∞

1 (e1), E∞
2 (e2),
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E∞
3 (e3), ({ei} ⊂ V4 with the unit point E(e = e0 + e1 + e2 + e3)) which is distinguished by an origin E0 and

by the ideal points of coordinate axes, respectively. Thus Sol can be visualized in the affine 3-space A3 (so in
Euclidean space E3) as well (see [60]).

In this affine-projective context E. Molnár in [30] derived the usual infinitesimal arc length square at any
point of Sol, by pull back translation, as follows

(ds)2 := e2z(dx)2 + e−2z(dy)2 + (dz)2. (6.4)

Hence we get the infinitesimal Riemannian metric invariant under translations, by the symmetric metric tensor
field g on Sol by components as usual.

It will be important for us that the full isometry group Isom(Sol) has eight components, since the stabilizer
of the origin is isomorphic to the dihedral group D4, generated by two involutive (involutory) transformations,
preserving (6.4):

(1) y ↔ −y; (2) x ↔ y; z ↔ −z; i.e. first by 3× 3 matrices :

(1)

1 0 0
0 −1 0
0 0 1

 ; (2)

0 1 0
1 0 0
0 0 −1

 ;
(6.5)

with its product, generating a cyclic group C4 of order 4 0 1 0
−1 0 0
0 0 −1

 ;

−1 0 0
0 −1 0
0 0 1

 ;

0 −1 0
1 0 0
0 0 −1

 ; Id =

1 0 0
0 1 0
0 0 1

 .

Or we write by collineations fixing the origin O(1, 0, 0, 0):

(1)

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (2)

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 of form (6.5). (6.6)

A general isometry of Sol is defined by a product γOτX , first γO of the form (6.6) then τX of the form (6.3). For
a general point A(1, a, b, c), this will be a product τ−1

A γOτX , mapping A into X(1, x, y, z).
Conjugated translation τ by the above isometry γ, are denoted as τγ = γ−1τγ.

6.2. Related results in Sol geometry

In the paper [4] the authors considered the geodesics and Frenet formulas in Sol space, gave the differential
equation system that describes geodesics but unfortunately the differential equation system in the main cases
cannot be expressed with elementary functions.

Therefore, the Sol geodesic sphere unfortunately cannot be expressed in a closed explicit form. We could
visualize the geodesic sphere by numerically solving differential equations (see Fig. 19). In [13] Z. Erjavec

Figure 19. Sol geodesic balls of radii R = 0.05, R = 2, R = 3.

studied certain class of Weingarten surfaces. The main result is that the only non-planar ruled Weingarten
surfaces composed from vertical geodesics are the surfaces r(u, v) = (aeku, be−ku, v). In [15] the authors
determined magnetic curves corresponding to the Killing magnetic fields in Sol. In [14] Z. Erjavec and J.

635 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Classical Notions and Problems in Thurston Geometries

Inoguchi discussed magnetic curves with respect to the almost cosymplectic structure and investigated the
curvature properties of these curves.

In [36] we classified Sol lattices in an algorithmic way with 17 types, in analogy with the 14 Bravais types
of Euclidean 3-lattices, but infinitely many Sol affine equivalence classes in each type. Then the discrete
isometry groups of compact fundamental domain (crystallographic groups) can also be classified into infinitely
many classes but finitely many types. For this we studied relations between Sol lattices and lattices of the
pseudoeuclidean (or here rather called Minkowskian) plane. Moreover, we introduced the notion of Sol
parallelepiped to every lattice type.

In [8] we studied a series of 2-generator Sol-manifolds depending on a positive integer n constructed as
tetrahedron manifolds, and proved that they are twofold coverings of the 3-sphere branched over specified
links.

7. Ball packings in Thurston geometries

7.1. Geodesic ball packings in spaces of constant curvature

Let X denote a space of constant curvature, either the n-dimensional sphere Sn, Euclidean space En, or
hyperbolic space Hn with n ≥ 2. An important question of discrete geometry is to find the highest possible
packing density in X by congruent non-overlapping balls of a given radius [1], [18].

Euclidean cases are the best explored. One major recent development has been the settling of the long-
standing Kepler conjecture, part of Hilbert’s 18th problem, by Thomas Hales at the turn of the 21st century.
Hales’ computer-assisted proof was largely based on a program set forth by L. Fejes Tóth in the 1950’s [21].

In n-dimensional hyperbolic geometry several new questions occur concerning packing and covering
problems, e.g., in Hn there are 3 kinds of “generalized balls (spheres)": the usual balls (spheres), horoballs
(horospheres) and hyperballs (hyperspheres). Moreover, the definition of packing density is crucial in hyperbolic
spaces as shown by Böröczky [2]. For standard examples also see [1], [18]. The most widely accepted notion
of packing density considers the local densities of balls with respect to their Dirichlet–Voronoi cells (cf. [2]). In
order to consider ball packings in H

n
, we use an extended notion of such local density.

In space Xn let dn(r) be the density of n+ 1 mutually touching spheres or horospheres of radius r (in case
of horosphere r = ∞) with respect to the simplex spanned by their centres. L. Fejes Tóth and H. S. M. Coxeter
conjectured that the packing density of balls of radius r in Xn cannot exceed dn(r). This conjecture has been
proved by C. A. Rogers for the Euclidean space En. The 2-dimensional spherical case was settled by L.Fejes
Tóth in [20].

In [2] K. Böröczky proved the following theorem for ball and horoball packings for any dimension 2 ≤ n ∈ N:
In an n-dimensional space of constant curvature, consider a packing of spheres of radius r. In spherical space suppose

that r < π
4 . Then the density of each sphere in its Dirichlet–Voronoi cell cannot exceed the density of n+ 1 spheres of

radius r mutually touching one another with respect to the simplex spanned by their centres.
This density is ≈ 0.85328 in H3 which is not realized by packings with equal balls. However, it is attained by

the horoball packing (case r = ∞) of H
3

where the ideal centres of horoballs lie on the absolute figure of H
3
.

This corresponds to packing an ideal regular tetrahedron tiling given by the Coxeter–Schläfli symbol {3, 3, 6}.
Ball packings of hyperbolic n-space and of other Thurston geometries are extensively discussed in the literature
see e.g. [1, 18, 19, 35], where the reader finds further references as well.

In this survey, we do not deal in detail with the examination of the ball (sphere) packings and coverings
of spaces of constant curvature, so now we only mention that the questions regarding horosphere and
hypersphere packings and coverings are not yet settled. New interesting problems have also arisen, the
examination of which are related to the use of Busemann functions. The interested reader can read about the
results of these in the papers [16, 24, 25, 26, 27, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79] and the references therein.

7.2. Geodesic ball packings in Thurston geometries of non-constant curvature

Definitions of ball (sphere) packing and covering densities are already critical in hyperbolic geometry,
therefore in order to introduce this concept to Thurston geometries of non-constant curvature we use the
discrete isometry groups of the considered geometry. First, we have summarized the basic definitions and
notions of this (see [56]).
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Let X be one of the five Thurston geometries with non-constant curvature

S2×R, H2×R, S̃L2R, Nil, Sol,

where the geodesic curves are generally defined as having locally minimal arc length between any two of their
points (sufficiently close to each other). The system of equations for the parametrized geodesic curves γ(τ) in
our model can be determined by the general theory of Riemannian geometry. Then a geodesic sphere and ball can
usually be defined as follows. We consider only geodesic ball packings which are transitively generated by discrete groups
of isometries of X and the density of the packing is related to its Dirichlet–Voronoi cells.

In the following, let Γ be a fixed group of isometries of X . Denote by d(P1, P2) the distance of two points P1,
P2.

Definition 7.1. We say that the point set

D(K) = {P ∈ X : d(K,P ) ≤ d(Kg, P ) for all g ∈ Γ}

is the Dirichlet–Voronoi cell (D − V cell) of Γ around the kernel point K ∈ X .

Definition 7.2. We say that
ΓP = {g ∈ Γ : P g = P}

is the stabilizer subgroup of P ∈ X in Γ.

Definition 7.3. Assume that the stabilizer ΓK = I is the identity, i.e., Γ acts simply transitively on the Γ-orbit of
K ∈ X . Then let BK denote the largest ball with centre K inside the D − V cell D(K). Moreover, let ρ(K) denote
the radius of BK . It is easy to see that

ρ(K) = min
g∈Γ\I

1

2
d(K,Kg).

Definition 7.4. If the stabilizer ΓK > I then Γ acts multiply transitively on the Γ-orbit of K ∈ X . In this case the
greatest ball radius of BK is

ρ(K) = min
g∈Γ\ΓK

1

2
d(K,Kg),

where K belongs to a 0-, 1-, or 2-dimensional region of X (vertices, axes, reflection planes).

In both cases the Γ-images of BK form a ball packing BΓ
K with centre points KG.

Definition 7.5. The density of ball packing BΓ
K is

δ(K) =
V ol(BK)

V ol(D(K))
.

It is clear that the orbit KΓ and the ball packing BΓ
K have the same symmetry group. Moreover, this group

contains the crystallographic group Γ:
SymKΓ = SymBΓ

K ≥ Γ.

Definition 7.6. We say that the orbit KΓ and the ball packing BΓ
K are characteristic if SymKΓ = Γ, otherwise the

orbit and the ball packing are not characteristic.

7.2.1. Simply transitive ball packings Let Γ be a fixed group of isometries in the space X . Our goal is to find a
point K ∈ X and the orbit KΓ for Γ such that ΓK = I and the density δ(K) of the corresponding ball packing
BΓ(K) is maximal. In this case the ball packing BΓ(K) is said to be optimal.

We have to determine the maximal radius ρ(K) of the balls, and the maximal density δ(K). The space groups
considered could have free parameters. So we have to find the densest ball packing for fixed parameters p(Γ),
and then we have to vary p(Γ) to get the optimal ball packing

δ(Γ) = max
K, p(Γ)

(δ(K)). (7.1)

We look for the optimal kernel point in a 3-dimensional region, contained in a fundamental domain of Γ.
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−1

0

0

1

−1
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Figure 20. The densest geodesic lattice-like geodesic ball packing in Nil space.

7.2.2. Multiply transitive ball packings Similarly to the simply transitive case we must find a kernel point K ∈ X
and the orbit KΓ of Γ such that the density δ(K) of the corresponding ball packing BΓ(K) is maximal, but
here ΓK ̸= I. Such a ball packing BΓ(K) is also called optimal. In this multiply transitive case we look for the
optimal kernel point K in possible 0-, 1-, or 2-dimensional regions L, respectively. Our aim is to determine the
maximal radius ρ(K) of the balls, and the maximal density δ(K). The space group considered can also have
free parameters p(Γ). Then we find the densest ball packing for fixed parameters, and vary them to find the
optimal ball packing

δ(Γ) = max
K∈L, p(Γ)

(δ(K)). (7.2)

7.2.3. Geodesic ball packings in Nil W. Heisenberg’s famous real matrix group provides a non-commutative
translation group of an affine 3-space. Nil geometry, which is one of the eight homogeneous Thurston 3-
geometries, can be derived from this matrix group (see Section 4).

In [55] we investigated the geodesic balls of Nil and computed their volume, introduced the notion of the
Nil lattice, Nil parallelepiped and the density of the lattice-like ball packing. Moreover, we have determined
the densest lattice-like geodesic ball packing by a family of Nil lattices. The density of this packing is
≈ 0.78085, which may be surprising enough in comparison with the 3-dimensional analogous Euclidean result
π√
18

≈ 0.74048. The kissing number of every ball in this packing is 14 (Fig. 20, 21). We conjecture that in Nil space
the densest geodesic ball packing belongs to the above ball arrangement. The symmetry group of this packing has also
been described in [31]. In [53] we investigated the geodesic ball packings related to Nil prism tilings where we
found that the largest density is ≈ 0.7272 and the kissing number of this ball arrangement is again 14.

7.2.4. Geodesic ball packings in H2×R This Seifert fibre space is derived from the direct product of the
hyperbolic plane H2 and the real line R. In [63] we determined the geodesic balls of H2×R and computed
their volume, defined the notion of the geodesic ball packing and its density. Moreover, we have developed a
procedure to determine the density of the simply or multiply transitive geodesic ball packings for generalized
Coxeter space groups of H2×R and applied this algorithm to them. For the above space groups the Dirichlet–
Voronoi cells are “prisms" in the H2×R sense. The optimal packing density of the generalized Coxeter space
groups is ≈ 0.60726. I am sure, that in this space there are denser ball packings.

7.2.5. Geodesic ball packings in S̃L2R space In [68] we investigated the regular prisms and prism tilings in S̃L2R
(see Section 5) and in [38] we considered the problem of geodesic ball packings related to tilings and their
symmetry groups pq21. Moreover, we computed the volumes of prisms and defined the notion of geodesic ball
packing and its density. In [38] we developed a procedure to determine the densities of the densest geodesic
ball packings for the tilings considered, more precisely, for their generating groups pq21 (for integer rotational
parameters p, q; 3 ≤ p, 2p

p−2 < q). We looked for those parameters p and q above, where the packing density
as largest as possible. Currently our record is 0.5674 for (p, q) = (8, 10). In [59] we studied the non-periodic
geodesic ball packings related to the prism tilings and of the cases examined, the highest density that occurs is
≈ 0.6266.
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Figure 21. The densest geodesic lattice-like geodesic ball packing in Nil space and the corresponding Dirichlet–Voronoi cell.

In [40] we considered tilings T (p, (q, k), (o, ℓ)) for suitable integer positive parameters p, q, k, o, ℓ. Every tiling
T is generated by discrete isometry group pqkoℓ for k = 1, o = 2, ℓ = 1. That means this group is generated by
a p−rotation p about the central fibre, then by qk screw with q−rotation and k

q translation, then by an oℓ screw
with o−rotation and ℓ

o translation, just by Euclidean analogy but exact projective computations. We computed
the maximal density of the ball packings induced by the pqkoℓ group action for any parameters. In the next
Table 3 we have summarized some numerical results with the top density ≈ 0.787758. The table contain the
optimal radius ρopt, the volume of the ball B(ρopt), the volume of the prism Pp, and the packing density δ(ρopt)
that is the ratio of the preceding volumes.

Table 3. Geodesic ball packings above in S̃L2R for pqkoℓ with k = 1, o = 2, ℓ = 1.

q p ρopt vol(B(ρopt)) vol(Pp) δ(ρopt)

3 8 0.392699 0.266949 0.411234 0.635408
3 9 0.521044 0.647905 0.822467 0.787758
3 10 0.599849 1.017248 1.315947 0.773016

4 5 0.314159 0.134202 0.246740 0.543899
4 6 0.501354 0.573426 0.822467 0.697203
4 7 0.613204 1.092403 1.586186 0.688698

5 4 0.261799 0.076892 0.164493 0.467450
5 5 0.485013 0.516444 0.822467 0.627920
5 6 0.614925 1.102375 1.754596 0.628278

7.3. Geodesic ball packings in S2×R space

The structure and the model of S2×R geometry are described in Sections 2-3.
In this section we briefly show the structure of the discrete isometry groups of the S2×R geometry, through

which we can see that there are analogies with the Euclidean case, but even this geometry exhibits significant
differences.

The points in the S2×R geometry are described by (P, p) where P ∈ S2 and p ∈ R. The isometry group
Isom(S2×R) of S2×R can be derived from the direct product of the isometry group of the spherical plane
Isom(S2) and the isometry group of the real line Isom(R). The structure of an isometry group Γ ⊂ Isom(S2×R)
is the following: Γ = {(A1 × ρ1), . . . (An × ρn)}, where Ai × ρi := Ai × (Ri, ri) := (gi, ri), (i ∈ {1, 2, . . . n}) and
Ai ∈ Isom(S2), Ri is either the identity map 1R of R or the point reflection 1R. gi := Ai ×Ri is called the linear
part of the transformation (Ai × ρi) and ri is its translation part. The multiplication formula is the following:

(A1 ×R1, r1) ◦ (A2 ×R2, r2) = (A1A2 ×R1R2, r1R2 + r2). (7.3)
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A group of isometries Γ ⊂ Isom(S2×R) is called space group if the linear parts form a finite group Γ0 called the point
group of Γ. Moreover, the translation components of the identity of this point group are required to form a one-dimensional
lattice LΓ of R.

In [17] J. Z. Farkas classified and gave the complete list of the space groups in S2×R.
In [61] we studied the geodesic balls and their volumes in S2×R, moreover I have introduced the notion of

geodesic ball packing and its density and determined the densest simply and multiply transitive geodesic ball
packings for generalized Coxeter space groups of S2×R, respectively. The density of the densest packing is
≈ 0.82445.

In the paper [62] we studied the simply transitive locally optimal ball packings for the S2×R space
groups with Coxeter point groups such that at least one of the generators is a non-trivial glide reflection. We
determined the densest simply transitive geodesic ball arrangements for the above space groups, moreover
computed their optimal densities and radii. The density of the densest packing in this case is ≈ 0.80408.

In this survey we only recall the results from [56] where we studied the class of S2×R space groups 4q. I. 2
(with a natural parameter q ≥ 2, see [17]). Each of them belongs to the glide reflection groups, i.e., the generators
gi (i = 1, 2, . . .m) of its point group Γ0 are reflections and at least one of the possible translation components of the
above generators differs from zero (see [62]).

7.3.1. A very dense multiply transitive ball packing in S2×R geometry We considered an S2×R space group (see
[17, 61, 62] with point group Γ0 generated by three reflections gi (i = 1, 2, 3)

(+, 0, [ ] {(2, 2, q)}), q ≥ 2,

Γ0 = (g1,g2,g3 − g2
1,g

2
2,g

2
3, (g1g3)

2, (g2g3)
2, (g1g2)

q).

The possible translation parts τ1, τ2, τ3 of the corresponding generators of Γ0 are derived from the so-called
Frobenius congruence relations:

(τ1, τ2, τ3) ∼= (0, 0, 0),
(
0, 0,

1

2

)
,
(1
2
,
1

2
,
1

2

)
,
(1
2
,
1

2
, 0
)
,
(
0,

1

2
, 0
)
,
(
0,

1

2
,
1

2

)
.

If (τ1, τ2, τ3) ∼= (0, 0, 1
2 ) then we have obtained the S2×R space group 4q. I. 2 (for a fixed q, 2 ≤ q ∈ N).

The fundamental domain of the point group of the space group considered is a spherical triangle A1A2A3

with angles π
q , π

2 , π
2 in the base plane. It can be assumed that the fibre coordinate of the centre of the optimal

ball is zero and it is a point of the triangle A1A2A3.
We consider ball packings related to parameter q = 2.
To determine the optimal multiply transitive ball packing we studied 2-cases:

1. K is an interior point of the spherical geodesic segment A2A3 (or A1A3). In this situation the point K and
its images by Γ = 4q. I. 2 (q = 2), as the centres of the optimal ball arrangement Bopt(K,R), have to satisfy
some requirements (not detailed here, see [56]), since an arbitrary ball of the optimal packing is fixed by
its neighbouring balls. Here we got the optimal packing if K = A2 (or K = A1) with the following data:

ϕ3 =
π

2
≈ 1.57079633, θ3 = 0, R3 =

π

2
≈ 1.57079633,

V ol(B(R3)) ≈ 13.74539472, δ(R3,K3) ≈ 0.69634983.
(7.4)

2. K = A3. Fig. 22 shows the orbit of the point K = A3 by the space group considered. The images of K lie
on a line through the origin and A3.

ϕ4 =
π

4
≈ 0.78539816, θ4 =

π

2
≈ 1.57079633, R4 ≈ 1.81379936,

V ol(B(R4)) ≈ 20.00238509, δ(R4,K4) ≈ 0.87757183.
(7.5)

The "outwardly transformed" images of the balls surround the initial balls (see Fig. 22) thus the touching
number of this packing is 4 (see [56]). Finally, we obtain the following

Theorem 7.7 ([56]). The ball arrangement Bopt(R4,K4) provides the densest multiply transitive ball packing of
the S2×R space group 4q. I. 2 (q = 2).
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Figure 22. a. The orbit of K = A3 by the group Γ = 4q. I. 2 (q = 2 and τ is the translation part of the group ). b. The densest ball packing is determined by its
balls BK , BKτg3 and a part of the sphere BK2τ .

Remark 7.8. 1. To the author’s best knowledge there are no results for the geodesic ball packings in Sol geometry at
the time of writing.

2. In Nil, S̃L2R and Sol spaces we have studied the so-called translation ball packings [37, 39, 57, 60, 64, 81] but we
did not consider these cases in this work.

7.3.2. The conjecture for the densest ball arrangement in Thurston geometries We introduced the density function
for the geodesic ball packings generated by a discrete group of isometries in a given Thurston geometry. This
density is related to the Dirichlet–Voronoi cells generated by the centres of balls. For these ball packings we
can formulate the following

Conjecture 7.9 ([56]). Let B be an arbitrary congruent geodesic ball packing in a Thurston geometry X , where B
is generated by a discrete isometry group of X . The above determined ball arrangement Bopt(R4,K4) with density
δ(R4,K4) ≈ 0.87757183 provides the densest congruent geodesic ball packing for the Thurston geometries.

The general definition of the density of congruent geodesic ball packings for the Thurston geometries is not
settled yet. However, by our investigation for any “good" definition of density the following conjecture may
be formulated.

Conjecture 7.10 ([56]). The densest congruent geodesic ball packing in the Thurston geometries is realized by the above
ball arrangement Bopt(R4,K4) with density δ(R4,K4) ≈ 0.87757183.
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and Economics Műegyetem rkp. 3., H-1111 Budapest, Hungary.
E-MAIL: szirmai@math.bme.hu
ORCID ID:0000-0001-9610-7993

643 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg

	1 Introduction
	2 On the projective models of Thurston geometries
	3 S2R and H2R spaces
	3.1 Geodesic curves in S2R geometry
	3.2 Geodesic curves in H2R geometry
	3.3 Distances and spheres
	3.4 Geodesic triangles and their interior angle sums
	3.4.1 Interior angle sums in S2R geometry
	3.4.2 Interior angle sums in H2R geometry

	3.5 Surfaces of geodesic triangles 
	3.6 Geodesic tetrahedra and their circumscribed spheres
	3.7 Menelaus' and Ceva's theorems in S2R and H2R spaces
	3.8 Generalizations of Menelaus' and Ceva's theorems
	3.8.1 Geodesic triangle in general position
	3.8.2 Fibre type triangle


	4 Nil space
	4.1 Basic notions of Nil geometry
	4.2 Geodesic curves, spheres and their properties
	4.3 Geodesic triangles and their interior angle sums
	4.3.1 Hyperbolic-like right angled geodesic triangles
	4.3.2 Geodesic triangles with interior angle sum 

	4.4 On Menelaus' and Ceva's theorems in Nil space

	5 SL2R"0365SL2R geometry
	5.1 Basic notions of the SL2R"0365SL2R geometry
	5.2 Distances and spheres
	5.3 Geodesic triangles and their interior angle sums
	5.3.1 Fibre-like right angled triangles
	5.3.2 Hyperbolic-like right angled geodesic triangles
	5.3.3 Geodesic triangles with interior angle sum 


	6 Sol space
	6.1 Basic notions of Sol geometry
	6.2 Related results in Sol geometry

	7 Ball packings in Thurston geometries
	7.1 Geodesic ball packings in spaces of constant curvature
	7.2 Geodesic ball packings in Thurston geometries of non-constant curvature
	7.2.1 Simply transitive ball packings
	7.2.2 Multiply transitive ball packings
	7.2.3 Geodesic ball packings in Nil
	7.2.4 Geodesic ball packings in H2R
	7.2.5 Geodesic ball packings in SL2R"0365SL2R space

	7.3 Geodesic ball packings in S2R space
	7.3.1 A very dense multiply transitive ball packing in S2R geometry
	7.3.2 The conjecture for the densest ball arrangement in Thurston geometries



